scispace - formally typeset
Search or ask a question

Showing papers in "Physiological Reviews in 2011"


Journal ArticleDOI
TL;DR: Current studies indicate that even in the normal brain, microglia have highly motile processes by which they scan their territorial domains, and microglial cells are considered the most susceptible sensors of brain pathology.
Abstract: Microglial cells are the resident macrophages in the central nervous system. These cells of mesodermal/mesenchymal origin migrate into all regions of the central nervous system, disseminate through the brain parenchyma, and acquire a specific ramified morphological phenotype termed "resting microglia." Recent studies indicate that even in the normal brain, microglia have highly motile processes by which they scan their territorial domains. By a large number of signaling pathways they can communicate with macroglial cells and neurons and with cells of the immune system. Likewise, microglial cells express receptors classically described for brain-specific communication such as neurotransmitter receptors and those first discovered as immune cell-specific such as for cytokines. Microglial cells are considered the most susceptible sensors of brain pathology. Upon any detection of signs for brain lesions or nervous system dysfunction, microglial cells undergo a complex, multistage activation process that converts them into the "activated microglial cell." This cell form has the capacity to release a large number of substances that can act detrimental or beneficial for the surrounding cells. Activated microglial cells can migrate to the site of injury, proliferate, and phagocytose cells and cellular compartments.

2,998 citations


Journal ArticleDOI
TL;DR: Mammalian skeletal muscle comprises different fiber types, whose identity is first established during embryonic development by intrinsic myogenic control mechanisms and is later modulated by neural and hormonal factors.
Abstract: Mammalian skeletal muscle comprises different fiber types, whose identity is first established during embryonic development by intrinsic myogenic control mechanisms and is later modulated by neural and hormonal factors. The relative proportion of the different fiber types varies strikingly between species, and in humans shows significant variability between individuals. Myosin heavy chain isoforms, whose complete inventory and expression pattern are now available, provide a useful marker for fiber types, both for the four major forms present in trunk and limb muscles and the minor forms present in head and neck muscles. However, muscle fiber diversity involves all functional muscle cell compartments, including membrane excitation, excitation-contraction coupling, contractile machinery, cytoskeleton scaffold, and energy supply systems. Variations within each compartment are limited by the need of matching fiber type properties between different compartments. Nerve activity is a major control mechanism of the fiber type profile, and multiple signaling pathways are implicated in activity-dependent changes of muscle fibers. The characterization of these pathways is raising increasing interest in clinical medicine, given the potentially beneficial effects of muscle fiber type switching in the prevention and treatment of metabolic diseases.

2,107 citations


Journal ArticleDOI
TL;DR: Current knowledge on the role of disturbed flow in EC physiology and pathophysiology, as well as its clinical implications are summarized to contribute to the understanding of the etiology of lesion development in vascular niches with disturbed flow and help to generate new approaches for therapeutic interventions.
Abstract: Vascular endothelial cells (ECs) are exposed to hemodynamic forces, which modulate EC functions and vascular biology/pathobiology in health and disease. The flow patterns and hemodynamic forces are not uniform in the vascular system. In straight parts of the arterial tree, blood flow is generally laminar and wall shear stress is high and directed; in branches and curvatures, blood flow is disturbed with nonuniform and irregular distribution of low wall shear stress. Sustained laminar flow with high shear stress upregulates expressions of EC genes and proteins that are protective against atherosclerosis, whereas disturbed flow with associated reciprocating, low shear stress generally upregulates the EC genes and proteins that promote atherogenesis. These findings have led to the concept that the disturbed flow pattern in branch points and curvatures causes the preferential localization of atherosclerotic lesions. Disturbed flow also results in postsurgical neointimal hyperplasia and contributes to pathophysiology of clinical conditions such as in-stent restenosis, vein bypass graft failure, and transplant vasculopathy, as well as aortic valve calcification. In the venous system, disturbed flow resulting from reflux, outflow obstruction, and/or stasis leads to venous inflammation and thrombosis, and hence the development of chronic venous diseases. Understanding of the effects of disturbed flow on ECs can provide mechanistic insights into the role of complex flow patterns in pathogenesis of vascular diseases and can help to elucidate the phenotypic and functional differences between quiescent (nonatherogenic/nonthrombogenic) and activated (atherogenic/thrombogenic) ECs. This review summarizes the current knowledge on the role of disturbed flow in EC physiology and pathophysiology, as well as its clinical implications. Such information can contribute to our understanding of the etiology of lesion development in vascular niches with disturbed flow and help to generate new approaches for therapeutic interventions.

