Journal•ISSN: 1050-2947

# Physical Review A

About: Physical Review A is an academic journal. The journal publishes majorly in the area(s): Quantum entanglement & Ionization. It has an ISSN identifier of 1050-2947. Over the lifetime, 85470 publication(s) have been published receiving 2525883 citation(s). The journal is also known as: Phys Rev A (Coll Park) & Physical review. A.

Topics: Quantum entanglement, Ionization, Photon, Quantum, Qubit

##### Papers published on a yearly basis

##### Papers

More filters

••

TL;DR: This work reports a gradient-corrected exchange-energy functional, containing only one parameter, that fits the exact Hartree-Fock exchange energies of a wide variety of atomic systems with remarkable accuracy, surpassing the performance of previous functionals containing two parameters or more.

Abstract: Current gradient-corrected density-functional approximations for the exchange energies of atomic and molecular systems fail to reproduce the correct 1/r asymptotic behavior of the exchange-energy density. Here we report a gradient-corrected exchange-energy functional with the proper asymptotic limit. Our functional, containing only one parameter, fits the exact Hartree-Fock exchange energies of a wide variety of atomic systems with remarkable accuracy, surpassing the performance of previous functionals containing two parameters or more.

42,343 citations

••

TL;DR: The dynamical steady-state probability density is found in an extended phase space with variables x, p/sub x/, V, epsilon-dot, and zeta, where the x are reduced distances and the two variables epsilus-dot andZeta act as thermodynamic friction coefficients.

Abstract: Nos\'e has modified Newtonian dynamics so as to reproduce both the canonical and the isothermal-isobaric probability densities in the phase space of an N-body system. He did this by scaling time (with s) and distance (with ${V}^{1/D}$ in D dimensions) through Lagrangian equations of motion. The dynamical equations describe the evolution of these two scaling variables and their two conjugate momenta ${p}_{s}$ and ${p}_{v}$. Here we develop a slightly different set of equations, free of time scaling. We find the dynamical steady-state probability density in an extended phase space with variables x, ${p}_{x}$, V, \ensuremath{\epsilon}\ifmmode \dot{}\else \.{}\fi{}, and \ensuremath{\zeta}, where the x are reduced distances and the two variables \ensuremath{\epsilon}\ifmmode \dot{}\else \.{}\fi{} and \ensuremath{\zeta} act as thermodynamic friction coefficients. We find that these friction coefficients have Gaussian distributions. From the distributions the extent of small-system non-Newtonian behavior can be estimated. We illustrate the dynamical equations by considering their application to the simplest possible case, a one-dimensional classical harmonic oscillator.

15,380 citations

••

TL;DR: Laser light with a Laguerre-Gaussian amplitude distribution is found to have a well-defined orbital angular momentum and an astigmatic optical system may be used to transform a high-order LaguERre- Gaussian mode into aHigh-order Hermite-Gaussia mode reversibly.

Abstract: Laser light with a Laguerre-Gaussian amplitude distribution is found to have a well-defined orbital angular momentum. An astigmatic optical system may be used to transform a high-order Laguerre-Gaussian mode into a high-order Hermite-Gaussian mode reversibly. An experiment is proposed to measure the mechanical torque induced by the transfer of orbital angular momentum associated with such a transformation.

6,401 citations

••

Abstract: We propose an implementation of a universal set of one- and two-quantum-bit gates for quantum computation using the spin states of coupled single-electron quantum dots. Desired operations are effected by the gating of the tunneling barrier between neighboring dots. Several measures of the gate quality are computed within a recently derived spin master equation incorporating decoherence caused by a prototypical magnetic environment. Dot-array experiments that would provide an initial demonstration of the desired nonequilibrium spin dynamics are proposed.

5,395 citations

••

TL;DR: It is proved that an EPP involving one-way classical communication and acting on mixed state M (obtained by sharing halves of Einstein-Podolsky-Rosen pairs through a channel) yields a QECC on \ensuremath{\chi} with rate Q=D, and vice versa, and it is proved Q is not increased by adding one- way classical communication.

Abstract: Entanglement purification protocols (EPPs) and quantum error-correcting codes (QECCs) provide two ways of protecting quantum states from interaction with the environment. In an EPP, perfectly entangled pure states are extracted, with some yield D, from a mixed state M shared by two parties; with a QECC, an arbitrary quantum state |\ensuremath{\xi}〉 can be transmitted at some rate Q through a noisy channel \ensuremath{\chi} without degradation. We prove that an EPP involving one-way classical communication and acting on mixed state M^(\ensuremath{\chi}) (obtained by sharing halves of Einstein-Podolsky-Rosen pairs through a channel \ensuremath{\chi}) yields a QECC on \ensuremath{\chi} with rate Q=D, and vice versa. We compare the amount of entanglement E(M) required to prepare a mixed state M by local actions with the amounts ${\mathit{D}}_{1}$(M) and ${\mathit{D}}_{2}$(M) that can be locally distilled from it by EPPs using one- and two-way classical communication, respectively, and give an exact expression for E(M) when M is Bell diagonal. While EPPs require classical communication, QECCs do not, and we prove Q is not increased by adding one-way classical communication. However, both D and Q can be increased by adding two-way communication. We show that certain noisy quantum channels, for example a 50% depolarizing channel, can be used for reliable transmission of quantum states if two-way communication is available, but cannot be used if only one-way communication is available. We exhibit a family of codes based on universal hashing able to achieve an asymptotic Q (or D) of 1-S for simple noise models, where S is the error entropy. We also obtain a specific, simple 5-bit single-error-correcting quantum block code. We prove that iff a QECC results in high fidelity for the case of no error then the QECC can be recast into a form where the encoder is the matrix inverse of the decoder. \textcopyright{} 1996 The American Physical Society.

4,147 citations