scispace - formally typeset
Search or ask a question

Showing papers in "Physical Chemistry Chemical Physics in 2014"


Journal ArticleDOI
TL;DR: This Perspective is intended as a guidebook for both experimentalists and theorists working on systems, which exhibit anomalous diffusion, and pays special attention to the ergodicity breaking parameters for the different anomalous stochastic processes.
Abstract: Modern microscopic techniques following the stochastic motion of labelled tracer particles have uncovered significant deviations from the laws of Brownian motion in a variety of animate and inanimate systems. Such anomalous diffusion can have different physical origins, which can be identified from careful data analysis. In particular, single particle tracking provides the entire trajectory of the traced particle, which allows one to evaluate different observables to quantify the dynamics of the system under observation. We here provide an extensive overview over different popular anomalous diffusion models and their properties. We pay special attention to their ergodic properties, highlighting the fact that in several of these models the long time averaged mean squared displacement shows a distinct disparity to the regular, ensemble averaged mean squared displacement. In these cases, data obtained from time averages cannot be interpreted by the standard theoretical results for the ensemble averages. Here we therefore provide a comparison of the main properties of the time averaged mean squared displacement and its statistical behaviour in terms of the scatter of the amplitudes between the time averages obtained from different trajectories. We especially demonstrate how anomalous dynamics may be identified for systems, which, on first sight, appear to be Brownian. Moreover, we discuss the ergodicity breaking parameters for the different anomalous stochastic processes and showcase the physical origins for the various behaviours. This Perspective is intended as a guidebook for both experimentalists and theorists working on systems, which exhibit anomalous diffusion.

1,390 citations


Journal ArticleDOI
TL;DR: In this work, the band structure, density of states, and effective mass of photogenerated charge carriers for anatase, rutile and brookite TiO2 are investigated by the first-principle density functional theory calculation and it is indicated that anatase appears to be an indirect band gap semiconductor, while rutiles and Brookite belong to the direct band gap chip category.
Abstract: In general, anatase TiO2 exhibits higher photocatalytic activities than rutile TiO2. However, the reasons for the differences in photocatalytic activity between anatase and rutile are still being debated. In this work, the band structure, density of states, and effective mass of photogenerated charge carriers for anatase, rutile and brookite TiO2 are investigated by the first-principle density functional theory calculation. The results indicate that anatase appears to be an indirect band gap semiconductor, while rutile and brookite belong to the direct band gap semiconductor category. Indirect band gap anatase exhibits a longer lifetime of photoexcited electrons and holes than direct band gap rutile and brookite because the direct transitions of photogenerated electrons from the conduction band (CB) to valence band (VB) of anatase TiO2 is impossible. Furthermore, anatase has the lightest average effective mass of photogenerated electrons and holes as compared to rutile and brookite. The lightest effective mass suggests the fastest migration of photogenerated electrons and holes from the interior to surface of anatase TiO2 particle, thus resulting in the lowest recombination rate of photogenerated charge carriers within anatase TiO2. Therefore, it is not surprising that anatase usually shows a higher photocatalytic activity than rutile and brookite. This investigation will provide some new insight into understanding the difference of photocatalytic activity among anatase, rutile and brookite.

920 citations


Journal ArticleDOI
TL;DR: A 10-parameter, range-separated hybrid (RSH), generalized gradient approximation (GGA) density functional with nonlocal correlation (VV10) is presented and it is discovered that the functional that performs best on the training and primary test sets has 7 linear parameters, with 3 additional nonlinear parameters fromrange-separation and non local correlation.
Abstract: A 10-parameter, range-separated hybrid (RSH), generalized gradient approximation (GGA) density functional with nonlocal correlation (VV10) is presented. Instead of truncating the B97-type power series inhomogeneity correction factors (ICF) for the exchange, same-spin correlation, and opposite-spin correlation functionals uniformly, all 16,383 combinations of the linear parameters up to fourth order (m = 4) are considered. These functionals are individually fit to a training set and the resulting parameters are validated on a primary test set in order to identify the 3 optimal ICF expansions. Through this procedure, it is discovered that the functional that performs best on the training and primary test sets has 7 linear parameters, with 3 additional nonlinear parameters from range-separation and nonlocal correlation. The resulting density functional, ωB97X-V, is further assessed on a secondary test set, the parallel-displaced coronene dimer, as well as several geometry datasets. Furthermore, the basis set dependence and integration grid sensitivity of ωB97X-V are analyzed and documented in order to facilitate the use of the functional.