1,699 citations


Journal ArticleDOI
TL;DR: This review discusses how Rabs can regulate virtually all steps of membrane traffic from the formation of the transport vesicle at the donor membrane to its fusion at the target membrane.
Abstract: Intracellular membrane traffic defines a complex network of pathways that connects many of the membrane-bound organelles of eukaryotic cells. Although each pathway is governed by its own set of factors, they all contain Rab GTPases that serve as master regulators. In this review, we discuss how Rabs can regulate virtually all steps of membrane traffic from the formation of the transport vesicle at the donor membrane to its fusion at the target membrane. Some of the many regulatory functions performed by Rabs include interacting with diverse effector proteins that select cargo, promoting vesicle movement, and verifying the correct site of fusion. We describe cascade mechanisms that may define directionality in traffic and ensure that different Rabs do not overlap in the pathways that they regulate. Throughout this review we highlight how Rab dysfunction leads to a variety of disease states ranging from infectious diseases to cancer.

1,328 citations


Journal ArticleDOI
TL;DR: Networks involving the temporal cortex and the inferior frontal cortex with a clear left lateralization were shown to support syntactic processes, whereas less lateralized temporo-frontal networks subserve semantic processes.
Abstract: Language processing is a trait of human species. The knowledge about its neurobiological basis has been increased considerably over the past decades. Different brain regions in the left and right hemisphere have been identified to support particular language functions. Networks involving the temporal cortex and the inferior frontal cortex with a clear left lateralization were shown to support syntactic processes, whereas less lateralized temporo-frontal networks subserve semantic processes. These networks have been substantiated both by functional as well as by structural connectivity data. Electrophysiological measures indicate that within these networks syntactic processes of local structure building precede the assignment of grammatical and semantic relations in a sentence. Suprasegmental prosodic information overtly available in the acoustic language input is processed predominantly in a temporo-frontal network in the right hemisphere associated with a clear electrophysiological marker. Studies with patients suffering from lesions in the corpus callosum reveal that the posterior portion of this structure plays a crucial role in the interaction of syntactic and prosodic information during language processing.

1,306 citations


Journal ArticleDOI
TL;DR: The pathophysiology of tumor angiogenesis, the molecular underpinnings and functional consequences of vascular normalization, and the implications for treatment of cancer and nonmalignant diseases are reviewed.
Abstract: New vessel formation (angiogenesis) is an essential physiological process for embryologic development, normal growth, and tissue repair. Angiogenesis is tightly regulated at the molecular level. Dy...

1,296 citations


Journal ArticleDOI
TL;DR: The discovery, structure, and mode of function of miRNAs in mammalian cells are described, before elaborating on their roles and significance during development and pathogenesis in the various mammalian organs, while attempting to reconcile their functions with the existing knowledge of their targets.
Abstract: MicroRNAs (miRNAs) are a class of posttranscriptional regulators that have recently introduced an additional level of intricacy to our understanding of gene regulation. There are currently over 10,000 miRNAs that have been identified in a range of species including metazoa, mycetozoa, viridiplantae, and viruses, of which 940, to date, are found in humans. It is estimated that more than 60% of human protein-coding genes harbor miRNA target sites in their 3′ untranslated region and, thus, are potentially regulated by these molecules in health and disease. This review will first briefly describe the discovery, structure, and mode of function of miRNAs in mammalian cells, before elaborating on their roles and significance during development and pathogenesis in the various mammalian organs, while attempting to reconcile their functions with our existing knowledge of their targets. Finally, we will summarize some of the advances made in utilizing miRNAs in therapeutics.

1,096 citations


Journal ArticleDOI
TL;DR: A personal review of advances in the genetics, molecular biology, biochemistry, biophysics, and structure of SGLTs, including cotransporters for sugars, anions, vitamins, and short-chain fatty acids.
Abstract: There are two classes of glucose transporters involved in glucose homeostasis in the body, the facilitated transporters or uniporters (GLUTs) and the active transporters or symporters (SGLTs). The ...

