scispace - formally typeset
Search or ask a question

Showing papers in "Plant and Soil in 1992"


Journal ArticleDOI
TL;DR: Increased BNF in mixed legume/grass pastures is being obtained through selection or breeding of legumes for increased productivity and/or to minimise effects of nutrient limitations, low soil moisture, soil acidity, and pests and disease.
Abstract: Biological nitrogen fixation (BNF) in mixed legume/grass pastures is reviewed along with the importance of transfer of fixed nitrogen (N) to associated grasses. Estimates of BNF depend on the method of measurement and some of the advantages and limitations of the main methods are outlined. The amounts of N fixed from atmospheric N2 in legume/grass pastures throughout the world is summarised and range from 13 to 682 kg N ha-1 yr-1. the corresponding range for grazed pastures, which have been assessed for white clover pastures only, is 55 to 296 kg N ha-1 yr-1.

480 citations


Book ChapterDOI
TL;DR: The actual levels of N2 fixation attained by legume and non-legume associations are reviewed and their role as a source of N in tropical and sub-tropical agriculture is assessed.
Abstract: Inputs of biologically fixed N into agricultural systems may be derived from symbiotic relationships involving legumes and Rhizobium spp., partnerships between plants and Frankia spp. or cyanobacteria, or from non-symbiotic associations between free-living diazotrophs and plant roots. It is assumed that these N2-fixing systems will satisfy a large portion of their own N requirements from atmospheric N2, and that additional fixed N will be contributed to soil reserves for the benefit of other crops or forage species. This paper reviews the actual levels of N2 fixation attained by legume and non-legume associations and assesses their role as a source of N in tropical and sub-tropical agriculture. We discuss factors influencing N2 fixation and identify possible strategies for improving the amount of N2 fixed.

366 citations


Book ChapterDOI
TL;DR: Arguments for breeding cereal varieties with root systems better able to mobilise zinc from soil sources of low availability are presented in support of breeding for zinc efficiency.
Abstract: Deficiencies of zinc are well known in all cereals and cereal-growing countries. From physiological evidence reported elsewhere, it would appear that a critical level for zinc is required in the soil before roots will either grow into it or function effectively; it is likely the requirement is frequently not met in deep sandy, infertile profiles widespread in southern Australia. Because fertilizing subsoils is impractical, this paper presents arguments for breeding cereal varieties with root systems better able to mobilise zinc from soil sources of low availability. Other agronomic arguments are presented in support of breeding for zinc efficiency.

342 citations


Journal ArticleDOI
TL;DR: Arsenic absorption by rice (Oryza sativa, L.) in relation to the chemical form and concentration of arsenic added in nutrient solution was examined in this article, where a 4 × 3 × 2 factorial experiment was conducted with treatments consisting of four arsenic chemical forms [arsenite, As(III); arsenate, As (V); monomethyl arsenic acid, MMAA; and dimethyl arsenic acid (DMAA), three arsenic concentrations [0.05, 0.2, and 0.8 mg As L-1], and two cultivars [
Abstract: Arsenic absorption by rice (Oryza sativa, L.) in relation to the chemical form and concentration of arsenic added in nutrient solution was examined. A 4 × 3 × 2 factorial experiment was conducted with treatments consisting of four arsenic chemical forms [arsenite, As(III); arsenate, As(V); monomethyl arsenic acid, MMAA; and dimethyl arsenic acid, DMAA], three arsenic concentrations [0.05, 0.2, and 0.8 mg As L-1], and two cultivars [Lemont and Mercury] with a different degree of susceptibility to straighthead, a physiological disease attributed to arsenic toxicity. Two controls, one for each cultivar, were also included. Arsenic phytoavailability and phytotoxicity are determined primarily by the arsenic chemical form present. Application of DMAA increased total dry matter production. While application of As(V) did not affect plant growth, both As(III) and MMAA were phytotoxic to rice. Availability of arsenic to rice followed the trend: DMAA

