scispace - formally typeset
Search or ask a question

Showing papers in "Plant and Cell Physiology in 2015"


Journal ArticleDOI
TL;DR: The plasma membrane-associated cytoplasmic kinase BIK1 (BOTRYTIS-INDUCED KINASE1), which is a direct substrate of the PRR complex, directly interacts with and phosphorylates RBOHD upon PAMP perception, suggesting that RBO HD activity is tightly controlled by multilayered regulations.
Abstract: Pathogen recognition induces the production of reactive oxygen species (ROS) by NADPH oxidases in both plants and animals. ROS have direct antimicrobial properties, but also serve as signaling molecules to activate further immune outputs. However, ROS production has to be tightly controlled to avoid detrimental effects on host cells, but yet must be produced in the right amount, at the right place and at the right time upon pathogen perception. Plant NADPH oxidases belong to the respiratory burst oxidase homolog (RBOH) family, which contains 10 members in the model plant Arabidopsis thaliana. The perception of pathogen-associated molecular patterns (PAMPs) by pattern recognition receptors (PRRs) leads to a rapid, specific and strong production of ROS, which is dependent on RBOHD. RBOHD is mainly controlled by Ca(2+) via direct binding to EF-hand motifs and phosphorylation by Ca(2+)-dependent protein kinases. Recent studies have, however, revealed a critical role for a Ca(2+)-independent regulation of RBOHD. The plasma membrane-associated cytoplasmic kinase BIK1 (BOTRYTIS-INDUCED KINASE1), which is a direct substrate of the PRR complex, directly interacts with and phosphorylates RBOHD upon PAMP perception. Impairment of these phosphorylation events completely abolishes the function of RBOHD in immunity. These results suggest that RBOHD activity is tightly controlled by multilayered regulations. In this review, we summarize recent advances in our understanding of the regulatory mechanisms controlling RBOHD activation.

396 citations


Journal ArticleDOI
TL;DR: Most of the genes involved in the biosynthesis of secondary wall components, including cellulose, xylan, glucomannan and lignin, have been identified and their co-ordinated activation has been shown to be mediated by a transcriptional network encompassing the secondary wall NAC and MYB master switches and their downstream transcription factors.
Abstract: Secondary walls are mainly composed of cellulose, hemicelluloses (xylan and glucomannan) and lignin, and are deposited in some specialized cells, such as tracheary elements, fibers and other sclerenchymatous cells. Secondary walls provide strength to these cells, which lend mechanical support and protection to the plant body and, in the case of tracheary elements, enable them to function as conduits for transporting water. Formation of secondary walls is a complex process that requires the co-ordinated expression of secondary wall biosynthetic genes, biosynthesis and targeted secretion of secondary wall components, and patterned deposition and assembly of secondary walls. Here, we provide a comprehensive review of genes involved in secondary wall biosynthesis and deposition. Most of the genes involved in the biosynthesis of secondary wall components, including cellulose, xylan, glucomannan and lignin, have been identified and their co-ordinated activation has been shown to be mediated by a transcriptional network encompassing the secondary wall NAC and MYB master switches and their downstream transcription factors. It has been demonstrated that cortical microtubules and microtubule-associated proteins play important roles in the targeted secretion of cellulose synthase complexes, the oriented deposition of cellulose microfibrils and the patterned deposition of secondary walls. Further investigation of many secondary wall-associated genes with unknown functions will provide new insights into the mechanisms controlling the formation of secondary walls that constitute the bulk of plant biomass.

304 citations


Journal ArticleDOI
TL;DR: These discoveries indicate that wall extensibility is less a matter of bulk viscoelasticity of the matrix polymers and more amatter of selective control of slippage and separation of microfibrils at specific and limited sites in the wall.
Abstract: The discovery of xyloglucan and its ability to bind tightly to cellulose has dominated our thinking about primary cell wall structure and its connection to the mechanism of cell enlargement for 40 years. Gene discovery has advanced our understanding of the synthesis of xyloglucan in the past decade, and at the same time new and unexpected results indicate that xyloglucan's role in wall structure and wall extensibility is more subtle than commonly believed. Genetic deletion of xyloglucan synthesis does not greatly disable cell wall functions. Nuclear magnetic resonance studies indicate that pectins, rather than xyloglucans, make the majority of contacts with cellulose surfaces. Xyloglucan binding may be selective for specific (hydrophobic) surfaces on the cellulose microfibril, whose structure is more complex than is commonly portrayed in cell wall cartoons. Biomechanical assessments of endoglucanase actions challenge the concept of xyloglucan tethering. The mechanically important xyloglucan is restricted to a minor component that appears to be closely intertwined with cellulose at limited sites ('biomechanical hotspots') of direct microfibril contact; these may be the selective sites of cell wall loosening by expansins. These discoveries indicate that wall extensibility is less a matter of bulk viscoelasticity of the matrix polymers and more a matter of selective control of slippage and separation of microfibrils at specific and limited sites in the wall.

303 citations


Journal ArticleDOI
TL;DR: This review summarizes recent progress in cold signaling and understanding of phytohormone signaling in the regulation of plant responses to cold stress and indicates that various plant hormones are also involved in responses tocold stress.
Abstract: Cold stress is a major environmental factor that affects plant growth, development, productivity and distribution. In higher plants, the known major cold signaling pathway is the C-repeat (CRT)-binding factor/dehydration-responsive element (DRE) binding factor (CBF/DREB)-mediated transcriptional regulatory cascade, which is essential for the induction of a set of cold responsive (COR) genes. Recent studies indicate that various plant hormones are also involved in responses to cold stress. This review summarizes recent progress in cold signaling and our understanding of phytohormone signaling in the regulation of plant responses to cold stress.