1,082 citations


Journal ArticleDOI
TL;DR: A translational overview on the biological basis of atrial remodeling and the proarrhythmic mechanisms involved in the fibrillation process is given.
Abstract: Atrial fibrillation (AF) is an arrhythmia that can occur as the result of numerous different pathophysiological processes in the atria. Some aspects of the morphological and electrophysiological al...

1,051 citations


Journal ArticleDOI
TL;DR: The genetic, environmental, and immunological data underlying the prevention and intervention strategies to constrain T1D are explained, including the efficacy of antigen-specific and antigen-nonspecific immune interventions.
Abstract: Type 1 diabetes (T1D) is a chronic autoimmune disease in which destruction or damaging of the beta-cells in the islets of Langerhans results in insulin deficiency and hyperglycemia. We only know for sure that autoimmunity is the predominant effector mechanism of T1D, but may not be its primary cause. T1D precipitates in genetically susceptible individuals, very likely as a result of an environmental trigger. Current genetic data point towards the following genes as susceptibility genes: HLA, insulin, PTPN22, IL2Ra, and CTLA4. Epidemiological and other studies suggest a triggering role for enteroviruses, while other microorganisms might provide protection. Efficacious prevention of T1D will require detection of the earliest events in the process. So far, autoantibodies are most widely used as serum biomarker, but T-cell readouts and metabolome studies might strengthen and bring forward diagnosis. Current preventive clinical trials mostly focus on environmental triggers. Therapeutic trials test the efficacy of antigen-specific and antigen-nonspecific immune interventions, but also include restoration of the affected beta-cell mass by islet transplantation, neogenesis and regeneration, and combinations thereof. In this comprehensive review, we explain the genetic, environmental, and immunological data underlying the prevention and intervention strategies to constrain T1D.

960 citations


Journal ArticleDOI
TL;DR: This review focuses on the role of hyaluronan as an immune regulator in human diseases through regulating inflammatory cell recruitment, release of inflammatory cytokines, and cell migration.
Abstract: Accumulation and turnover of extracellular matrix components are the hallmarks of tissue injury. Fragmented hyaluronan stimulates the expression of inflammatory genes by a variety of immune cells at the injury site. Hyaluronan binds to a number of cell surface proteins on various cell types. Hyaluronan fragments signal through both Toll-like receptor (TLR) 4 and TLR2 as well as CD44 to stimulate inflammatory genes in inflammatory cells. Hyaluronan is also present on the cell surface of epithelial cells and provides protection against tissue damage from the environment by interacting with TLR2 and TLR4. Hyaluronan and hyaluronan-binding proteins regulate inflammation, tissue injury, and repair through regulating inflammatory cell recruitment, release of inflammatory cytokines, and cell migration. This review focuses on the role of hyaluronan as an immune regulator in human diseases.

Journal ArticleDOI
TL;DR: This review deals both with physiological aspects of IAPP and with the pathophysiological role of aggregated forms of I APP, including mechanisms whereby human IAPP forms toxic aggregates and amyloid fibrils.
Abstract: Islet amyloid polypeptide (IAPP, or amylin) is one of the major secretory products of β-cells of the pancreatic islets of Langerhans. It is a regulatory peptide with putative function both locally in the islets, where it inhibits insulin and glucagon secretion, and at distant targets. It has binding sites in the brain, possibly contributing also to satiety regulation and inhibits gastric emptying. Effects on several other organs have also been described. IAPP was discovered through its ability to aggregate into pancreatic islet amyloid deposits, which are seen particularly in association with type 2 diabetes in humans and with diabetes in a few other mammalian species, especially monkeys and cats. Aggregated IAPP has cytotoxic properties and is believed to be of critical importance for the loss of β-cells in type 2 diabetes and also in pancreatic islets transplanted into individuals with type 1 diabetes. This review deals both with physiological aspects of IAPP and with the pathophysiological role of aggregated forms of IAPP, including mechanisms whereby human IAPP forms toxic aggregates and amyloid fibrils.

Journal ArticleDOI
TL;DR: This new paradigm subverts traditional theories underlying the development of these diseases and suggests that these processes can be arrested if the interplay between genes and environmental triggers is prevented by reestablishing the zonulin-dependent intestinal barrier function.
Abstract: The primary functions of the gastrointestinal tract have traditionally been perceived to be limited to the digestion and absorption of nutrients and to electrolytes and water homeostasis. A more at...