323 citations


Journal ArticleDOI
TL;DR: Biological nitrogen fixation (BNF), a microbiological process which converts atmospheric nitrogen into a plant-usable form, offers an economically attractive and ecologically sound means of reducing external inputs and improving internal resources.
Abstract: The economic and environmental costs of the heavy use of chemical N fertilizers in agriculture are a global concern. Sustainability considerations mandate that alternatives to N fertilizers must be urgently sought. Biological nitrogen fixation (BNF), a microbiological process which converts atmospheric nitrogen into a plant-usable form, offers this alternative. Nitrogen-fixing systems offer an economically attractive and ecologically sound means of reducing external inputs and improving internal resources. Symbiotic systems such as that of legumes and Rhizobium can be a major source of N in most cropping systems and that of Azolla and Anabaena can be of particular value to flooded rice crop. Nitrogen fixation by associative and free-living microorganisms can also be important. However, scientific and socio-cultural constraints limit the utilization of BNF systems in agriculture. While several environmental factors that affect BNF have been studied, uncertainties still remain on how organisms respond to a given situation. In the case of legumes, ecological models that predict the likelihood and the magnitude of response to rhizobial inoculation are now becoming available. Molecular biology has made it possible to introduce choice attributes into nitrogen-fixing organisms but limited knowledge on how they interact with the environment makes it difficult to tailor organisms to order. The difficulty in detecting introduced organisms in the field is still a major obstacle to assessing the success or failure of inoculation. Production-level problems and socio-cultural factors also limit the integration of BNF systems into actual farming situations. Maximum benefit can be realized only through analysis and resolution of major constraints to BNF performance in the field and adoption and use of the technology by farmers.

318 citations


Journal ArticleDOI
TL;DR: In this article, a field experiment was conducted to evaluate the influence of root diameter on the ability of roots of eight plant species to penetrate a compacted subsoil below a tilled layer.
Abstract: A field experiment was conducted to evaluate the influence of root diameter on the ability of roots of eight plant species to penetrate a compacted subsoil below a tilled layer. The soil was a fine sandy loam red-brown earth with a soil strength of about 3.0 MPa (at water content of 0.13 kg kg-1, corresponding to 0.81 plastic limit) at the base of a tilled layer. Relative root diameter (RRD), which was calculated as the ratio of the mean diameters of roots of plants grown in compacted soil to the mean diameters of those from uncompacted soil, was used to compare the sensitivity of roots to thicken under mechanical stress.

302 citations


Journal ArticleDOI
TL;DR: In this article, a colorimetric method was used to assess California soils for their potential to produce auxins upon the addition of L-tryptophan (L-TRP).
Abstract: The presence of auxins in soil may have an ecological impact affecting plant growth and development. A rapid and simple colorimetric method was used to assess California soils for their potential to produce auxins upon the addition of L-tryptophan (L-TRP). The auxin content measured by colorimetry was expressed as indole-3-acetic acid (IAA)-equivalents. A substrate (L-TRP) concentration of 5.3 g kg-1, glucose concentration of 6.7 g kg-1, no nitrogen, pH 7.0, 40°C, shaking (aeration) and 48 h incubation time were selected as standardized conditions to assay for auxin biosynthesis in soil. IAA was confirmed as a major microbial metabolite derived from L-TRP in soil by use of high performance liquid chromatography (HPLC). Under standardized conditions, L-TRP-derived auxins in 19 soils varied greatly ranging from 18.2 to 303.2 mg IAA equivalents (auxins) kg-1 soil. This study suggests that the phenotypic character of the soil microbiota has more of an influence on auxin production than the soil physicochemical properties (e.g., pH, organic C content, CEC, etc.).

283 citations


Journal ArticleDOI
TL;DR: Cereal/legume intercropping increases dry matter production and grain yield more than their monocultures and the distance between the cereal and legume root systems is important because N is transferred through the intermingling of root systems.
Abstract: Cereal/legume intercropping increases dry matter production and grain yield more than their monocultures. When fertilizer N is limited, biological nitrogen fixation (BNF) is the major source of N in legume-cereal mixed cropping systems. The soil N use patterns of component crops depend on the N source and legume species. Nitrogen transfer from legume to cereal increases the cropping system's yield and efficiency of N use. The use of nitrate-tolerant legumes, whose BNF is thought to be little affected by application of combined N, may increase the quantity of N available for the cereal component. The distance between the cereal and legume root systems is important because N is transferred through the intermingling of root systems. Consequently, the most effective planting distance varies with type of legume and cereal. Mutual shading by component crops, especially the taller cereals, reduces BNF and yield of the associated legume. Light interception by the legume can be improved by selecting a suitable plant type and architecture. Planting pattern and population at which maximum yield is achieved also vary among component species and environments. Crops can be mixed in different proportions from additive to replacement or substitution mixtures. At an ideal population ratio a semi-additive mixture may produce higher gross returns.