233 citations


Journal ArticleDOI
TL;DR: These findings provide new insight into the mechanism of how MeJA regulates anthocyanin and PA accumulation in apple and indicate that overexpression of MdJAZ2 inhibits the recruitment of MdbHLH3 to the promoters of MdMYB9 and MdmyB11.
Abstract: Anthocyanin and proanthocyanidin (PA) are important secondary metabolites and beneficial to human health. Their biosynthesis is induced by jasmonate (JA) treatment and regulated by MYB transcription factors (TFs). However, which and how MYB TFs regulate this process is largely unknown in apple. In this study, MdMYB9 and MdMYB11 which were induced by methyl jasmonate (MeJA) were functionally characterized. Overexpression of MdMYB9 or MdMYB11 promoted not only anthocyanin but also PA accumulation in apple calluses, and the accumulation was further enhanced by MeJA. Subsequently, yeast two-hybrid, pull-down and bimolecular fluorescence complementation assays showed that both MYB proteins interact with MdbHLH3. Moreover, Jasmonate ZIM-domain (MdJAZ) proteins interact with MdbHLH3. Furthermore, chromatin immunoprecipitation-quantitative PCR and yeast one-hybrid assays demonstrated that both MdMYB9 and MdMYB11 bind to the promoters of ANS, ANR and LAR, whereas MdbHLH3 is recruited to the promoters of MdMYB9 and MdMYB11 and regulates their transcription. In addition, transient expression assays indicated that overexpression of MdJAZ2 inhibits the recruitment of MdbHLH3 to the promoters of MdMYB9 and MdMYB11. Our findings provide new insight into the mechanism of how MeJA regulates anthocyanin and PA accumulation in apple.

226 citations


Journal ArticleDOI
TL;DR: An overview of recent advances in genome editing technologies in plants is provided, and how these can provide insights into current plant molecular biology research and molecular breeding technology is discussed.
Abstract: Numerous examples of successful 'genome editing' now exist. Genome editing uses engineered nucleases as powerful tools to target specific DNA sequences to edit genes precisely in the genomes of both model and crop plants, as well as a variety of other organisms. The DNA-binding domains of zinc finger (ZF) proteins were the first to be used as genome editing tools, in the form of designed ZF nucleases (ZFNs). More recently, transcription activator-like effector nucleases (TALENs), as well as the clustered regularly interspaced short palindromic repeats/Cas9 (CRISPR/Cas9) system, which utilizes RNA-DNA interactions, have proved useful. A key step in genome editing is the generation of a double-stranded DNA break that is specific to the target gene. This is achieved by custom-designed endonucleases, which enable site-directed mutagenesis via a non-homologous end-joining (NHEJ) repair pathway and/or gene targeting via homologous recombination (HR) to occur efficiently at specific sites in the genome. This review provides an overview of recent advances in genome editing technologies in plants, and discusses how these can provide insights into current plant molecular biology research and molecular breeding technology.

194 citations


Journal ArticleDOI
TL;DR: Recent advances are discussed, which contribute to the understanding of how these photosensory systems are activated by blue light and how they initiate signaling to regulate diverse aspects of plant development.
Abstract: Plants depend on the surrounding light environment to direct their growth. Blue light (300–500 nm) in particular acts to promote a wide variety of photomorphogenic responses including seedling establishment, phototropism and circadian clock regulation. Several different classes of flavin-based photoreceptors have been identified that mediate the effects of blue light in the dicotyledonous genetic model Arabidopsis thaliana. These include the cryptochromes, the phototropins and members of the Zeitlupe family. In this review, we discuss recent advances, which contribute to our understanding of how these photosensory systems are activated by blue light and how they initiate signaling to regulate diverse aspects of plant development.

192 citations


Journal ArticleDOI
TL;DR: To validate the applicability of the CRISPR/Cas9 system to target mutagenesis of paralogous genes in rice, a single-guide RNA (sgRNA) was designed that recognized 20 bp sequences of cyclin-dependent kinase B2 (CDKB2) as an on-target locus.
Abstract: The clustered regularly interspaced short palindromic repeat (CRISPR)-associated endonuclease 9 (CRISPR/Cas9) system has been demonstrated to be a robust genome engineering tool in a variety of organisms including plants. However, it has been shown that the CRISPR/Cas9 system cleaves genomic DNA sequences containing mismatches to the guide RNA strand. We expected that this low specificity could be exploited to induce multihomeologous and multiparalogous gene knockouts. In the case of polyploid plants, simultaneous modification of multiple homeologous genes, i.e. genes with similar but not identical DNA sequences, is often needed to obtain a desired phenotype. Even in diploid plants, disruption of multiparalogous genes, which have functional redundancy, is often needed. To validate the applicability of the CRISPR/Cas9 system to target mutagenesis of paralogous genes in rice, we designed a single-guide RNA (sgRNA) that recognized 20 bp sequences of cyclin-dependent kinase B2 (CDKB2) as an on-target locus. These 20 bp possess similarity to other rice CDK genes (CDKA1, CDKA2 and CDKB1) with different numbers of mismatches. We analyzed mutations in these four CDK genes in plants regenerated from Cas9/sgRNA-transformed calli and revealed that single, double and triple mutants of CDKA2, CDKB1 and CDKB2 can be created by a single sgRNA.