Journal ArticleDOI
TL;DR: Recent reported x-ray crystallographic structures have defined features that provide for specificity for cAMP or cGMP in PDE catalytic sites or their GAF domains, as well as mechanisms involved in catalysis, oligomerization, autoinhibition, and interactions with inhibitors.
Abstract: The superfamily of cyclic nucleotide (cN) phosphodiesterases (PDEs) is comprised of 11 families of enzymes. PDEs break down cAMP and/or cGMP and are major determinants of cellular cN levels and, consequently, the actions of cN-signaling pathways. PDEs exhibit a range of catalytic efficiencies for breakdown of cAMP and/or cGMP and are regulated by myriad processes including phosphorylation, cN binding to allosteric GAF domains, changes in expression levels, interaction with regulatory or anchoring proteins, and reversible translocation among subcellular compartments. Selective PDE inhibitors are currently in clinical use for treatment of erectile dysfunction, pulmonary hypertension, intermittent claudication, and chronic pulmonary obstructive disease; many new inhibitors are being developed for treatment of these and other maladies. Recently reported x-ray crystallographic structures have defined features that provide for specificity for cAMP or cGMP in PDE catalytic sites or their GAF domains, as well as mechanisms involved in catalysis, oligomerization, autoinhibition, and interactions with inhibitors. In addition, major advances have been made in understanding the physiological impact and the biochemical basis for selective localization and/or recruitment of specific PDE isoenzymes to particular subcellular compartments. The many recent advances in understanding PDE structures, functions, and physiological actions are discussed in this review.

Journal ArticleDOI
TL;DR: An impressive set of data in different model systems strongly suggest that mitochondrial dysfunction plays a central role in clinically similar, early-onset autosomal recessive PD forms caused by parkin and PINK1, and possibly DJ-1 gene mutations.
Abstract: Parkinson's disease (PD) is a common motor disorder of mysterious etiology. It is due to the progressive degeneration of the dopaminergic neurons of the substantia nigra and is accompanied by the a...

Journal ArticleDOI
TL;DR: An overview of the signaling and regulatory mechanisms underlying IRE1α function is provided and the emerging role of the UPR in adaptation to protein folding stress in specialized secretory cells and in pathological conditions associated with alterations in ER homeostasis is discussed.
Abstract: Stress induced by accumulation of unfolded proteins at the endoplasmic reticulum (ER) is a classic feature of secretory cells and is observed in many tissues in human diseases including cancer, diabetes, obesity, and neurodegeneration. Cellular adaptation to ER stress is achieved by the activation of the unfolded protein response (UPR), an integrated signal transduction pathway that transmits information about the protein folding status at the ER to the nucleus and cytosol to restore ER homeostasis. Inositol-requiring transmembrane kinase/endonuclease-1 (IRE1α), the most conserved UPR stress sensor, functions as an endoribonuclease that processes the mRNA of the transcription factor X-box binding protein-1 (XBP1). IRE1α signaling is a highly regulated process, controlled by the formation of a dynamic scaffold onto which many regulatory components assemble, here referred to as the UPRosome. Here we provide an overview of the signaling and regulatory mechanisms underlying IRE1α function and discuss the emerging role of the UPR in adaptation to protein folding stress in specialized secretory cells and in pathological conditions associated with alterations in ER homeostasis.

Journal ArticleDOI
TL;DR: The role of FXIII in maintaining pregnancy, its contribution to the wound healing process, and its proangiogenic function are reviewed in details.
Abstract: Factor XIII (FXIII) is unique among clotting factors for a number of reasons: 1) it is a protransglutaminase, which becomes activated in the last stage of coagulation; 2) it works on an insoluble s...

Journal ArticleDOI
TL;DR: This review addresses the cellular and molecular mechanisms of cadherin-based tissue morphogenesis by focusing on four key mechanistic elements: the molecular basis for adhesion through caderin ectodomains, the regulation of Cadherin expression at the cell surface, cooperation between cadherins and the actin cytoskeleton, and regulation by cell signaling.
Abstract: This review addresses the cellular and molecular mechanisms of cadherin-based tissue morphogenesis. Tissue physiology is profoundly influenced by the distinctive organizations of cells in organs and tissues. In metazoa, adhesion receptors of the classical cadherin family play important roles in establishing and maintaining such tissue organization. Indeed, it is apparent that cadherins participate in a range of morphogenetic events that range from support of tissue integrity to dynamic cellular rearrangements. A comprehensive understanding of cadherin-based morphogenesis must then define the molecular and cellular mechanisms that support these distinct cadherin biologies. Here we focus on four key mechanistic elements: the molecular basis for adhesion through cadherin ectodomains, the regulation of cadherin expression at the cell surface, cooperation between cadherins and the actin cytoskeleton, and regulation by cell signaling. We discuss current progress and outline issues for further research in these fields.