568 citations


Journal ArticleDOI
TL;DR: The prospect of Na-ion batteries as low-cost and long-life batteries with relatively high-energy density as their potential competitive edge over the commercialized Li-ion rechargeable batteries is addressed.
Abstract: Research interest in Na-ion batteries has increased rapidly because of the environmental friendliness of sodium compared to lithium. Throughout this Perspective paper, we report and review recent scientific advances in the field of negative electrode materials used for Na-ion batteries. This paper sheds light on negative electrode materials for Na-ion batteries: carbonaceous materials, oxides/phosphates (as sodium insertion materials), sodium alloy/compounds and so on. These electrode materials have different reaction mechanisms for electrochemical sodiation/desodiation processes. Moreover, not only sodiation-active materials but also binders, current collectors, electrolytes and electrode/electrolyte interphase and its stabilization are essential for long cycle life Na-ion batteries. This paper also addresses the prospect of Na-ion batteries as low-cost and long-life batteries with relatively high-energy density as their potential competitive edge over the commercialized Li-ion batteries.

549 citations


Journal ArticleDOI
TL;DR: Although MM/GBSA and MM/PBSA perform similarly in the unbiased dataset, for the currently available crystal structures in the PDBbind database, MM/ PBSA is more sensitive to the investigated systems, and may be more suitable for individual-target-level binding free energy ranking.
Abstract: By using different evaluation strategies, we systemically evaluated the performance of Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) and Molecular Mechanics/Poisson–Boltzmann Surface Area (MM/PBSA) methodologies based on more than 1800 protein–ligand crystal structures in the PDBbind database. The results can be summarized as follows: (1) for the one-protein-family/one-binding-ligand case which represents the unbiased protein–ligand complex sampling, both MM/GBSA and MM/PBSA methodologies achieve approximately equal accuracies at the interior dielectric constant of 4 (with rp = 0.408 ± 0.006 of MM/GBSA and rp = 0.388 ± 0.006 of MM/PBSA based on the minimized structures); while for the total dataset (1864 crystal structures), the overall best Pearson correlation coefficient (rp = 0.579 ± 0.002) based on MM/GBSA is better than that of MM/PBSA (rp = 0.491 ± 0.003), indicating that biased sampling may significantly affect the accuracy of the predicted result (some protein families contain too many instances and can bias the overall predicted accuracy). Therefore, family based classification is needed to evaluate the two methodologies; (2) the prediction accuracies of MM/GBSA and MM/PBSA for different protein families are quite different with rp ranging from 0 to 0.9, whereas the correlation and ranking scores (an averaged rp/rs over a list of protein folds and also representing the unbiased sampling) given by MM/PBSA (rp-score = 0.506 ± 0.050 and rs-score = 0.481 ± 0.052) are comparable to those given by MM/GBSA (rp-score = 0.516 ± 0.047 and rs-score = 0.463 ± 0.047) at the fold family level; (3) for the overall prediction accuracies, molecular dynamics (MD) simulation may not be quite necessary for MM/GBSA (rp-minimized = 0.579 ± 0.002 and rp-1ns = 0.564 ± 0.002), but is needed for MM/PBSA (rp-minimized = 0.412 ± 0.003 and rp-1ns = 0.491 ± 0.003). However, for the individual systems, whether to use MD simulation is depended. (4) both MM/GBSA and MM/PBSA may be unable to give successful predictions for the ligands with high formal charges, with the Pearson correlation coefficient ranging from 0.621 ± 0.003 (neutral ligands) to 0.125 ± 0.142 (ligands with a formal charge of 5). Therefore, it can be summarized that, although MM/GBSA and MM/PBSA perform similarly in the unbiased dataset, for the currently available crystal structures in the PDBbind database, compared with MM/GBSA, which may be used in multi-target comparisons, MM/PBSA is more sensitive to the investigated systems, and may be more suitable for individual-target-level binding free energy ranking. This study may provide useful guidance for the post-processing of docking based studies.

529 citations


Journal ArticleDOI
TL;DR: Online mass spectroscopy studies combined with X-ray diffraction data suggest the reduction of the Cu2O films in the presence of CO2, generating a nanoparticulate Cu morphology, prior to the production of hydrogen, CO, and hydrocarbons.
Abstract: The catalytic activity and hydrocarbon selectivity in electrochemical carbon dioxide (CO2) reduction on cuprous oxide (Cu2O) derived copper nanoparticles is discussed. Cuprous oxide films with [100], [110] and [111] orientation and variable thickness were electrodeposited by reduction of copper(II) lactate on commercially available copper plates. After initiation of the electrochemical CO2 reduction by these oxide structures, the selectivity of the process was found to largely depend on the parent Cu2O film thickness, rather than on the initial crystal orientation. Starting with thin Cu2O films, besides CO and hydrogen, selective formation of ethylene is observed with very high ethylene-to-methane ratios (8 to 12). In addition to these products, thicker Cu2O films yield a remarkably large amount of ethane. Long term Faradaic efficiency analysis of hydrocarbons shows no sign of deactivation of the electrodes after 5 hours of continuous experiment. Online mass spectroscopy studies combined with X-ray diffraction data suggest the reduction of the Cu2O films in the presence of CO2, generating a nanoparticulate Cu morphology, prior to the production of hydrogen, CO, and hydrocarbons. Optimizing coverage, number density and size of the copper nanoparticles, as well as local surface pH, may allow highly selective formation of the industrially important product ethylene