267 citations


Journal ArticleDOI
TL;DR: The fungus Trichoderma harzianum, applied to pathogen-free soil, induced an increase in emergence of seedlings, plant height, leaf area and dry weight and was found in roots of plants growing in soil treated with the fungus.
Abstract: The fungus Trichoderma harzianum which was applied to pathogen-free soil, induced an increase in emergence of seedlings, plant height, leaf area and dry weight. The fungus was applied to the soil by three different methods: conidial suspension, wheat-bran/peat preparation and seed coating. The most prominent effect was observed in the wheat-bran/peat preparation. Responses occurred in different plant growth substrates such as sandy loam soil, autoclaved soil, vermiculite, peat and a mixture of vermiculite and peat (1:1, v/v). T. harzianum was also found in roots of plants growing in soil treated with the fungus.

260 citations


Book ChapterDOI
TL;DR: Improvements and new approaches in methodologies for estimating biological N2 fixation (BNF) in wetland soils are reviewed, earlier quantitative estimates and recent data are summarized, and the contribution of BNF to N balance in Wetland-rice culture is discussed.
Abstract: This paper 1) reviews improvements and new approaches in methodologies for estimating biological N2 fixation (BNF) in wetland soils, 2) summarizes earlier quantitative estimates and recent data, and 3) discusses the contribution of BNF to N balance in wetland-rice culture.

217 citations


Book ChapterDOI
TL;DR: The integration of trees, especially nitrogen fixing trees (NFTs), into agroforestry and silvo-pastoral systems can make a major contribution to sustainable agriculture by restoring and maintaining soil fertility, and in combating erosion and desertification as well as providing fuelwood as discussed by the authors.
Abstract: The integration of trees, especially nitrogen fixing trees (NFTs), into agroforestry and silvo-pastoral systems can make a major contribution to sustainable agriculture by restoring and maintaining soil fertility, and in combating erosion and desertification as well as providing fuelwood. The particular advantage of NFTs is their biological nitrogen fixation (BNF), their ability to establish in nitrogen-deficient soils and the benefits of the nitrogen fixed (and extra organic matter) to succeeding or associated crops.

Journal ArticleDOI
TL;DR: In this article, a 30-μm meshed nylon screen was used to separate root hairs from soil, which root hairs could penetrate but not roots, and the soil was sliced in thin layers parallel to the root mat which had developed on the screen and both soil pH and residual P determined.
Abstract: Mobilization of soil P as the result of plant-induced changes of soil pH in the vicinity of plant roots was studied. Seedlings of ryegrass were grown in small containers separating roots from soil by a 30-μm meshed nylon screen which root hairs could penetrate but not roots. Two soils were used, a luvisol containing P mainly bound to calcium and an oxisol containing P mainly bound (adsorbed) to iron and aluminum. Plant-induced changes of soil pH were brought about by application of ammonium-or nitrate-nitrogen. After plants had grown for 10 d the soil was sliced in thin layers parallel to the root mat which had developed on the screen, and both soil pH and residual P determined. Mobilization of P was assessed by P-depletion profiles of the rhizosphere soil.

Journal ArticleDOI
TL;DR: In this paper, a simulation model was used to evaluate the effect of measured exudation rates on phosphate uptake from a mixture of quartz sand and rock phosphate, and it was concluded that organic acid exudations is a highly effective strategy to increase phosphate uptake.
Abstract: Phosphorus-deficient rape plants appear to acidify part of their rhizosphere by exuding malic and citric acid. A simulation model was used to evaluate the effect of measured exudation rates on phosphate uptake from Mali rock phosphate. The model used was one on nutrient uptake, extended to include both the effect of ion uptake and exudation on rhizosphere pH and the effect of rhizosphere pH on the solubilization of rock phosphate. Only the youngest zones of the root system were assumed to exude organic acids. The transport of protons released by organic acids was described by mass flow and diffusion. An experimentally determined relation was used describing pH and phosphate concentration in the soil solution as a function of total soil acid concentration. Model parameters were determined in experiments on organic acid exudation and on the uptake of phosphate by rape from a mixture of quartz sand and rock phosphate. Results based on simulation calculations indicated that the exudation rates measured in rape plants deficient in phosphorus can provide the roots with more phosphate than is actually taken up. Presence of root hairs enhanced the effect of organic acid exudation on calculated phosphate uptake. However, increase of root hair length without exudation as an alternative strategy to increase phosphate uptake from rock phosphate appeared to be less effective than exudation of organic acids. It was concluded that organic acid exudation is a highly effective strategy to increase phosphate uptake from rock phosphate, and that it unlikely that other rhizosphere processes play an important role in rock phosphate mobilization by rape.