183 citations


Journal ArticleDOI
TL;DR: This review summarizes the recent progress in gene discovery and elucidates the biochemical functions of biosynthetic enzymes in triterpenoid saponin biosynthesis, with special focus on key players in generating the structural diversity of triter Penoids, cytochrome P450 monooxygenases (P450s) and the UDP-dependent glycosyltransferases (UGTs).
Abstract: The recent spread of next-generation sequencing techniques has facilitated transcriptome analyses of non-model plants. As a result, many of the genes encoding enzymes related to the production of specialized metabolites have been identified. Compounds derived from 2,3-oxidosqualene (the common precursor of sterols, steroids and triterpenoids), a linear compound of 30 carbon atoms produced through the mevalonate pathway, are called triterpenes. These include essential sterols, which are structural components of biomembranes; steroids such as the plant hormones, brassinolides and the toxin in potatoes, solanine; as well as the structurally diverse triterpenoids. Triterpenoids containing one or more sugar moieties attached to triterpenoid aglycones are called triterpenoid saponins. Triterpenoid saponins have been shown to have various medicinal properties, such as anti-inflammatory, anticancerogenic and antiviral effects. This review summarizes the recent progress in gene discovery and elucidates the biochemical functions of biosynthetic enzymes in triterpenoid saponin biosynthesis. Special focus is placed on key players in generating the structural diversity of triterpenoid saponins, cytochrome P450 monooxygenases (P450s) and the UDP-dependent glycosyltransferases (UGTs). Perspectives on further gene discovery and the use of biosynthetic genes for the microbial production of plant-derived triterpenoid saponins are also discussed.

168 citations


Journal ArticleDOI
TL;DR: Overexpression of VND1-VND5, GATA12 and ANAC075, newly identified transcription factors that function upstream of V ND7, resulted in ectopic xylem vessel element formation, suggesting that VND7 transcription is a regulatory target of multiple classes of transcription factors.
Abstract: The secondary cell walls of xylem cells, including vessel elements, provide mechanical strength and contribute to the conduction of water and minerals. VASCULAR-RELATED NAC-DOMAIN7 (VND7) is a NAC-domain transcription factor that regulates the expression of genes required for xylem vessel element formation. Transient expression assays using 68 transcription factors that are expressed during xylem vessel differentiation showed that 14 transcription factors, including VND1-VND7, are putative positive regulators of VND7 expression. Electrophoretic mobility shift assays revealed that all seven VND proteins bound to the VND7 promoter region at its SMBE/TERE motif, indicating that VND7 is a direct target of all of the VND transcription factors. Overexpression of VND1-VND5, GATA12 and ANAC075, newly identified transcription factors that function upstream of VND7, resulted in ectopic xylem vessel element formation. These data suggest that VND7 transcription is a regulatory target of multiple classes of transcription factors.

123 citations


Journal ArticleDOI
TL;DR: It is reported that an R2R3-type MYB transcription factor gene in Gossypium barbadense, GbMYB5, confers drought tolerance in cotton and transgenic tobacco and was positively involved in the plant adaptive response to drought stress.
Abstract: Drought stress negatively affects plant growth and limits plant productivity. Genes functioning in plant responses to drought stress are essential for the development of drought-tolerant crops. Here, we report that an R2R3-type MYB transcription factor gene in Gossypium barbadense, GbMYB5, confers drought tolerance in cotton and transgenic tobacco. Virus-induced gene silencing of GbMYB5 compromised the tolerance of cotton plantlets to drought stress and reduced the post-rewatering water recovery survival rate to 50% as compared with the 90% survival rate in the wild type (WT). Silencing GbMYB5 decreased proline content and antioxidant enzyme activities and increased malondialdehyde (MDA) content in cotton under drought stress. The expression levels of drought-inducible genes NCED3, RD22 and RD26 were not affected by the silencing of GbMYB5. However, GbMYB5-overexpressing tobacco lines displayed hypersensitivity to ABA and improved survival rates as well as reduced water loss rates under drought stress. Furthermore, stomatal size and the rate of opening of stomata were markedly decreased in transgenic tobacco. The overexpression of GbMYB5 enhanced the accumulation of proline and antioxidant enzymes while it reduced production of MDA in transgenic tobacco as compared with the WT under drought stress. The transcript levels of the antioxidant genes SOD, CAT and GST, polyamine biosynthesis genes ADC1 and SAMDC, the late embryogenesis abundant protein-encoding gene ERD10D and drought-responsive genes NCED3, BG and RD26 were generally higher in GbMYB5-overexpressing tobacco than in the WT under drought stress. Collectively, our data suggested that GbMYB5 was positively involved in the plant adaptive response to drought stress.

Journal ArticleDOI
TL;DR: The dynamic functions of JAs in plant defense strategy using defensive substances and airborne signals in response to biotrophic and necrotrophic pathogens as well as above-ground and below-ground herbivores are introduced.
Abstract: Jasmonic acid (JA) and its derivatives (jasmonates, JAs) are phytohormones with essential roles in plant defense against pathogenesis and herbivorous arthropods. Both the up- and down-regulation of defense responses are dependent on signaling pathways mediated by JAs as well as other stress hormones (e.g. salicylic acid), generally those involving the transcriptional and post-transcriptional regulation of transcription factors via protein modification and epigenetic regulation. In addition to the typical model plant Arabidopsis (a dicotyledon), advances in genetics research have made rice a model monocot in which innovative pest control traits can be introduced and whose JA signaling pathway can be studied. In this review, we introduce the dynamic functions of JAs in plant defense strategy using defensive substances (e.g. indole alkaloids and terpenoid phytoalexins) and airborne signals (e.g. green leaf volatiles and volatile terpenes) in response to biotrophic and necrotrophic pathogens as well as above-ground and below-ground herbivores. We then discuss the important issue of how the mutualism of herbivorous arthropods with viruses or bacteria can cause cross-talk between JA and other phytohormones to counter the defense systems.