447 citations


Journal ArticleDOI
TL;DR: This work investigated in detail the cryogenic steady state photoluminescence properties of a prototypical hybrid perovskite CH3NH3PbI3-xClx and revealed an abnormal blue-shift of the band gap in the high-temperature tetragonal phase.
Abstract: Organometal halide perovskites have recently attracted tremendous attention due to their potential for photovoltaic applications, and they are also considered as promising materials in light emitting and lasing devices. In this work, we investigated in detail the cryogenic steady state photoluminescence properties of a prototypical hybrid perovskite CH3NH3PbI3−xClx. The evolution of the characteristics of two excitonic peaks coincides with the structural phase transition around 160 K. Our results further revealed an exciton binding energy of 62.3 ± 8.9 meV and an optical phonon energy of 25.3 ± 5.2 meV, along with an abnormal blue-shift of the band gap in the high-temperature tetragonal phase.

428 citations


Journal ArticleDOI
TL;DR: By quantifying the potential-dependent behavior of all products, this work provides insights into kinetics and mechanisms at play, in particular involving the production of hydrocarbons and alcohols on catalysts with weak CO binding energy as well as the formation of a C-C bond required to produce ethanol.
Abstract: The electrochemical reduction of CO2 could allow for a sustainable process by which renewable energy from wind and solar are used directly in the production of fuels and chemicals. In this work we investigated the potential dependent activity and selectivity of the electrochemical reduction of CO2 on metallic silver surfaces under ambient conditions. Our results deepen our understanding of the surface chemistry and provide insight into the factors important to designing better catalysts for the reaction. The high sensitivity of our experimental methods for identifying and quantifying products of reaction allowed for the observation of six reduction products including CO and hydrogen as major products and formate, methane, methanol, and ethanol as minor products. By quantifying the potential-dependent behavior of all products, we provide insights into kinetics and mechanisms at play, in particular involving the production of hydrocarbons and alcohols on catalysts with weak CO binding energy as well as the formation of a C–C bond required to produce ethanol.

421 citations


Journal ArticleDOI
TL;DR: This work indicates that the deposition of Pt is a good strategy to improve the photoactivity and selectivity of g-C3N4 for CO2 reduction and further confirmed the proposed photocatalytic reduction mechanism of CO2.
Abstract: Photocatalytic reduction of CO2 into renewable hydrocarbon fuels is an alternative way to develop reproducible energy, which is also a promising way to solve the problem of the greenhouse effect. In this work, graphitic carbon nitride (g-C3N4) was synthesized by directly heating thiourea at 550 °C and then a certain amount of Pt was deposited on it to form g-C3N4–Pt nanocomposites used as catalysts for photocatalytic reduction of CO2 under simulated solar irradiation. The main products of photocatalysis were CH4, CH3OH and HCHO. The deposited Pt acted as an effective cocatalyst, which not only influenced the selectivity of the product generation, but also affected the activity of the reaction. The yield of CH4 first increased upon increasing the amount of Pt deposited on the g-C3N4 from 0 to 1 wt%, then decreased at 2 wt% Pt loading. The production rates of CH3OH and HCHO also increased with the content of Pt increasing from 0 to 0.75 wt% and the maximum yield was observed at 0.75 wt%. The Pt nanoparticles (NPs) could facilitate the transfer and enrichment of photogenerated electrons from g-C3N4 to its surface for photocatalytic reduction of CO2. At the same time, Pt was also used a catalyst to promote the oxidation of products. The transient photocurrent response further confirmed the proposed photocatalytic reduction mechanism of CO2. This work indicates that the deposition of Pt is a good strategy to improve the photoactivity and selectivity of g-C3N4 for CO2 reduction.

416 citations


Journal ArticleDOI
TL;DR: The results suggest that an optimal catalyst design should maximize the exposure of edge sites, and explain the enhanced activity at the edges in terms of localized edge states, which provide insight into the trends in HER activity seen between the two catalysts.
Abstract: MoSe2 and WSe2 nanofilms and nanosheets have recently been shown to be active for electrochemical H2 evolution (HER) In this work, we used periodic density functional theory to investigate the origin of the catalytic activity on these materials We determined the relevant structures of the Mo/W-edges and the Se-edges under HER conditions and their differential hydrogen adsorption free energies The Mo-edge on MoSe2 and the Se-edge on both MoSe2 and WSe2 are found to be the predominantly active facets for these catalysts, with activity predicted to be comparable to or better than MoS2 On the other hand, the (0001) basal planes are found to be inert We further explain the enhanced activity at the edges in terms of localized edge states, which provide insight into the trends in HER activity seen between the two catalysts Our results thus suggest that an optimal catalyst design should maximize the exposure of edge sites Comparisons are also made between the transition metal selenide catalysts and their sulfide counterparts in order to understand the consequences of having either Mo/W or Se/S atoms It is found that linear scaling relations describe the S/Se binding onto the edge and the H binding onto the S/Se

