scispace - formally typeset
Search or ask a question
JournalISSN: 0967-3334

Physiological Measurement 

IOP Publishing
About: Physiological Measurement is an academic journal published by IOP Publishing. The journal publishes majorly in the area(s): Electrical impedance tomography & Medicine. It has an ISSN identifier of 0967-3334. Over the lifetime, 3738 publications have been published receiving 116097 citations.


Papers
More filters
Journal ArticleDOI
John F. Allen1
TL;DR: Photoplethysmography is a simple and low-cost optical technique that can be used to detect blood volume changes in the microvascular bed of tissue and is often used non-invasively to make measurements at the skin surface.
Abstract: Photoplethysmography (PPG) is a simple and low-cost optical technique that can be used to detect blood volume changes in the microvascular bed of tissue. It is often used non-invasively to make measurements at the skin surface. The PPG waveform comprises a pulsatile ('AC') physiological waveform attributed to cardiac synchronous changes in the blood volume with each heart beat, and is superimposed on a slowly varying ('DC') baseline with various lower frequency components attributed to respiration, sympathetic nervous system activity and thermoregulation. Although the origins of the components of the PPG signal are not fully understood, it is generally accepted that they can provide valuable information about the cardiovascular system. There has been a resurgence of interest in the technique in recent years, driven by the demand for low cost, simple and portable technology for the primary care and community based clinical settings, the wide availability of low cost and small semiconductor components, and the advancement of computer-based pulse wave analysis techniques. The PPG technology has been used in a wide range of commercially available medical devices for measuring oxygen saturation, blood pressure and cardiac output, assessing autonomic function and also detecting peripheral vascular disease. The introductory sections of the topical review describe the basic principle of operation and interaction of light with tissue, early and recent history of PPG, instrumentation, measurement protocol, and pulse wave analysis. The review then focuses on the applications of PPG in clinical physiological measurements, including clinical physiological monitoring, vascular assessment and autonomic function.

2,836 citations

Journal ArticleDOI
TL;DR: Adapt nonlinear model predictive control is promising for the control of glucose concentration during fasting conditions in subjects with type 1 diabetes.
Abstract: A nonlinear model predictive controller has been developed to maintain normoglycemia in subjects with type 1 diabetes during fasting conditions such as during overnight fast. The controller employs a compartment model, which represents the glucoregulatory system and includes submodels representing absorption of subcutaneously administered short-acting insulin Lispro and gut absorption. The controller uses Bayesian parameter estimation to determine time-varying model parameters. Moving target trajectory facilitates slow, controlled normalization of elevated glucose levels and faster normalization of low glucose values. The predictive capabilities of the model have been evaluated using data from 15 clinical experiments in subjects with type 1 diabetes. The experiments employed intravenous glucose sampling (every 15 min) and subcutaneous infusion of insulin Lispro by insulin pump (modified also every 15 min). The model gave glucose predictions with a mean square error proportionally related to the prediction horizon with the value of 0.2 mmol L(-1) per 15 min. The assessment of clinical utility of model-based glucose predictions using Clarke error grid analysis gave 95% of values in zone A and the remaining 5% of values in zone B for glucose predictions up to 60 min (n = 1674). In conclusion, adaptive nonlinear model predictive control is promising for the control of glucose concentration during fasting conditions in subjects with type 1 diabetes.

1,164 citations

Journal ArticleDOI
TL;DR: In this review, the emerging role of the wavelet transform in the interrogation of the ECG is discussed in detail, where both the continuous and the discrete transform are considered in turn.
Abstract: The wavelet transform has emerged over recent years as a powerful time-frequency analysis and signal coding tool favoured for the interrogation of complex nonstationary signals. Its application to biosignal processing has been at the forefront of these developments where it has been found particularly useful in the study of these, often problematic, signals: none more so than the ECG. In this review, the emerging role of the wavelet transform in the interrogation of the ECG is discussed in detail, where both the continuous and the discrete transform are considered in turn.

794 citations

Journal ArticleDOI
TL;DR: The features of modern infrared imaging technology and the standardization protocols for thermal imaging in medicine are described, and in certain applications thermal imaging is shown to provide objective measurement of temperature changes that are clinically significant.
Abstract: This review describes the features of modern infrared imaging technology and the standardization protocols for thermal imaging in medicine. The technique essentially uses naturally emitted infrared radiation from the skin surface. Recent studies have investigated the influence of equipment and the methods of image recording. The credibility and acceptance of thermal imaging in medicine is subject to critical use of the technology and proper understanding of thermal physiology. Finally, we review established and evolving medical applications for thermal imaging, including inflammatory diseases, complex regional pain syndrome and Raynaud's phenomenon. Recent interest in the potential applications for fever screening is described, and some other areas of medicine where some research papers have included thermal imaging as an assessment modality. In certain applications thermal imaging is shown to provide objective measurement of temperature changes that are clinically significant.

740 citations

Journal ArticleDOI
TL;DR: An integrated approach is described in which a single, waist-mounted accelerometry system is used to monitor a range of different parameters of human movement in an unsupervised setting.
Abstract: Accelerometry offers a practical and low cost method of objectively monitoring human movements, and has particular applicability to the monitoring of free-living subjects. Accelerometers have been used to monitor a range of different movements, including gait, sit-to-stand transfers, postural sway and falls. They have also been used to measure physical activity levels and to identify and classify movements performed by subjects. This paper reviews the use of accelerometer-based systems in each of these areas. The scope and applicability of such systems in unsupervised monitoring of human movement are considered. The different systems and monitoring techniques can be integrated to provide a more comprehensive system that is suitable for measuring a range of different parameters in an unsupervised monitoring context with free-living subjects. An integrated approach is described in which a single, waist-mounted accelerometry system is used to monitor a range of different parameters of human movement in an unsupervised setting.

735 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202369
2022138
2021158
2020162
2019168
2018223