Journal ArticleDOI
TL;DR: The comprehensive gene expression data of both plants and arbuscular mycorrhizal fungi provide a powerful platform for investigating the functional and molecular mechanisms underlying arbuscles symbiosis.
Abstract: Gene expression during arbuscular mycorrhizal development is highly orchestrated in both plants and arbuscular mycorrhizal fungi. To elucidate the gene expression profiles of the symbiotic association, we performed a digital gene expression analysis of Lotus japonicus and Rhizophagus irregularis using a HiSeq 2000 next-generation sequencer with a Cufflinks assembly and de novo transcriptome assembly. There were 3,641 genes differentially expressed during arbuscular mycorrhizal development in L. japonicus, approximately 80% of which were up-regulated. The up-regulated genes included secreted proteins, transporters, proteins involved in lipid and amino acid metabolism, ribosomes and histones. We also detected many genes that were differentially expressed in small-secreted peptides and transcription factors, which may be involved in signal transduction or transcription regulation during symbiosis. Co-regulated genes between arbuscular mycorrhizal and root nodule symbiosis were not particularly abundant, but transcripts encoding for membrane traffic-related proteins, transporters and iron transport-related proteins were found to be highly co-up-regulated. In transcripts of arbuscular mycorrhizal fungi, expansion of cytochrome P450 was observed, which may contribute to various metabolic pathways required to accommodate roots and soil. The comprehensive gene expression data of both plants and arbuscular mycorrhizal fungi provide a powerful platform for investigating the functional and molecular mechanisms underlying arbuscular mycorrhizal symbiosis.

Journal ArticleDOI
TL;DR: It is shown that IAA and PAA have overlapping regulatory roles but distinct transport characteristics as auxins in plants and the induction of the YUCCA (YUC) genes increases PAA metabolite levels in Arabidopsis, indicating that YUC flavin-containing monooxygenases may play a role in PAA biosynthesis.
Abstract: The phytohormone auxin plays a central role in many aspects of plant growth and development. IAA is the most studied natural auxin that possesses the property of polar transport in plants. Phenylacetic acid (PAA) has also been recognized as a natural auxin for >40 years, but its role in plant growth and development remains unclear. In this study, we show that IAA and PAA have overlapping regulatory roles but distinct transport characteristics as auxins in plants. PAA is widely distributed in vascular and non-vascular plants. Although the biological activities of PAA are lower than those of IAA, the endogenous levels of PAA are much higher than those of IAA in various plant tissues in Arabidopsis. PAA and IAA can regulate the same set of auxin-responsive genes through the TIR1/AFB pathway in Arabidopsis. IAA actively forms concentration gradients in maize coleoptiles in response to gravitropic stimulation, whereas PAA does not, indicating that PAA is not actively transported in a polar manner. The induction of the YUCCA (YUC) genes increases PAA metabolite levels in Arabidopsis, indicating that YUC flavin-containing monooxygenases may play a role in PAA biosynthesis. Our results provide new insights into the regulation of plant growth and development by different types of auxins.

Journal ArticleDOI
TL;DR: This is the first report identifying transcripts that move over long distances using a hetero-graft system between different plant taxa and identifying 138 Arabidopsis transcripts as mobile mRNAs, which are collectively termed the mRNA mobilome.
Abstract: Phloem is a conductive tissue that allocates nutrients from mature source leaves to sinks such as young developing tissues. Phloem also delivers proteins and RNA species, such as small RNAs and mRNAs. Intensive studies on plant systemic signaling revealed the essential roles of proteins and RNA species. However, many of their functions are still largely unknown, with the roles of transported mRNAs being particularly poorly understood. A major difficulty is the absence of an accurate and comprehensive list of mobile transcripts. In this study, we used a hetero-graft system with Nicotiana benthamiana as the recipient scion and Arabidopsis as the donor stock, to identify transcripts that moved long distances across the graft union. We identified 138 Arabidopsis transcripts as mobile mRNAs, which we collectively termed the mRNA mobilome. Reverse transcription-PCR, quantitative real-time PCR and droplet digital PCR analyses confirmed the mobility. The transcripts included potential signaling factors and, unexpectedly, more general factors. In our investigations, we found no preferred transcript length, no previously known sequence motifs in promoter or transcript sequences and no similarities between the level of the transcripts and that in the source leaves. Grafting experiments regarding the function of ERECTA, an identified transcript, showed that no function of the transcript mobilized. To our knowledge, this is the first report identifying transcripts that move over long distances using a hetero-graft system between different plant taxa.

Journal ArticleDOI
TL;DR: A R2R3-type MYB94 transcription factor activates Arabidopsis cuticular wax biosynthesis and might be important in plant response to environmental stress, including drought.
Abstract: The aerial parts of all land plants are covered with hydrophobic cuticular wax layers that act as the first barrier against the environment. The MYB94 transcription factor gene is expressed in abundance in aerial organs and shows a higher expression in the stem epidermis than within the stem. When seedlings were subjected to various treatments, the expression of the MYB94 transcription factor gene was observed to increase approximately 9-fold under drought, 8-fold for ABA treatment and 4-fold for separate NaCl and mannitol treatments. MYB94 harbors the transcriptional activation domain at its C-terminus, and fluorescent signals from MYB94:enhanced yellow fluorescent protein (eYFP) were observed in the nucleus of tobacco epidermis and in transgenic Arabidopsis roots. The total wax loads increased by approximately 2-fold in the leaves of the MYB94-overexpressing (MYB94 OX) lines, as compared with those of the wild type (WT). MYB94 activates the expression of WSD1, KCS2/DAISY, CER2, FAR3 and ECR genes by binding directly to their gene promoters. An increase in the accumulation of cuticular wax was observed to reduce the rate of cuticular transpiration in the leaves of MYB94 OX lines, under drought stress conditions. Taken together, a R2R3-type MYB94 transcription factor activates Arabidopsis cuticular wax biosynthesis and might be important in plant response to environmental stress, including drought.