412 citations


Journal ArticleDOI
TL;DR: The quest for electrolyte systems capable of providing a solution to the imposed challenges due to the use of metallic Li, exposure to the environment and handling of reactive discharged product is still on.
Abstract: Metal–air batteries, utilizing the reduction of ambient oxygen, have the highest energy density because most of the cell volume is occupied by the anode while the cathode active material is not stored in the battery. Lithium metal is a tempting anode material for any battery because of its outstanding specific capacity (3842 mA h g−1 for Li vs. 815 mA h g−1 for Zn). Combining the high energy density of Li with ambient oxygen seems to be a promising option. Specifically, in all classes of electrolytes, the transformation from Li–O2 to Li–air is still a major challenge as the presence of moisture and CO2 reduces significantly the cell performance due to their strong reaction with Li metal. Thus, the quest for electrolyte systems capable of providing a solution to the imposed challenges due to the use of metallic Li, exposure to the environment and handling the formation of reactive discharged product is still on. This extended Review provides an expanded insight into electrolytes being suggested and researched and also a future vision on challenges and their possible solutions.

Journal ArticleDOI
TL;DR: Results obtained from lithium symmetrical cells suggest that the quality of the LLZO/lithium interface has a significant impact on the device lifetime and surface polishing can effectively remove Li2CO3 and dramatically improve the interfacial properties.
Abstract: Dense LLZO (Al-substituted Li7La3Zr2O12) pellets were processed in controlled atmospheres to investigate the relationships between the surface chemistry and interfacial behavior in lithium cells. Laser induced breakdown spectroscopy (LIBS), scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, synchrotron X-ray photoelectron spectroscopy (XPS) and soft X-ray absorption spectroscopy (XAS) studies revealed that Li2CO3 was formed on the surface when LLZO pellets were exposed to air. The distribution and thickness of the Li2CO3 layer were estimated by a combination of bulk and surface sensitive techniques with various probing depths. First-principles thermodynamic calculations confirmed that LLZO has an energetic preference to form Li2CO3 in air. Exposure to air and the subsequent formation of Li2CO3 at the LLZO surface is the source of the high interfacial impedances observed in cells with lithium electrodes. Surface polishing can effectively remove Li2CO3 and dramatically improve the interfacial properties. Polished samples in lithium cells had an area specific resistance (ASR) of only 109 Ω cm(2) for the LLZO/Li interface, the lowest reported value for Al-substituted LLZO. Galvanostatic cycling results obtained from lithium symmetrical cells also suggest that the quality of the LLZO/lithium interface has a significant impact on the device lifetime.

Journal ArticleDOI
TL;DR: Overall, the MM/PBSA and MM/GBSA rescoring achieved comparative accuracies based on a relatively higher solute dielectric constant, and could markedly improve the 'screening power' and 'ranking power' given by Autodock.
Abstract: With the rapid development of computational techniques and hardware, more rigorous and precise theoretical models have been used to predict the binding affinities of a large number of small molecules to biomolecules. By employing continuum solvation models, the MM/GBSA and MM/PBSA methodologies achieve a good balance between low computational cost and reasonable prediction accuracy. In this study, we have thoroughly investigated the effects of interior dielectric constant, molecular dynamics (MD) simulations, and the number of top-scored docking poses on the performance of the MM/GBSA and MM/PBSA rescoring of docking poses for three tyrosine kinases, including ABL, ALK, and BRAF. Overall, the MM/PBSA and MM/GBSA rescoring achieved comparative accuracies based on a relatively higher solute (or interior) dielectric constant (i.e. e = 2, or 4), and could markedly improve the ‘screening power’ and ‘ranking power’ given by Autodock. Moreover, with a relatively higher solute dielectric constant, the MM/PBSA or MM/GBSA rescoring based on the best scored docking poses and the multiple top-scored docking poses gave similar predictions, implying that much computational cost can be saved by considering the best scored docking poses only. Besides, compared with the rescoring based on the minimized structures, the rescoring based on the MD simulations might not be completely necessary due to its negligible impact on the docking performance. Considering the much higher computational demand of MM/PBSA, MM/GBSA with a high solute dielectric constant (e = 2 or 4) is recommended for the virtual screening of tyrosine kinases.