Book ChapterDOI
TL;DR: This chapter discusses research and production strategies for improving biological nitrogen fixation in soybean, and the importance of using the best adapted soybean genotype with a fully compatible inoculant cannot be overlooked.
Abstract: The importance of soybean as a source of oil and protein, and its ability to grow symbiotically on low-N soils, point to its continued status as the most valuable grain legume in the world. With limited new land on which to expand, and emphasis on sustainable systems, increases in soybean production will come mostly from increased yield per unit area. Improvements in biological nitrogen fixation can help achieve increased soybean production, and this chapter discusses research and production strategies for such improvement.

Journal ArticleDOI
TL;DR: In this article, a new method allowing control of rhizosphere pH and mineral nutrition was applied to study depletion of various organic and inorganic phosphorus fractions extractable sequentially with 0.5M KHCO3 (pH 8.5), 0.1M NaOH and residual P extractable with 6M H2SO4 from the soil.
Abstract: A new method allowing control of rhizosphere pH and mineral nutrition was applied to study depletion of various organic and inorganic phosphorus fractions extractable sequentially with 0.5M KHCO3 (pH 8.5), 0.1M NaOH and residual P extractable with 6M H2SO4 from the rhizosphere soil. Soil pH was affected about 2 mm from the root mat. Depletion zones of inorganic P (KHCO3-Pi) extractable with 0.5M KHCO3 extended up to about 4 mm but the depletion zones of all other P fractions were about 1 mm only. The root-induced decrease of soil pH from 6.7 to 5.5 increased the depletion of total P from all fractions by 20% and depletion of KHCO3-Pi and residual P by 34% and 43%, respectively. Depletion of organic P (KHCO3-Po) extractable with 0.5M KHCO3 was not affected by a change in rhizosphere pH. With constant or increased pH, depletion of inorganic P (NaOH-Pi) was 17% and organic P (NaOH-Po) was 22% higher than with decreased pH. Only 54–60% of total P withdrawn from all fractions was from KHCO3-Pi. Substantial amounts of KHCO3-Po and NaOH-Po were mineralized and withdrawn from the rhizosphere within 1 mm from the root mat, as 11–15% of total P withdrawn originated from the organic P fractions. A remaining 11–16% was derived from NaOH-Pi, and 15–18% from residual P fractions likely to be rather immobile. Thus, 40–46% of the P withdrawn near the root mat of rape originated from non-mobile P fractions normally not included in 0.5M NaHCO3 extraction used to obtain an index of plant-available soil P.

Journal ArticleDOI
TL;DR: This study confirms previous findings that N mineralization from tropical legumes is controlled more by soluble polyphenols than by lignin or N content.
Abstract: Green manures from seven tropical leguminous trees were incubated with soil to determine the rates and controls of net nitrogen release. Fresh green manure (leaves and succulent twigs) was mixed with moist soil and incubated in polyethylene bags. Net N mineralization from green manures was estimated by the accumulation of extractable ammonium and nitrate minus the accumulation in soil alone. Patterns of N mineralization were complex, differed among species, and at 12 weeks ranged from 10 to 65 percent of original green-manure N. Cumulative net N mineralization was negatively correlated with initial soluble polyphenol content in the early phases of decomposition (1 through 8 weeks) and with initial lignin content in later phases (4 through 12 weeks). Neither initial percent N nor lignin: N ratio were strongly correlated with N mineralization. The best chemical index of N release was the initial polyphenol: N ratio. This study confirms previous findings that N mineralization from tropical legumes is controlled more by soluble polyphenols than by lignin or N content.

Journal ArticleDOI
TL;DR: For in vivo demonstration of acid phosphatase activity in the rhizosphere of soil-grown plants filter papers were treated with a mixture of 1-naphthyl phosphate as substrate and the diazonium salt Fast Red TR as an indicator.
Abstract: For in vivo demonstration of acid phosphatase activity in the rhizosphere of soil-grown plants filter papers were treated with a mixture of 1-naphthyl phosphate as substrate and the diazonium salt Fast Red TR as an indicator. After enzymatic hydrolysis, 1-naphthol forms a red complex with Fast Red TR. This method was applied to 8-day old maize plants and 3-year old Norway spruce plants growing in rhizoboxes in soil under non-sterile conditions. The treated filter paper is placed at the surface of roots and soil and acid phosphatase activity is visualized as a red-coloured ‘root print’ on the filter paper. The method can be used as a qualitative analysis of acid phosphatase in the rhizosphere. It also allows a rough estimate of phosphatase activity in different root zones.