Journal ArticleDOI
TL;DR: Transcriptomic profiles from differentiating buds allowed us to identify genes potentially involved in signaling pathways that mediate the regulatory mechanisms of flower induction, suggesting that sugar-, hormone- and flowering-related genes, as well as those involved in cell-cycle induction, participated in the apple flower induction process.
Abstract: Flower induction in apple (Malus domestica Borkh.) is regulated by complex gene networks that involve multiple signal pathways to ensure flower bud formation in the next year, but the molecular determinants of apple flower induction are still unknown. In this research, transcriptomic profiles from differentiating buds allowed us to identify genes potentially involved in signaling pathways that mediate the regulatory mechanisms of flower induction. A hypothetical model for this regulatory mechanism was obtained by analysis of the available transcriptomic data, suggesting that sugar-, hormone- and flowering-related genes, as well as those involved in cell-cycle induction, participated in the apple flower induction process. Sugar levels and metabolism-related gene expression profiles revealed that sucrose is the initiation signal in flower induction. Complex hormone regulatory networks involved in cytokinin (CK), abscisic acid (ABA) and gibberellic acid pathways also induce apple flower formation. CK plays a key role in the regulation of cell formation and differentiation, and in affecting flowering-related gene expression levels during these processes. Meanwhile, ABA levels and ABA-related gene expression levels gradually increased, as did those of sugar metabolism-related genes, in developing buds, indicating that ABA signals regulate apple flower induction by participating in the sugar-mediated flowering pathway. Furthermore, changes in sugar and starch deposition levels in buds can be affected by ABA content and the expression of the genes involved in the ABA signaling pathway. Thus, multiple pathways, which are mainly mediated by crosstalk between sugar and hormone signals, regulate the molecular network involved in bud growth and flower induction in apple trees.

Journal ArticleDOI
TL;DR: A normalized FL-cDNA library was constructed from eight growth stages of aerial tissues in Sorghum bicolor and isolated 37,607 clones, and an expression profile of each gene was made and the top 20 genes with the most similar expression were identified.
Abstract: In transcriptome analysis, accurate annotation of each transcriptional unit and its expression profile is essential. A full-length cDNA (FL-cDNA) collection facilitates the refinement of transcriptional annotation, and accurate transcription start sites help to unravel transcriptional regulation. We constructed a normalized FL-cDNA library from eight growth stages of aerial tissues in Sorghum bicolor and isolated 37,607 clones. These clones were Sanger sequenced from the 5' and/or 3' ends and in total 38,981 high-quality expressed sequence tags (ESTs) were obtained. About one-third of the transcripts of known genes were captured as FL-cDNA clone resources. In addition to these, we also annotated 272 novel genes, 323 antisense transcripts and 1,672 candidate isoforms. These clones are available from the RIKEN Bioresource Center. After obtaining accurate annotation of transcriptional units, we performed expression profile analysis. We carried out spikelet-, seed- and stem-specific RNA sequencing (RNA-Seq) analysis and confirmed the expression of 70.6% of the newly identified genes. We also downloaded 23 sorghum RNA-Seq samples that are publicly available and these are shown on a genome browser together with our original FL-cDNA and RNA-Seq data. Using our original and publicly available data, we made an expression profile of each gene and identified the top 20 genes with the most similar expression. In addition, we visualized their relationships in gene co-expression networks. Users can access and compare various transcriptome data from S, bicolor at http://sorghum.riken.jp.

Journal ArticleDOI
TL;DR: It is reported that gibberellin also acts as a positive regulator in the control of shoot branching in the woody plant Jatropha curcas, and that both hormones influence the expression of putative branching regulators, J. curcas BRANCHED1 and BRAN CHED2, which are key transcription factors maintaining bud dormancy.
Abstract: Strigolactone (SL), auxin and cytokinin (CK) interact to regulate shoot branching. CK has long been considered to be the only key phytohormone to promote lateral bud outgrowth. Here we report that gibberellin also acts as a positive regulator in the control of shoot branching in the woody plant Jatropha curcas. We show that gibberellin and CK synergistically promote lateral bud outgrowth, and that both hormones influence the expression of putative branching regulators, J. curcas BRANCHED1 and BRANCHED2, which are key transcription factors maintaining bud dormancy. Moreover, treatment with paclobutrazol, an inhibitor of de novo gibberellin biosynthesis, significantly reduced the promotion of bud outgrowth by CK, suggesting that gibberellin is required for CK-mediated axillary bud outgrowth. In addition, SL, a plant hormone involved in the repression of shoot branching, acted antagonistically to both gibberellin and CK in the control of lateral bud outgrowth. Consistent with this, the expression of JcMAX2, a J. curcas homolog of Arabidopsis MORE AXILLARY GROWTH 2 encoding an F-box protein in the SL signaling pathway, was repressed by gibberellin and CK treatment. We also provide physiological evidence that gibberellin also induces shoot branching in many other trees, such as papaya, indicating that a more complicated regulatory network occurs in the control of shoot branching in some perennial woody plants.

Journal ArticleDOI
TL;DR: It is proposed that ONAC106 functions in leaf senescence, salt stress tolerance and plant architecture by modulating the expression of its target genes that function in each signaling pathway.
Abstract: NAM/ATAF1/ATAF2/CUC2 (NAC) is a plant-specific transcription factor (TF) family, and NACs participate in many diverse processes during the plant life cycle. Several Arabidopsis thaliana NACs have important roles in positively or negatively regulating leaf senescence, but in other plant species, including rice, the senescence-associated NACs (senNACs) remain largely unknown. Here we show that the rice senNAC TF ONAC106 negatively regulates leaf senescence. Leaves of onac106-1D (insertion of the 35S enhancer in the promoter region of the ONAC106 gene) mutants retained their green color under natural senescence and dark-induced senescence conditions. Genome-wide transcriptome analysis revealed that key senescence-associated genes (SGR, NYC1, OsNAC5, OsNAP, OsEIN3 and OsS3H) were differentially expressed in onac106-1D during dark-induced senescence. In addition to delayed senescence, onac106-1D also showed a salt stress-tolerant phenotype; key genes that down-regulate salt response signaling (OsNAC5, OsDREB2A, OsLEA3 and OsbZIP23) were rapidly up-regulated in onac106-1D under salt stress. Interestingly, onac106-1D also exhibited a wide tiller angle phenotype throughout development, and the tiller angle-related gene LPA1 was down-regulated in onac106-1D. Using yeast one-hybrid assays, we found that ONAC106 binds to the promoter regions of SGR, NYC1, OsNAC5 and LPA1. Taking these results together, we propose that ONAC106 functions in leaf senescence, salt stress tolerance and plant architecture by modulating the expression of its target genes that function in each signaling pathway.