Journal ArticleDOI
TL;DR: Calculations were carried out on complexes of ZH4, ZFH3 and ZF4 (Z = C, Si and Ge) molecules with HCN, LiCN and Cl(-) species acting as Lewis bases through nitrogen centre or chlorine ion, finding the electron charge redistribution is the same as that of the SN2 reaction.
Abstract: MP2/aug-cc-pVTZ calculations were carried out on complexes of ZH4, ZFH3 and ZF4 (Z = C, Si and Ge) molecules with HCN, LiCN and Cl− species acting as Lewis bases through nitrogen centre or chlorine ion. Z-Atoms in these complexes usually act as Lewis acid centres forming σ-hole bonds with Lewis bases. Such noncovalent interactions may adopt a name of tetrel bonds since they concern the elements of the group IV. There are exceptions for complexes of CH4 and CF4, as well as for the F4Si⋯NCH complex where the tetrel bond is not formed. The energetic and geometrical parameters of the complexes were analyzed and numerous correlations between them were found. The Quantum Theory of ‘Atoms in Molecules’ and Natural Bonds Orbital (NBO) method used here should deepen the understanding of the nature of the tetrel bond. An analysis of the electrostatic potential surfaces of the interacting species is performed. The electron charge redistribution, being the result of the tetrel bond formation, is the same as that of the SN2 reaction. The energetic and geometrical parameters of the complexes analyzed here correspond to different stages of the SN2 process.

Journal ArticleDOI
TL;DR: This article reviews recent developments and applications in the area of computational electrochemistry, focusing on predicting the reduction potentials of electron transfer and other electrochemical reactions and half-reactions in both aqueous and nonaqueous solutions.
Abstract: This article reviews recent developments and applications in the area of computational electrochemistry. Our focus is on predicting the reduction potentials of electron transfer and other electrochemical reactions and half-reactions in both aqueous and nonaqueous solutions. Topics covered include various computational protocols that combine quantum mechanical electronic structure methods (such as density functional theory) with implicit-solvent models, explicit-solvent protocols that employ Monte Carlo or molecular dynamics simulations (for example, Car–Parrinello molecular dynamics using the grand canonical ensemble formalism), and the Marcus theory of electronic charge transfer. We also review computational approaches based on empirical relationships between molecular and electronic structure and electron transfer reactivity. The scope of the implicit-solvent protocols is emphasized, and the present status of the theory and future directions are outlined.

Journal ArticleDOI
TL;DR: The recent advances and current status of enhancing the photocatalytic activity and anti-photocorrosion of semiconductor ZnO by coupling with versatile carbon materials, e.g., C60, carbon nanotube, graphene and other carbon materials are described.
Abstract: Coupling ZnO with carbon materials using a suitable integration method to form ZnO-carbon composites has been established as a promising strategy to ameliorate the photocatalytic performance of semiconductor ZnO. In this perspective article, we describe the recent advances and current status of enhancing the photocatalytic activity and anti-photocorrosion of semiconductor ZnO by coupling with versatile carbon materials, e.g., C60, carbon nanotube, graphene and other carbon materials. The primary roles of carbon materials in boosting the photoactivity and photostability of ZnO have been outlined and illustrated with some selected typical examples. In particular, the three main kinds of mechanisms with regard to anti-photocorrosion of ZnO by coupling with carbon have been demonstrated. Finally, we give a concise perspective on this important research area and specifically propose further research opportunities in optimizing the photocatalytic performance of ZnO-carbon composites and widening the scope of their potential photocatalytic applications.

Journal ArticleDOI
TL;DR: Polydispersed dinickel phosphide (Ni2P) nanoparticles are an excellent and robust catalyst for the electrochemical hydrogen evolution reaction, operating in both acidic and basic solutions.
Abstract: Polydispersed dinickel phosphide (Ni2P) nanoparticles were synthesized by a simple and scalable solid-state reaction. These nanoparticles are an excellent and robust catalyst for the electrochemical hydrogen evolution reaction, operating in both acidic and basic solutions.

Journal ArticleDOI
TL;DR: It turns out that monolayer and multilayer nanosheets of Mo2C acquire superior power factors to other MXenes upon any type of functionalization, and is proposed as a potential thermoelectric materials of the MXene family.
Abstract: A newly synthesized family of two-dimensional transition metal carbides and nitrides, so-called MXenes, exhibit metallic or semiconducting properties upon appropriate surface functionalization. Owing to their intrinsic ceramic nature, MXenes may be suitable for energy conversion applications at high temperature. Using the Boltzmann theory and first-principles electronic structure calculations, we explore the thermoelectric properties of monolayer and multilayer M2C (M = Sc, Ti, V, Zr, Nb, Mo, Hf, and Ta) and M2N (M = Ti, Zr, and Hf) MXenes functionalized with F, OH, and O groups. From our calculations, it turns out that monolayer and multilayer nanosheets of Mo2C acquire superior power factors to other MXenes upon any type of functionalization. We therefore propose the functionalized Mo2C nanosheets as potential thermoelectric materials of the MXene family. The exceptional thermoelectric properties of the functionalized Mo2C nanosheets are attributed to the peculiar t2g band shapes, which are a combination of flat and dispersive portions. These types of band shapes allow Mo2C to gain a large Seebeck coefficient and simultaneously a good electrical conductivity at low carrier concentrations.