Journal ArticleDOI
TL;DR: All small heat shock proteins play important "housekeeping" roles and regulate many vital processes; therefore, they are considered as attractive therapeutic targets.
Abstract: Modern classification of the family of human small heat shock proteins (the so-called HSPB) is presented, and the structure and properties of three members of this family are analyzed in detail. Ub...

Journal ArticleDOI
TL;DR: This review provides a detailed analysis of how the ET system is involved in the control of blood pressure and Na homeostasis, focusing primarily on physiological regulation with some discussion of the role of theET system in hypertension.
Abstract: Endothelin (ET) peptides and their receptors are intimately involved in the physiological control of systemic blood pressure and body Na homeostasis, exerting these effects through alterations in a host of circulating and local factors. Hormonal systems affected by ET include natriuretic peptides, aldosterone, catecholamines, and angiotensin. ET also directly regulates cardiac output, central and peripheral nervous system activity, renal Na and water excretion, systemic vascular resistance, and venous capacitance. ET regulation of these systems is often complex, sometimes involving opposing actions depending on which receptor isoform is activated, which cells are affected, and what other prevailing factors exist. A detailed understanding of this system is important; disordered regulation of the ET system is strongly associated with hypertension and dysregulated extracellular fluid volume homeostasis. In addition, ET receptor antagonists are being increasingly used for the treatment of a variety of diseases; while demonstrating benefit, these agents also have adverse effects on fluid retention that may substantially limit their clinical utility. This review provides a detailed analysis of how the ET system is involved in the control of blood pressure and Na homeostasis, focusing primarily on physiological regulation with some discussion of the role of the ET system in hypertension.

Journal ArticleDOI
TL;DR: The brain contains an epigenetic "hotspot" with a unique potential to not only better understand its most complex functions, but also to treat its most vicious diseases.
Abstract: Over the past decade, it has become increasingly obvious that epigenetic mechanisms are an integral part of a multitude of brain functions that range from the development of the nervous system over basic neuronal functions to higher order cognitive processes. At the same time, a substantial body of evidence has surfaced indicating that several neurodevelopmental, neurodegenerative, and neuropsychiatric disorders are in part caused by aberrant epigenetic modifications. Because of their inherent plasticity, such pathological epigenetic modifications are readily amenable to pharmacological interventions and have thus raised justified hopes that the epigenetic machinery provides a powerful new platform for therapeutic approaches against these diseases. In this review, we give a detailed overview of the implication of epigenetic mechanisms in both physiological and pathological brain processes and summarize the state-of-the-art of "epigenetic medicine" where applicable. Despite, or because of, these new and exciting findings, it is becoming apparent that the epigenetic machinery in the brain is highly complex and intertwined, which underscores the need for more refined studies to disentangle brain-region and cell-type specific epigenetic codes in a given environmental condition. Clearly, the brain contains an epigenetic "hotspot" with a unique potential to not only better understand its most complex functions, but also to treat its most vicious diseases.

Journal ArticleDOI
TL;DR: This review highlights growing evidence that leptin action in the central nervous system plays a key role in both body fat stores and blood glucose levels and raises interesting new possibilities for the treatment of diabetes and related disorders.
Abstract: The regulation of body fat stores and blood glucose levels is critical for survival. This review highlights growing evidence that leptin action in the central nervous system plays a key role in both processes. Investigation into underlying mechanisms has begun to clarify the physiological role of leptin in the control of glucose metabolism and raises interesting new possibilities for the treatment of diabetes and related disorders.