Journal ArticleDOI
TL;DR: The results indicate that CaLOX1 plays a crucial role in plant stress responses by modulating the expression of ABA- and stress-responsive marker genes, lipid peroxidation and H2O2 production.
Abstract: In plants, lipoxygenases (LOXs) are involved in various physiological processes, including defense responses to biotic and abiotic stresses. Our previous study had shown that the pepper 9-LOX gene, CaLOX1, plays a crucial role in cell death due to pathogen infection. Here, the function of CaLOX1 in response to osmotic, drought and high salinity stress was examined using CaLOX1-overexpressing (CaLOX1-OX) Arabidopsis plants. Changes in the temporal expression pattern of the CaLOX1 gene were observed when pepper leaves were treated with drought and high salinity, but not when treated with ABA, the primary hormone in response to drought stress. During seed germination and seedling development, CaLOX1-OX plants were more tolerant to ABA, mannitol and high salinity than wild-type plants. In contrast, expression of the ABA-responsive marker genes RAB18 and RD29B was higher in CaLOX1-OX Arabidopsis plants than in wild-type plants. In response to high salinity, CaLOX1-OX plants exhibited enhanced tolerance, compared with the wild type, which was accompanied by decreased accumulation of H2O2 and high levels of RD20, RD29A, RD29B and P5CS gene expression. Similarly, CaLOX1-OX plants were also more tolerant than wild-type plants to severe drought stress. H2O2 production and the relative increase in lipid peroxidation were lower, and the expression of COR15A, DREB2A, RD20, RD29A and RD29B was higher in CaLOX1-OX plants, relative to wild-type plants. Taken together, our results indicate that CaLOX1 plays a crucial role in plant stress responses by modulating the expression of ABA- and stress-responsive marker genes, lipid peroxidation and H2O2 production.

Journal ArticleDOI
TL;DR: The data support the idea that, depending on the Arabidopsis accession, both SA and JA signaling can play a role in partial inhibition of clubroot development in compatible interactions with P. brassicae.
Abstract: The role of salicylic acid (SA) and jasmonic acid (JA) signaling in resistance to root pathogens has been poorly documented. We assessed the contribution of SA and JA to basal and partial resistance of Arabidopsis to the biotrophic clubroot agent Plasmodiophora brassicae. SA and JA levels as well as the expression of the SA-responsive genes PR2 and PR5 and the JA-responsive genes ARGAH2 and THI2.1 were monitored in infected roots of the accessions Col-0 (susceptible) and Bur-0 (partially resistant). SA signaling was activated in Bur-0 but not in Col-0. The JA pathway was weakly activated in Bur-0 but was strongly induced in Col-0. The contribution of both pathways to clubroot resistance was then assessed using exogenous phytohormone application and mutants affected in SA or JA signaling. Exogenous SA treatment decreased clubroot symptoms in the two Arabidopsis accessions, whereas JA treatment reduced clubroot symptoms only in Col-0. The cpr5-2 mutant, in which SA responses are constitutively induced, was more resistant to clubroot than the corresponding wild type, and the JA signaling-deficient mutant jar1 was more susceptible. Finally, we showed that the JA-mediated induction of NATA1 drove N(δ)-acetylornithine biosynthesis in infected Col-0 roots. The 35S::NATA1 and nata1 lines displayed reduced or enhanced clubroot symptoms, respectively, thus suggesting that in Col-0 this pathway was involved in the JA-mediated basal clubroot resistance. Overall, our data support the idea that, depending on the Arabidopsis accession, both SA and JA signaling can play a role in partial inhibition of clubroot development in compatible interactions with P. brassicae.

Journal ArticleDOI
TL;DR: It is reported that increased expression of the Cyt P450 family gene CYP94C2b enhanced viability of rice plants under saline conditions and demonstrated that manipulating JA metabolism confers enhanced salt tolerance in rice.
Abstract: The plant hormone jasmonate and its conjugates (JAs) have important roles in growth control, leaf senescence and defense responses against insects and microbial attacks. JA biosynthesis is induced by several stresses, including mechanical wounding, pathogen attacks, drought and salinity stresses. However, the roles of JAs under abiotic stress conditions are unclear. Here we report that increased expression of the Cyt P450 family gene CYP94C2b enhanced viability of rice plants under saline conditions. This gene encodes an enzyme closely related to CYP94C1 that catalyzes conversion of bioactive jasmonate-isoleucine (JA-Ile) into 12OH-JA-Ile and 12COOH-JA-Ile. Inactivation of JA was facilitated in a rice line with enhanced CYP94C2b expression, and responses to exogenous JA and wounding were alleviated. Moreover, salt stress-induced leaf senescence but not natural senescence was delayed in the transgenic rice. These results suggest that bioactive JAs have a negative effect on viability under salt stress conditions and demonstrate that manipulating JA metabolism confers enhanced salt tolerance in rice.

