scispace - formally typeset
Search or ask a question

Showing papers in "Physical Review D in 1953"


Journal ArticleDOI
TL;DR: In this paper, a variational technique was developed to investigate the low-lying energy levels of a conduction electron in a polar crystal, which is equivalent to a simple canonical transformation, and the use of this transformation enables us to obtain the wave functions and energy levels quite simply.
Abstract: A variational technique is developed to investigate the low-lying energy levels of a conduction electron in a polar crystal. Because of the strong interaction between the electron and the longitudinal optical mode of the lattice vibrations, perturbation-theoretic methods are inapplicable. Our variational technique, which is closely related to the "intermediate coupling" method introduced by Tomonaga, is equivalent to a simple canonical transformation. The use of this transformation enables us to obtain the wave functions and energy levels quite simply. Because the recoil of the electron introduces a correlation between the emission of successive virtual phonons by the electron, our approximation, in which this correlation is neglected, breaks down for very strong electron-phonon coupling. The validity of our approximation is investigated and corrections are found to be small for coupling strengths occurring in typical polar crystals.

877 citations



Journal ArticleDOI
TL;DR: In this article, a general field is decomposed into symmetrical and antisymmetric parts, which are identified with Bose-Einstein and Fermi-Dirac fields.
Abstract: The arguments leading to the formulation of the action principle for a general field are presented. In association with the complete reduction of all numerical matrices into symmetrical and antisymmetrical parts, the general field is decomposed into two sets, which are identified with Bose-Einstein and Fermi-Dirac fields. The spin restriction on the two kinds of fields is inferred from the time reflection invariance requirement. The consistency of the theory is verified in terms of a criterion involving the various generators of infinitesimal transformations. Following a discussion of charged fields, the electromagnetic field is introduced to satisfy the postulate of general gauge invariance. As an aspect of the latter, it is recognized that the electromagnetic field and charged fields are not kinematically independent. After a discussion of the field strength commutation relations, the independent dynamical variables of the electromagnetic field are exhibited in terms of a special gauge.

234 citations