Journal ArticleDOI
TL;DR: This review critically examines the involvement of Ca(2+) channels in multiple signaling processes needed for spermatozoa to mature, travel towards the egg, and fertilize it.
Abstract: A proper dialogue between spermatozoa and the egg is essential for conception of a new individual in sexually reproducing animals. Ca(2+) is crucial in orchestrating this unique event leading to a new life. No wonder that nature has devised different Ca(2+)-permeable channels and located them at distinct sites in spermatozoa so that they can help fertilize the egg. New tools to study sperm ionic currents, and image intracellular Ca(2+) with better spatial and temporal resolution even in swimming spermatozoa, are revealing how sperm ion channels participate in fertilization. This review critically examines the involvement of Ca(2+) channels in multiple signaling processes needed for spermatozoa to mature, travel towards the egg, and fertilize it. Remarkably, these tiny specialized cells can express exclusive channels like CatSper for Ca(2+) and SLO3 for K(+), which are attractive targets for contraception and for the discovery of novel signaling complexes. Learning more about fertilization is a matter of capital importance; societies face growing pressure to counteract rising male infertility rates, provide safe male gamete-based contraceptives, and preserve biodiversity through improved captive breeding and assisted conception initiatives.

Journal ArticleDOI
TL;DR: This review begins by describing the principles of visual guidance that underlie perception of the world in three dimensions, obstacle avoidance, control of flight speed, and orchestrating smooth landings, and considers how navigation over long distances is accomplished.
Abstract: Research over the past century has revealed the impressive capacities of the honeybee, Apis mellifera, in relation to visual perception, flight guidance, navigation, and learning and memory. These observations, coupled with the relative ease with which these creatures can be trained, and the relative simplicity of their nervous systems, have made honeybees an attractive model in which to pursue general principles of sensorimotor function in a variety of contexts, many of which pertain not just to honeybees, but several other animal species, including humans. This review begins by describing the principles of visual guidance that underlie perception of the world in three dimensions, obstacle avoidance, control of flight speed, and orchestrating smooth landings. We then consider how navigation over long distances is accomplished, with particular reference to how bees use information from the celestial compass to determine their flight bearing, and information from the movement of the environment in their eyes to gauge how far they have flown. Finally, we illustrate how some of the principles gleaned from these studies are now being used to design novel, biologically inspired algorithms for the guidance of unmanned aerial vehicles.

Journal ArticleDOI
TL;DR: The WNKs represent an important family of potential targets for the treatment of human disease, and further elucidation of their physiological actions outside of the kidney and brain is necessary.
Abstract: WNKs are serine/threonine kinases that comprise a unique branch of the kinome. They are so-named owing to the unusual placement of an essential catalytic lysine. WNKs have now been identified in diverse organisms. In humans and other mammals, four genes encode WNKs. WNKs are widely expressed at the message level, although data on protein expression is more limited. Soon after the WNKs were identified, mutations in genes encoding WNK1 and -4 were determined to cause the human disease familial hyperkalemic hypertension (also known as pseudohypoaldosteronism II, or Gordon's Syndrome). For this reason, a major focus of investigation has been to dissect the role of WNK kinases in renal regulation of ion transport. More recently, a different mutation in WNK1 was identified as the cause of hereditary sensory and autonomic neuropathy type II, an early-onset autosomal disease of peripheral sensory nerves. Thus the WNKs represent an important family of potential targets for the treatment of human disease, and further elucidation of their physiological actions outside of the kidney and brain is necessary. In this review, we describe the gene structure and mechanisms regulating expression and activity of the WNKs. Subsequently, we outline substrates and targets of WNKs as well as effects of WNKs on cellular physiology, both in the kidney and elsewhere. Next, consequences of these effects on integrated physiological function are outlined. Finally, we discuss the known and putative pathophysiological relevance of the WNKs.

Journal ArticleDOI
TL;DR: This review presents an overview compendium of the complex world of myocardial AKT biology gleaned from more than a decade of research, leaving no doubt that the participation of AKT in molecular signaling will need to be reckoned with as a seemingly omnipresent regulator ofMyocardial molecular biological responses.
Abstract: One of the greatest examples of integrated signal transduction is revealed by examination of effects mediated by AKT kinase in myocardial biology. Positioned at the intersection of multiple afferent and efferent signals, AKT exemplifies a molecular sensing node that coordinates dynamic responses of the cell in literally every aspect of biological responses. The balanced and nuanced nature of homeostatic signaling is particularly essential within the myocardial context, where regulation of survival, energy production, contractility, and response to pathological stress all flow through the nexus of AKT activation or repression. Equally important, the loss of regulated AKT activity is primarily the cause or consequence of pathological conditions leading to remodeling of the heart and eventual decompensation. This review presents an overview compendium of the complex world of myocardial AKT biology gleaned from more than a decade of research. Summarization of the widespread influence that AKT exerts upon myocardial responses leaves no doubt that the participation of AKT in molecular signaling will need to be reckoned with as a seemingly omnipresent regulator of myocardial molecular biological responses.