Journal ArticleDOI
TL;DR: This review highlights the basic principles and the main mechanisms behind phosphorescent light emission of various classes of photofunctional OLED materials, like organic polymers and oligomers, electron and hole transport molecules, elementoorganic complexes with heavy metal central ions, and clarify connections between the main features of electronic structure and the photo-physical properties of the phosphorescent OLED materials.
Abstract: Organic light-emitting device (OLED) technology has found numerous applications in the development of solid state lighting, flat panel displays and flexible screens. These applications are already commercialized in mobile phones and TV sets. White OLEDs are of especial importance for lighting; they now use multilayer combinations of organic and elementoorganic dyes which emit various colors in the red, green and blue parts of the visible spectrum. At the same time the stability of phosphorescent blue emitters is still a major challenge for OLED applications. In this review we highlight the basic principles and the main mechanisms behind phosphorescent light emission of various classes of photofunctional OLED materials, like organic polymers and oligomers, electron and hole transport molecules, elementoorganic complexes with heavy metal central ions, and clarify connections between the main features of electronic structure and the photo-physical properties of the phosphorescent OLED materials.

Journal ArticleDOI
TL;DR: The present Perspective will show the importance of CH-π hydrogen bonds and stimulate interest in the interactions of biological macromolecules, one of the most fascinating fields in bioorganic chemistry.
Abstract: This is a sequel to the previous Perspective “The CH–π hydrogen bond in chemistry. Conformation, supramolecules, optical resolution and interactions involving carbohydrates”, which featured in a PCCP themed issue on “Weak Hydrogen Bonds – Strong Effects?”: Phys. Chem. Chem. Phys., 2011, 13, 13873–13900. Evidence that weak hydrogen bonds play an enormously important role in chemistry and biochemistry has now accumulated to an extent that the rigid classical concept of hydrogen bonds formulated by Pauling needs to be seriously revised and extended. The concept of a more generalized hydrogen bond definition is indispensable for understanding the folding mechanisms of proteins. The CH–π hydrogen bond, a weak molecular force occurring between a soft acid CH and a soft base π-electron system, among all is one of the most important and plays a functional role in defining the conformation and stability of 3D structures as well as in many molecular recognition events. This concept is also valuable in structure-based drug design efforts. Despite their frequent occurrence in organic molecules and bio-molecules, the importance of CH–π hydrogen bonds is still largely unknown to many chemists and biochemists. Here we present a review that deals with the evidence, nature, characteristics and consequences of the CH–π hydrogen bond in biological macromolecules (proteins, nucleic acids, lipids and polysaccharides). It is hoped that the present Perspective will show the importance of CH–π hydrogen bonds and stimulate interest in the interactions of biological macromolecules, one of the most fascinating fields in bioorganic chemistry. Implication of this concept is enormous and valuable in the scientific community.

Journal ArticleDOI
TL;DR: This perspective sketches the recent developments in the research group toward the development of a robust and user-friendly virtual spectrometer rooted in second-order vibrational perturbation theory (VPT2) and usable also by non-specialists essentially as a black-box procedure.
Abstract: Computation of full infrared (IR) and Raman spectra (including absolute intensities and transition energies) for medium- and large-sized molecular systems beyond the harmonic approximation is one of the most interesting challenges of contemporary computational chemistry. Contrary to common beliefs, low-order perturbation theory is able to deliver results of high accuracy (actually often better than those issuing from current direct dynamics approaches) provided that anharmonic resonances are properly managed. This perspective sketches the recent developments in our research group toward the development of a robust and user-friendly virtual spectrometer rooted in second-order vibrational perturbation theory (VPT2) and usable also by non-specialists essentially as a black-box procedure. Several examples are explicitly worked out in order to illustrate the features of our computational tool together with the most important ongoing developments.

Journal ArticleDOI
TL;DR: It is found that high coverages of CO under typical reaction conditions for the more reactive transition metals affect the catalytic activity towards the CO2 reduction reaction, but the ordering of metal activities is not changed.
Abstract: We present a theoretical analysis of trends in overpotentials for electrocatalytic CO2 reduction based on density functional theory calculations. The analysis is based on understanding variations in the free energy of intermediates and mapping out the potential at which different elementary steps are exergonic as a measure of the catalytic activity. We study different surface structures and introduce a simple model for including the effect of adsorbate–adsorbate interactions. We find that high coverages of CO under typical reaction conditions for the more reactive transition metals affect the catalytic activity towards the CO2 reduction reaction, but the ordering of metal activities is not changed. For the hydrogen evolution reaction, a high CO coverage shifts the maximum activity towards more reactive metals than Pt.

