scispace - formally typeset
Search or ask a question
JournalISSN: 1179-3155

Phytotaxa 

Q15088586
About: Phytotaxa is an academic journal published by Q15088586. The journal publishes majorly in the area(s): Biology & Genus. It has an ISSN identifier of 1179-3155. Over the lifetime, 8405 publications have been published receiving 41514 citations.
Topics: Biology, Genus, Botany, Eudicots, Taxonomy (biology)


Papers
More filters
Journal ArticleDOI
TL;DR: Phytotaxa is currently contributing more than a quarter of the ca 2000 species that are described every year, showing that it has become a major contributor to the dissemination of new species discovery, but the rate of discovery is slowing down.
Abstract: We have counted the currently known, described and accepted number of plant species as ca 374,000, of which approximately 308,312 are vascular plants, with 295,383 flowering plants (angiosperms; monocots: 74,273; eudicots: 210,008). Global numbers of smaller plant groups are as follows: algae ca 44,000, liverworts ca 9,000, hornworts ca 225, mosses 12,700, lycopods 1,290, ferns 10,560 and gymnosperms 1,079. Phytotaxa is currently contributing more than a quarter of the ca 2000 species that are described every year, showing that it has become a major contributor to the dissemination of new species discovery. However, the rate of discovery is slowing down, due to reduction in financial and scientific support for fundamental natural history studies.

1,202 citations

Journal ArticleDOI
TL;DR: A linear classification to the extant lycophytes and ferns based on current phylogenetic knowledge is provided, which provides a standardized guide for organisation of fern collections into a more natural sequence.
Abstract: Throughout the history of the classification of extant ferns (monilophytes) and lycophytes, familial and generic concepts have been in great flux. For the organisation of lycophytes and ferns in herbaria, books, checklists, indices and spore banks and on the internet, this poses a problem, and a standardized linear sequence of these plants is therefore in great need. We provide here a linear classification to the extant lycophytes and ferns based on current phylogenetic knowledge; this provides a standardized guide for organisation of fern collections into a more natural sequence. Two new families, Diplaziopsidaceae and Rhachidosoraceae, are here introduced.

386 citations

Journal ArticleDOI
TL;DR: A new classification and linear sequence of the gymnosperms based on previous molecular and morphological phylogenetic and other studies is presented.
Abstract: A new classification and linear sequence of the gymnosperms based on previous molecular and morphological phylogenetic and other studies is presented. Currently accepted genera are listed for each family and arranged according to their (probable) phylogenetic position. A full synonymy is provided, and types are listed for accepted genera. An index to genera assists in easy access to synonymy and family placement of genera.