Journal ArticleDOI
TL;DR: Roles of CaMKII in cardiovascular disease are reviewed with an eye to understanding howCaMKII may act as a transduction signal to connect pro-oxidant conditions into specific downstream pathological effects that are relevant to rare and common forms of cardiovascular disease.
Abstract: The multifunctional Ca2+- and calmodulin-dependent protein kinase II (CaMKII) is now recognized to play a central role in pathological events in the cardiovascular system. CaMKII has diverse downst...

Journal ArticleDOI
TL;DR: The concept of the context-dependent potency of transplanted NPCs (therapeutic plasticity) to exert multiple therapeutic actions, such as cell replacement, neurotrophic support, and immunomodulation, in CNS repair is proposed.
Abstract: Regenerative processes occurring under physiological (maintenance) and pathological (reparative) conditions are a fundamental part of life and vary greatly among different species, individuals, and tissues. Physiological regeneration occurs naturally as a consequence of normal cell erosion, or as an inevitable outcome of any biological process aiming at the restoration of homeostasis. Reparative regeneration occurs as a consequence of tissue damage. Although the central nervous system (CNS) has been considered for years as a “perennial” tissue, it has recently become clear that both physiological and reparative regeneration occur also within the CNS to sustain tissue homeostasis and repair. Proliferation and differentiation of neural stem/progenitor cells (NPCs) residing within the healthy CNS, or surviving injury, are considered crucial in sustaining these processes. Thus a large number of experimental stem cell-based transplantation systems for CNS repair have recently been established. The results suggest that transplanted NPCs promote tissue repair not only via cell replacement but also through their local contribution to changes in the diseased tissue milieu. This review focuses on the remarkable plasticity of endogenous and exogenous (transplanted) NPCs in promoting repair. Special attention will be given to the cross-talk existing between NPCs and CNS-resident microglia as well as CNS-infiltrating immune cells from the circulation, as a crucial event sustaining NPC-mediated neuroprotection. Finally, we will propose the concept of the context-dependent potency of transplanted NPCs (therapeutic plasticity) to exert multiple therapeutic actions, such as cell replacement, neurotrophic support, and immunomodulation, in CNS repair.

Journal ArticleDOI
TL;DR: The physiological relevance of mammalian cell cycle kinases such as cyclin-dependent kinases (Cdks), Aurora and Polo-like kinases, and mitotic checkpoint regulators as well as other less-studied enzymes and their implications in development, tissue homeostasis, and human disease are reviewed.
Abstract: The basic biology of the cell division cycle and its control by protein kinases was originally studied through genetic and biochemical studies in yeast and other model organisms The major regulatory mechanisms identified in this pioneer work are conserved in mammals However, recent studies in different cell types or genetic models are now providing a new perspective on the function of these major cell cycle regulators in different tissues Here, we review the physiological relevance of mammalian cell cycle kinases such as cyclin-dependent kinases (Cdks), Aurora and Polo-like kinases, and mitotic checkpoint regulators (Bub1, BubR1, and Mps1) as well as other less-studied enzymes such as Cdc7, Nek proteins, or Mastl and their implications in development, tissue homeostasis, and human disease Among these functions, the control of self-renewal or asymmetric cell division in stem/progenitor cells and the ability to regenerate injured tissues is a central issue in current research In addition, many of these proteins play previously unexpected roles in metabolism, cardiovascular function, or neuron biology The modulation of their enzymatic activity may therefore have multiple therapeutic benefits in human disease

Journal ArticleDOI
TL;DR: How neurons control the number of GABA(A)Rs on the neuronal plasma membrane together with their selective stabilization at synaptic sites is evaluated and the impact that these processes have on the strength of synaptic inhibition and behavior is examined.
Abstract: Inhibition in the adult mammalian central nervous system (CNS) is mediated by γ-aminobutyric acid (GABA). The fast inhibitory actions of GABA are mediated by GABA type A receptors (GABAARs); they m...