Journal ArticleDOI
TL;DR: A selective induction of plant defense strategies upon root colonization by certain pseudomonad is apparent, and altered defense responses were observed in bean inoculated with fluorescent pseudomonads.
Abstract: Colonization of plant roots by fluorescent pseudomonads has been correlated with disease suppression. One mechanism may involve altered defense responses in the plant upon colonization. Altered defense responses were observed in bean (Phaseolus vulgaris) inoculated with fluorescent pseudomonads. Systemic effects of root inoculation by Pseudomonas putida isolate Corvallis, P. tolaasii (P9A) and P. aureofaciens REW1-I-1 were observed in bean leaves from 14-day-old plants. SDS- polyacrylamide gel electrophoresis demonstrated that levels of certain acid-soluble proteins increased in the leaf extracts of inoculated plants. Plants inoculated with REW1-I-1 produced more of a 57 Mr protein, and plants inoculated with isolates P9A and REW1-I-1 produced more of a 38 Mr protein. Northern hybridization revealed enhanced accumulation of mRNAs, that encode the pathogenesis-related protein PR1a, in leaves of plants inoculated with P. putida and REW1-I-1. Only REW1-I-1, but not P9A or P. putida induced symptoms of an hypersensitive response on tobacco leaves, bean cotyledons, and in bean suspension cultures. Phenolics and phytoalexins accumulated in bean cotyledons exposed to REW1-I-1 for 24 h but little change in levels of these compounds occurred in cotyledons inoculated with P9A and P. putida. Both suspension culture cells and roots treated with REW1-I-1 rapidly evolved more hydrogen peroxide than those exposed to P9A and P. putida. However, roots from 14-day-old plants colonized by P9A, P. putida or REW1-I-1 did not have higher levels of phenolics, phytoalexins or mRNAs for two enzymes involved in phenolic biosynthesis, phenylalanine-ammonia lyase and chalcone synthase. A selective induction of plant defense strategies upon root colonization by certain pseudomonads is apparent.

Book ChapterDOI
TL;DR: Efforts to develop new crop varieties with improved salt tolerance have been intensified over the past 15-20 years, yet over the same time period, knowledge of physiological salt responses has increased substantially.
Abstract: Efforts to develop new crop varieties with improved salt tolerance have been intensified over the past 15-20 years. Despite the existence of genetic variation for salt tolerance within species, and many methods available for expanding the source of genetic variation, there is only a limited number of varieties that have been developed with improved tolerance. These new varieties have all been based upon selection for agronomic characters such as yield or survival in saline conditions. That is, based upon characters that integrate the various physiological mechanisms responsible for tolerance. Yet over the same time period, knowledge of physiological salt responses has increased substantially.

Journal ArticleDOI
TL;DR: In this article, the authors developed a method to estimate P transformation rates in three forest soils and one grassland soil representing an Alfisol, an Ultisol, and Andisol and a Mollisol.
Abstract: Phosphorus availability in soils is controlled by both the sizes of P pools and the transformation rates among these pools. Rates of gross P mineralization and immobilization are poorly known due to the limitations of available analytical techniques. We developed a new method to estimate P transformation rates in three forest soils and one grassland soil representing an Alfisol, an Ultisol, and Andisol, and a Mollisol. Three treatments were applied to each soil in order to separate the processes of mineral P solubilization, organic P mineralization, and solution P immobilization. One set of soils was retained as control, a second set was irradiated with Γ-rays to stop microbial immobilization, and a third was irradiated and then autoclaved, also stop phosphatase activity. All three sets of samples were then incubated with anion exchange resin bags under aerobic conditions. Differences in resin P among the three treatments were used to estimate gross P mineralization and immobilization rates. Autoclaving did not affect resin-extractable P in any of the soils. Radiation did not alter resin-extractable P in the forest soils but increased resin-extractable P in the grassland soil. This increase was corrected in the calculation of potential P transformation rates. Effects of radiation on phosphatase activity varied with soils but was within 30% of the original values. Rates of P gross mineralization and immobilization ranged from 0.6–3.8 and 0–4.3 mg kg-soil-1 d-1, respectively, for the four soils. The net rates of solubilization of mineral P in the grassland soil were 7–10 times higher than the rates in forest soils. Mineralization of organic P contributed from 20–60% of total available P in the acid forest soils compared with 6% in the grassland soil, suggesting that the P mineralization processes are more important in controlling P availability in these forest ecosystems. This new method does not require an assumption of equilibrium among P pools, and is safer and simpler in operation than isotopic techniques.