350 citations

Journal ArticleDOI
H. Thorsten Lumbsch1, Teuvo Ahti2, Susanne Altermann3, Guillermo Amo de Paz4, André Aptroot, Ulf Arup, Alejandrina Barcenas Peña5, Paulina A. Bawingan6, Michel Navarro Benatti, Luisa Betancourt, Curtis R. Björk7, Kansri Boonpragob8, Maarten Brand, Frank Bungartz9, Marcela Eugenia da Silva Cáceres, Mehtmet Candan10, José Luis Chaves, Philippe Clerc, Ralph S. Common, Brian J. Coppins11, Ana Crespo4, Manuela Dal-Forno12, Pradeep K. Divakar4, Melizar V. Duya13, John A. Elix14, Arve Elvebakk15, Johnathon D. Fankhauser16, Edith Farkas17, Lidia Itati Ferraro18, Eberhard Fischer19, David J. Galloway20, Ester Gaya21, Mireia Giralt, Trevor Goward22, Martin Grube23, Josef Hafellner23, Jesús E. Hernández M., Maria de los Angeles Herrera Campos5, Klaus Kalb, Ingvar Kärnefelt, Gintaras Kantvilas, Dorothee Killmann19, Paul M. Kirika, Kerry Knudsen24, Harald Komposch, Sergey Y. Kondratyuk, James D. Lawrey12, Armin Mangold, Marcelo Pinto Marcelli, Bruce McCune25, María Inés Messuti26, Andrea Michlig18, Ricardo Miranda González5, Bibiana Moncada, Alifereti Naikatini27, Matthew P. Nelsen28, Dag Olav Øvstedal29, Zdenek Palice30, Zdenek Palice31, Khwanruan Papong32, Sittiporn Parnmen8, Sergio Pérez-Ortega4, Christian Printzen, Víctor J. Rico4, Eimy Rivas Plata33, Javier Robayo, Dania Rosabal34, Ulrike Ruprecht35, Noris Salazar Allen36, Leopoldo G. Sancho4, Luciana Santo de Jesus, Tamires dos Santos Vieira, Matthias Schultz37, Mark R. D. Seaward38, Emmanuël Sérusiaux39, Imke Schmitt40, Harrie J. M. Sipman, Mohammad Sohrabi2, Ulrik Søchting41, Majbrit Zeuthen Søgaard41, Laurens B. Sparrius, Adriano Afonso Spielmann, Toby Spribille23, Jutarat Sutjaritturakan42, Achra Thammathaworn43, Arne Thell, Göran Thor44, Holger Thüs45, Einar Timdal46, Camille Truong, Roman Türk35, Loengrin Umana Tenorio, Dalip K. Upreti47, Pieter P. G. van den Boom, Mercedes Rebuelta4, Mats Wedin, Susan Will-Wolf48, Volkmar Wirth49, Nora Wirtz, Rebecca Yahr11, Kumelachew Yeshitela19, Frauke Ziemmeck9, Tim Wheeler, Robert Lücking1 
Field Museum of Natural History1, American Museum of Natural History2, University of California, Santa Cruz3, Complutense University of Madrid4, National Autonomous University of Mexico5, Saint Louis University6, University of Idaho7, Ramkhamhaeng University8, Charles Darwin Foundation9, Anadolu University10, Royal Botanic Garden Edinburgh11, George Mason University12, Conservation International13, Australian National University14, University of Tromsø15, University of Minnesota16, Hungarian Academy of Sciences17, National University of the Northeast18, University of Koblenz and Landau19, Landcare Research20, University of Barcelona21, University of British Columbia22, University of Graz23, University of California, Riverside24, Oregon University System25, National Scientific and Technical Research Council26, University of the South Pacific27, University of Chicago28, University of Bergen29, Charles University in Prague30, Academy of Sciences of the Czech Republic31, Mahasarakham University32, University of Illinois at Chicago33, Universidad de Oriente34, University of Salzburg35, Smithsonian Tropical Research Institute36, University of Hamburg37, University of Bradford38, University of Liège39, Goethe University Frankfurt40, University of Copenhagen41, King Mongkut's Institute of Technology Ladkrabang42, Khon Kaen University43, Swedish University of Agricultural Sciences44, Natural History Museum45, University of Oslo46, Council of Scientific and Industrial Research47, University of Wisconsin-Madison48, Museum für Naturkunde49
TL;DR: A total of 100 new species of lichenized fungi are described, representing a wide taxonomic and geographic range, and emphasizing the dire need for taxonomic expertise in lichenology.
Abstract: The number of undescribed species of lichenized fungi has been estimated at roughly 10,000. Describing and cataloging these would take the existing number of taxonomists several decades; however, the support for taxonomy is in decline worldwide. In this paper we emphasize the dire need for taxonomic expertise in lichenology. We bring together 103 colleagues from institutions worldwide to describe a total of 100 new species of lichenized fungi, representing a wide taxonomic and geographic range. The newly described species are: Acarospora flavisparsa, A. janae, Aderkomyces thailandicus, Amandinea maritima, Ampliotrema cocosense, Anomomorpha lecanorina, A. tuberculata, Aspicilia mansourii, Bacidina sorediata, Badimia multiseptata, B. vezdana, Biatora epirotica, Buellia sulphurica, Bunodophoron pinnatum, Byssoloma spinulosum, Calopadia cinereopruinosa, C. editae, Caloplaca brownlieae, C. decipioides, C. digitaurea, C. magnussoniana, C. mereschkowskiana, C. yorkensis, Calvitimela uniseptata, Chapsa microspora, C. psoromica, C. rubropulveracea, C. thallotrema, Chiodecton pustuliferum, Cladonia mongkolsukii, Clypeopyrenis porinoides, Coccocarpia delicatula, Coenogonium flammeum, Cresponea ancistrosporelloides, Crocynia microphyllina, Dictyonema hernandezii, D. hirsutum, Diorygma microsporum, D. sticticum, Echinoplaca pernambucensis, E. schizidiifera, Eremithallus marusae, Everniastrum constictovexans, Fellhanera borbonica, Fibrillithecis sprucei, Fissurina astroisidiata, F. nigrolabiata, F. subcomparimuralis, Graphis caribica, G. cerradensis, G. itatiaiensis, G. marusa, Gyalideopsis chicaque, Gyrotrema papillatum, Harpidium gavilaniae, Hypogymnia amplexa, Hypotrachyna guatemalensis, H. indica, H. lueckingii, H. paracitrella, H. paraphyscioides, H. parasinuosa, Icmadophila eucalypti, Krogia microphylla, Lecanora mugambii, L. printzenii, L. xanthoplumosella, Lecidea lygommella, Lecidella greenii, Lempholemma corticola, Lepraria sekikaica, Lobariella sipmanii, Megalospora austropacifica, M. galapagoensis, Menegazzia endocrocea, Myriotrema endoflavescens, Ocellularia albobullata, O. vizcayensis, Ochrolechia insularis, Opegrapha viridipruinosa, Pannaria phyllidiata, Parmelia asiatica, Pertusaria conspersa, Phlyctis psoromica, Placopsis imshaugii, Platismatia wheeleri, Porina huainamdungensis, Ramalina hyrcana, R. stoffersii, Relicina colombiana, Rhizocarpon diploschistidina, Sticta venosa, Sagenidiopsis isidiata, Tapellaria albomarginata, Thelotrema fijiense, Tricharia nigriuncinata, Usnea galapagona, U. pallidocarpa, Verrucaria rhizicola, and Xanthomendoza rosmarieae. In addition, three new combinations are proposed: Fibrillithecis dehiscens, Lobariella botryoides, and Lobariella pallida.