Journal ArticleDOI
TL;DR: This review focuses on current progress in the study of PYR/PYL/RCARs, PP2Cs and SnRK2s, with particular emphasis on omics approaches, such as interactome and phosphoproteome studies, which discuss the role of ABA in plant growth and development.
Abstract: ABA is a plant hormone that plays crucial roles in controlling cellular and physiological responses to osmotic stress and in developmental processes. Endogenous ABA levels are increased in response to a decrease in water availability in cells, and ABA sensing and signaling are thought to be mediated according to the current model established in Arabidopsis thaliana, which involves pyrabactin resistance 1 (PYR)/PYR1-like (PYL)/regulatory components of ABA receptor (RCAR), protein phosphatase 2C (PP2C) and sucrose non-fermenting-1 (SNF1)-related protein kinase 2 (SnRK2). These core components of ABA signaling have a pivotal role in stress-responsive gene expression and stomatal regulation. However, because a limited number of their upstream and downstream factors have been characterized, it is still difficult to define the comprehensive network of ABA signaling in plants. This review focuses on current progress in the study of PYR/PYL/RCARs, PP2Cs and SnRK2s, with particular emphasis on omics approaches, such as interactome and phosphoproteome studies. Moreover, the role of ABA in plant growth and development is discussed based on recent metabolomic profiling studies.

Journal ArticleDOI
TL;DR: Accumulation of ABA in roots after long-term WS periods largely relies on the aerial organs, suggesting a reduced ability of the roots to synthesize ABA from carotenoids, but plants are able to transport ABA basipetally to sustain high hormone levels in roots.
Abstract: The reduced pool of the ABA precursors, β,β-carotenoids, in roots does not account for the substantial increase in ABA content in response to water stress (WS) conditions, suggesting that ABA could be transported from other organs. Basipetal transport was interrupted by stem-girdling, and ABA levels were determined in roots after two cycles of WS induced by transplanting plants to dry perlite. Leaf applications of isotope-labeled ABA and reciprocal grafting of ABA-deficient tomato mutants were used to confirm the involvement of aerial organs on root ABA accumulation. Disruption of basipetal transport reduced ABA accumulation in roots, and this decrease was more severe after two consecutive WS periods. This effect was linked to a sharp decrease in the β,β-carotenoid pool in roots in response to water deficit. Significant levels of isotope-labeled ABA were transported from leaves to roots, mainly in plants subjected to water dehydration. Furthermore, the use of different ABA-deficient tomato mutants in reciprocal grafting combinations with wild-type genotypes confirmed the involvement of aerial organs in the ABA accumulation in roots. In conclusion, accumulation of ABA in roots after long-term WS periods largely relies on the aerial organs, suggesting a reduced ability of the roots to synthesize ABA from carotenoids. Furthermore, plants are able to transport ABA basipetally to sustain high hormone levels in roots.

Journal ArticleDOI
TL;DR: Saazer et al. as discussed by the authors provided draft genomes for two hop cultivars [cv.Saazer (SZ) and cv. Shinshu Wase (SW)] and a Japanese wildhop [H. lupulus var. cordifolius; also known as Karahanasou(KR)].
Abstract: Thefemaleflowerofhop(Humuluslupulusvar.lupulus)isanessential ingredient that gives characteristic aroma, bitter-nessanddurability/stabilitytobeer.However,themoleculargeneticbasisforidentifyingDNAmarkersinhopforbreedingand to study its domestication has been poorly established.Here, we provide draft genomes for two hop cultivars [cv.Saazer (SZ) and cv. Shinshu Wase (SW)] and a Japanese wildhop [H. lupulus var. cordifolius; also known as Karahanasou(KR)]. Sequencing and de novo assembly of genomic DNAfrom heterozygous SW plants generated scaffolds with atotal size of 2.05Gb, corresponding to approximately 80%of the estimated genome size of hop (2.57Gb). The scaffoldscontained 41,228 putative protein-encoding genes. Thegenome sequences for SZ and KR were constructed by align-ing their short sequence reads to the SW reference genomeandthenreplacingthenucleotidesatsinglenucleotidepoly-morphism (SNP) sites. De novo RNA sequencing (RNA-Seq)analysis of SW revealed the developmental regulation ofgenes involved in specialized metabolic processes thatimpact taste and flavor in beer. Application of a novel bio-informatics tool, phylogenetic comparative RNA-Seq (PCP-Seq), which is based on read depth of genomic DNAs andRNAs, enabled the identification of genes related to the bio-synthesis of aromas and flavors that are enriched in SWcomparedtoKR.Ourresultsnotonlysuggestthesignificanceof historical human selection process for enhancing aromaandbitternessbiosynthesesinhopcultivars,butalsoserveascrucial information for breeding varieties with high qualityand yield.Keywords: Genomics Hop Humulus Specialized metab-olism Transcriptome.Abbreviations: BCCA, branched-chain amino acid; BWA,Burrows–Wheeler aligner; CCL, cytosolic CoA ligase; CNV,copy number variation; FPKM, fragments per kilobase ofexon model per million mapped reads; FPP, farnesyldiphosphate; gDNA, genomic DNA; GO, gene ontology;GPP, geranyl diphosphate; GPPS, GPP, geranyl diphosphatesynthase; ispF, 2-C-methyl-D-erythritol 2,4-cyclodiphosphatesynthase; LSU, large subunit; LTR, long terminal repeat; MP,mate-pair; MTS, monoterpene synthase; NGS, next gener-ation sequencing; OMT, O-methyltransferase; PA, proantho-cyanidin; PCP-Seq, phylogenetic comparative RNAsequencing; PE, paired-end; qRT-PCR, quantitative reversetranscription–PCR; rbcL, ribulose-1,5-bisphosphate carboxyl-ase large subunit; RNA-Seq, RNA sequencing; SNP, single nu-cleotide polymorphism; VPS, valerophenone synthase; WGS,whole-genome sequencing.The nucleotide sequences described in this paper have beensubmitted to the DNA Databank of Japan (DDBJ) as aBioProject (hop: Humulus lupulus) with the accession number(PRJDB3233) (Supplementary information).