Journal ArticleDOI
Shulei Chou1, Yuede Pan1, Jiazhao Wang1, Hua-Kun Liu1, Shi Xue Dou1 
TL;DR: This review focuses on several kinds of promising electrode materials, to show how their battery performance can be affected significantly by binder materials: anode materials such as Si, Sn and transitional metal oxides; cathodematerials such as LiFePO4, LiNi1/3Co 1/3Mn1/ 3O2, LiCoO2 and sulphur.
Abstract: Li and Na batteries are very important as energy storage devices for electric vehicles and smart grids It is well known that, when an electrode is analysed in detail, each of the components (the active material, the conductive carbon, the current collector and the binder) makes a portion of contribution to the battery performance in terms of specific capacity, rate capability, cycle life, etc However, there has not yet been a review on the binder, though there are already many review papers on the active materials Binders make up only a small part of the electrode composition, but in some cases, they play an important role in affecting the cycling stability and rate capability for Li-ion and Na-ion batteries Poly(vinylidene difluoride) (PVDF) has been the mainstream binder, but there have been discoveries that aqueous binders can sometimes make a battery perform better, not to mention they are cheaper, greener, and easier to use for electrode fabrication In this review, we focus on several kinds of promising electrode materials, to show how their battery performance can be affected significantly by binder materials: anode materials such as Si, Sn and transitional metal oxides; cathode materials such as LiFePO4, LiNi1/3Co1/3Mn1/3O2, LiCoO2 and sulphur

Journal ArticleDOI
TL;DR: A first-principle theoretical study is performed using local, semi-local and non-local exchange-correlation approximations to find a suitable method for this organic-inorganic hybrid perovskite material, and results excellently agree with the experimental data.
Abstract: The organic–inorganic hybrid perovskite CH3NH3PbI3 is a novel light harvester, which can greatly improve the solar-conversion efficiency of dye-sensitized solar cells. In this article, a first-principle theoretical study is performed using local, semi-local and non-local exchange–correlation approximations to find a suitable method for this material. Our results, using the non-local optB86b + vdWDF functional, excellently agree with the experimental data. Thus, consideration of weak van der Waals interactions is demonstrated to be important for the accurate description of the properties of this type of organic–inorganic hybrid materials. Further analysis of the electronic properties reveals that I 5p electrons can be photo-excited to Pb 6p empty states. The main interaction between the organic cations and the inorganic framework is through the ionic bonding between CH3 and I ions. Furthermore, I atoms in the Pb–I framework are found to be chemically inequivalent because of their different chemical environments.

Journal ArticleDOI
TL;DR: The results showed that Co doped ZnO nanodisks and nanorods exhibit highly enhanced photocatalytic activity, as compared to pure Zn O nanod risks and nanors, due to the combined effects of enhanced surface area and improved charge separation efficiency due to optimal Co doping.
Abstract: Cobalt doped ZnO nanodisks and nanorods were synthesized by a facile wet chemical method and well characterized by X-ray diffraction, field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM) with energy dispersive X-ray spectroscopy, photoluminescence spectroscopy, Raman spectroscopy and UV-visible absorption spectroscopy. The photocatalytic activities were evaluated for sunlight driven degradation of an aqueous methylene blue (MB) solution. The results showed that Co doped ZnO nanodisks and nanorods exhibit highly enhanced photocatalytic activity, as compared to pure ZnO nanodisks and nanorods. The enhanced photocatalytic activities of Co doped ZnO nanostructures were attributed to the combined effects of enhanced surface area of ZnO nanodisks and improved charge separation efficiency due to optimal Co doping which inhibit recombination of photogenerated charge carriers. The possible mechanism for the enhanced photocatalytic activity of Co doped ZnO nanostructures is tentatively proposed.

Journal ArticleDOI
TL;DR: Recent developments in porphyrin-based sensing applications in conjunction with the new advanced concept of nanoarchitectonics are discussed, which creates functional nanostructureures based on a profound understanding of mutual interactions between the individual nanostructures and their arbitrary arrangements.
Abstract: Porphyrins and related families of molecules are important organic modules as has been reflected in the award of the Nobel Prizes in Chemistry in 1915, 1930, 1961, 1962, 1965, and 1988 for work on porphyrin-related biological functionalities. The porphyrin core can be synthetically modified by introduction of various functional groups and other elements, allowing creation of numerous types of porphyrin derivatives. This feature makes porphyrins extremely useful molecules especially in combination with their other interesting photonic, electronic and magnetic properties, which in turn is reflected in their diverse signal input–output functionalities based on interactions with other molecules and external stimuli. Therefore, porphyrins and related macrocycles play a preeminent role in sensing applications involving chromophores. In this review, we discuss recent developments in porphyrin-based sensing applications in conjunction with the new advanced concept of nanoarchitectonics, which creates functional nanostructures based on a profound understanding of mutual interactions between the individual nanostructures and their arbitrary arrangements. Following a brief explanation of the basics of porphyrin chemistry and physics, recent examples in the corresponding fields are discussed according to a classification based on physical modes of detection including optical detection (absorption/photoluminescence spectroscopy and energy and electron transfer processes), other spectral modes (circular dichroism, plasmon and nuclear magnetic resonance), electronic and electrochemical modes, and other sensing modes.