215 citations

Journal ArticleDOI
TL;DR: This study presents phylogenetic and molecular phylogenetic diversity analyses of moss taxa from a total of 655 genera of mosses, and highlights the possible non-monophyly of many taxonomic families, particularly in the haplolepideous and pleurocarpous mosses.
Abstract: In this study we present phylogenetic and molecular phylogenetic diversity analyses of moss taxa from a total of 655 genera of mosses. Three loci were sampled: chloroplast ribosomal small protein 4, the intronic region of the mitochondrial NADH dehydogenase subunit 5, and partial sequences of the nuclear 26S ribosomal RNA. Maximum likelihood and Bayesian phylogenetic analyses were performed on individual loci and on multilocus data sets. A measure of phylogenetic diversity was calculated and constrasted among major lineages of mosses. We reveal many instances of incongruence among genomic partitions, but, overall, our analyses describe relationships largely congruent with previous studies of the major groups of mosses. Moreover, our greater sampling highlights the possible non-monophyly of many taxonomic families, particularly in the haplolepideous and pleurocarpous mosses. Comparisons of taxic and phylogenetic diversity among genera indicate that the Dicranidae (haplolepideous taxa) include about 15% of moss genera, but nearly 30% of the phylogenetic diversity. By contrast, the Hypnanae (hypnalian pleurocarps) contain about 45% of moss genera, but a lower percentage of phylogenetic diversity. Agreement between numbers of genera and phylogenetic diversity within other moss clades are remarkably consistent.

154 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
2023483
2022968
2021691
2020682
2019696
2018836