Journal ArticleDOI
TL;DR: New insights are provided into the responses of cucumber to nitrogen starvation at the global transcriptome level, which are expected to be highly useful for dissecting the N response pathways in this major vegetable and for improving N fertilization practices.
Abstract: Nitrogen (N) is both an important macronutrient and a signal for plant growth and development. However, the early regulatory mechanism of plants in response to N starvation is not well understood, especially in cucumber, an economically important crop that normally consumes excessive N during production. In this study, the early time-course transcriptome response of cucumber leaves under N deficiency was monitored using RNA sequencing (RNA-Seq). More than 23,000 transcripts were examined in cucumber leaves, of which 364 genes were differentially expressed in response to N deficiency. Based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database, gene ontology (GO) and protein-protein interaction analysis, 64 signaling-related N-deficiency-responsive genes were identified. Furthermore, the potential regulatory mechanisms of anthocyanin accumulation, Chl decline and cell wall remodeling were assessed at the transcription level. Increased ascorbic acid synthesis was identified in cucumber seedlings and fruit under N-deficient conditions, and a new corresponding regulatory hypothesis has been proposed. A data cross-comparison between model plants and cucumber was made, and some common and specific N-deficient response mechanisms were found in the present study. Our study provides novel insights into the responses of cucumber to nitrogen starvation at the global transcriptome level, which are expected to be highly useful for dissecting the N response pathways in this major vegetable and for improving N fertilization practices.

Journal ArticleDOI
TL;DR: The data suggest that low temperature inhibits root growth by reducing auxin accumulation via ARR1/12, and shows that the roots of arr1-3 arr12-1 seedlings were less sensitive than wild-type roots to low temperature, in terms of changes in root length and meristem cell number.
Abstract: Plants exhibit reduced root growth when exposed to low temperature; however, how low temperature modulates root growth remains to be understood. Our study demonstrated that low temperature reduces both meristem size and cell number, repressing the division potential of meristematic cells by reducing auxin accumulation, possibly through the repressed expression of PIN1/3/7 and auxin biosynthesis-related genes, although the experiments with exogenous auxin application also suggest the involvement of other factor(s). In addition, we verified that ARABIDOPSIS RESPONSE REGULATOR 1 (ARR1) and ARR12 are involved in low temperature-mediated inhibition of root growth by showing that the roots of arr1-3 arr12-1 seedlings were less sensitive than wild-type roots to low temperature, in terms of changes in root length and meristem cell number. Furthermore, low temperature reduced the levels of PIN1/3 transcripts and the auxin level to a lesser extent in arr1-3 arr12-1 roots than in wild-type roots, suggesting that cytokinin signaling is involved in the low-temperature-mediated reduction of auxin accumulation. Taken together, our data suggest that low temperature inhibits root growth by reducing auxin accumulation via ARR1/12.

Journal ArticleDOI
TL;DR: It is proposed that highly increased auxin signaling by overexpression of mTIR1 may trigger auxin-mediated downstream pathways to enhance plant salt stress resistance by osmoregulation and increased Na(+) exclusion.
Abstract: Soil salinity is a common environmental stress factor that limits agricultural production worldwide. Plants have evolved different strategies to achieve salt tolerance. miR393 has been identified as closely related to biotic and abiotic stresses, and targets F-box genes that encode auxin receptors. The miR393-TIR1/AFB2/AFB3 regulatory module was discovered to have multiple functions that manipulate the auxin response. This study focused on miR393 and one of its targets, TIR1, and found that they played potential roles in response to salt stress. Our results showed that overexpression of a miR393-resistant TIR1 gene (mTIR1) in Arabidopsis clearly enhanced salt stress tolerance, which led to a higher germination rate, less water loss, reduced inhibition of root elongation, delayed senescence, decreased death rate and stabilized Chl content. These plants accumulated more proline and anthocyanin, and displayed enhanced osmotic stress tolerance. The expression of some salt stress-related genes was altered, and sodium content can be reduced in these plants under salt stress. We proposed that highly increased auxin signaling by overexpression of mTIR1 may trigger auxin-mediated downstream pathways to enhance plant salt stress resistance by osmoregulation and increased Na(+) exclusion.

Journal ArticleDOI
TL;DR: It is found that among various possible localization patterns, the most efficient one was that of the wild-type rice; this may explain the high Si uptake capacity of rice.
Abstract: Silicon (Si) uptake by the roots is mediated by two different transporters, Lsi1 (passive) and Lsi2 (active), in rice (Oryza sativa). Both transporters are polarly localized in the plasma membranes of exodermal (outer) and endodermal (inner) cells with Casparian strips. However, it is unknown how rice is able to take up large amounts of Si compared with other plants, and why rice Si transporters have a characteristic cellular localization pattern. To answer these questions, we simulated Si uptake by rice roots by developing a mathematical model based on a simple diffusion equation that also accounts for active transport by Lsi2. In this model, we calibrated the model parameters using in vivo experimental data on the Si concentrations in the xylem sap and a Monte Carlo method. In our simulation experiments, we compared the Si uptake between roots with various transporter and Casparian strip locations and estimated the Si transport efficiency of roots with different localization patterns and quantities of the Lsi transporters. We found that the Si uptake by roots that lacked Casparian strips was lower than that of normal roots. This suggests that the double-layer structure of the Casparian strips is an important factor in the high Si uptake by rice. We also found that among various possible localization patterns, the most efficient one was that of the wild-type rice; this may explain the high Si uptake capacity of rice.