Journal ArticleDOI
TL;DR: It is concluded that a model based on a secondary diode at the CIGS/Mo interface can best explain these features such as the position of the N1 signal in admittance spectroscopy and the roll-over of the J-V curve at low temperature.
Abstract: Thin film solar cells with a Cu(In,Ga)Se2 (CIGS) absorber layer achieved efficiencies above 20%. In order to achieve such high performance the absorber layer of the device has to be doped with alkaline material. One possibility to incorporate alkaline material is a post deposition treatment (PDT), where a thin layer of NaF and/or KF is deposited onto the completely grown CIGS layer. In this paper we discuss the effects of PDT with different alkaline elements (Na and K) on the electronic properties of CIGS solar cells. We demonstrate that whereas Na is more effective in increasing the hole concentration in CIGS, K significantly improves the pn-junction quality. The beneficial role of K in improving the PV performance is attributed to reduced recombination at the CdS/CIGS interface, as revealed by temperature dependent J–V measurements, due to a stronger electronically inverted CIGS surface region. Computer simulations with the software SCAPS are used to verify this model. Furthermore, we show that PDT with either KF or NaF has also a distinct influence on other electronic properties of the device such as the position of the N1 signal in admittance spectroscopy and the roll-over of the J–V curve at low temperature. In view of the presented results we conclude that a model based on a secondary diode at the CIGS/Mo interface can best explain these features.

Journal ArticleDOI
TL;DR: A brief overview of recent progress in the mechanistic studies of FAO, the synthesis of novel Pd- and Pt-based nanocatalysts as well as their practical applications in DFAFCs is provided with a focus on discussing studies significantly contributing to these areas in the past five years.
Abstract: Formic acid as a natural biomass and a CO2 reduction product has attracted considerable interest in renewable energy exploitation, serving as both a promising candidate for chemical hydrogen storage material and a direct fuel for low temperature liquid fed fuel cells In addition to its chemical dehydrogenation, formic acid oxidation (FAO) is a model reaction in the study of electrocatalysis of C1 molecules and the anode reaction in direct formic acid fuel cells (DFAFCs) Thanks to a deeper mechanistic understanding of FAO on Pt and Pd surfaces brought about by recent advances in the fundamental investigations, the “synthesis-by-design” concept has become a mainstream idea to attain high-performance Pt- and Pd-based nanocatalysts As a result, a large number of efficient nanocatalysts have been obtained through different synthesis strategies by tailoring geometric and electronic structures of the two primary catalytic metals In this paper, we provide a brief overview of recent progress in the mechanistic studies of FAO, the synthesis of novel Pd- and Pt-based nanocatalysts as well as their practical applications in DFAFCs with a focus on discussing studies significantly contributing to these areas in the past five years

Journal ArticleDOI
TL;DR: It is demonstrated that oxygen evolution catalysis can be removed by active site modification on ruthenia by incorporation of Ni or Co into the surface, which activates a proton donor-acceptor functionality on the conventionally inactive bridge surface sites.
Abstract: Oxygen evolution catalysis is restricted by the interdependence of adsorption energies of the reaction intermediates and the surface reactivity. The interdependence reduces the number of degrees of freedom available for catalyst optimization. Here it is demonstrated that this limitation can be removed by active site modification. This can be achieved on ruthenia by incorporation of Ni or Co into the surface, which activates a proton donor–acceptor functionality on the conventionally inactive bridge surface sites. This enhances the actual measured oxygen evolution activity of the catalyst significantly compared to conventional ruthenia.

Journal ArticleDOI
TL;DR: An overview of the determination of excited-state properties of "real-life" dyes, and notably of their optical absorption and emission spectra, performed during the last decade with time-dependent density functional theory (TD-DFT) is presented.
Abstract: In this perspective, we present an overview of the determination of excited-state properties of "real-life" dyes, and notably of their optical absorption and emission spectra, performed during the last decade with time-dependent density functional theory (TD-DFT). We discuss the results obtained with both vertical and adiabatic (vibronic) approximations, choosing relevant examples for several series of dyes. These examples include reproducing absorption wavelengths of numerous families of coloured molecules, understanding the specific band shape of amino-anthraquinones, optimising the properties of dyes used in solar cells, mimicking the fluorescence wavelengths of fluorescent brighteners and BODIPY dyes, studying optically active biomolecules and photo-induced proton transfer, as well as improving the properties of photochromes.