Journal ArticleDOI
TL;DR: Inositol phosphate is at least equal to KH2PO4 as a source of P for the growth of lupins in sand but a much poorer source in soil as discussed by the authors.
Abstract: Inositol phosphate is at least equal to KH2PO4 as a source of P for the growth of lupins in sand but a much poorer source in soil. RNA and glycerophosphate were excellent sources of P for lupin growth in a P-fixing soil. Soil and root phosphatase activity were not altered by amendment of soils with either inorganic- or organic-P. The difference in availability of differing P-sources is related to their solubility in soils rather than susceptibility to phosphatases.

Book ChapterDOI
TL;DR: In this paper, definitions of efficient use of phosphorus by wheat are reviewed, genotypic variation in phosphorus efficiency is reported, some consequences of breeding for greater efficiency are discussed, and ways to select more efficient genotypes are suggested.
Abstract: More efficient utilization of phosphorus by wheat plants is needed to extend the useful life of the phosphate reserves in the world, to reduce the cost of producing crops, and to improve the value of the grain and the straw produced. In this paper definitions of efficient use of phosphorus by wheat are reviewed, genotypic variation in phosphorus efficiency is reported, some consequences of breeding for greater efficiency are discussed, and ways to select more efficient genotypes are suggested.

Book ChapterDOI
TL;DR: Recent technical advances involving the induction of nodular structures on the roots of cereal crops offer the prospect that dependable symbioses with free-living diazotrophs, such as the azospirilla, or with rhizobia may eventually be achieved.
Abstract: There is strong evidence that non-leguminous field crops sometimes benefit from associations with diazotrophs. Significantly, the potential benefit from N2 fixation is usually gained from spontaneous associations that can rarely be managed as part of agricultural practice. Particularly for dryland systems, these associations appear to be very unreliable as a means of raising the nitrogen status of plants. However, recent technical advances involving the induction of nodular structures on the roots of cereal crops, such as wheat and rice, offer the prospect that dependable symbioses with free-living diazotrophs, such as the azospirilla, or with rhizobia may eventually be achieved.

Journal ArticleDOI
TL;DR: Water leachates of the proteoid root layer of a mature stand of Banksia integrifolia were analysed for low molecular weight organic acids by GC, HPLC and colorimetric techniques and Concentration of citric acid in the proteoids root layer may enhance the availability of phosphorus for plant uptake.
Abstract: Water leachates of the proteoid root layer of a mature stand of Banksia integrifolia were analysed for low molecular weight (LMW) organic acids by GC, HPLC and colorimetric techniques. Large amounts of organic acids (2500 μ g in 100 mL of leachate) were found in the proteoid root layer compared to the surrounding soil and leaf litter (∼230 μg in 100 mL of leachate). Citric acid represented approximately 50% of the total organic acids leached, malic acid approximately 18%, and aconitic acid constituted approximately 17%. Concentration of citric acid in the proteoid root layer may enhance the availability of phosphorus for plant uptake.

Journal ArticleDOI
TL;DR: In this paper, the root-induced oxidation processes in the rhizosphere depended on the atmospheric oxygen supply to the roots, and the radius of the redox RHizosphere varied from less than 1 mm in strongly reduced soil up to 4 mm in a weakly reduced one.
Abstract: Redox potentials in microsites of the rhizosphere of flooded rice were continuously measured for several days. Close to the root tips redox potential markedly increased. The highest increase was measured in the rhizosphere of the tips of short lateral roots. Aerobic redox conditions were reached there, except in a very strongly reduced soil. Both the extension of the oxidation zone around the root tips and the maximum redox potential reached were influenced by the reducing capacity of the soil. The radius of the redox rhizosphere varied from less than 1 mm in a strongly reduced soil up to 4 mm in a weakly reduced one. The root-induced oxidation processes in the rhizosphere depended on the atmospheric oxygen supply to the roots.

Journal ArticleDOI
TL;DR: The possibility that on Zn-polluted soils ectomycorrhizal species and strains are selected that are ZN-tolerant and, in addition, are able to protect their own energy source, the autobiont, from toxicity is discussed.
Abstract: Six strains of ectomycorrhizal fungi were compared for their ability to increase zinc tolerance in Pinus sylvestris L. seedlings. Pioneer and ‘late-stage’ fungi as well as one strain collected from a Zn-polluted site were included in the study. The accumulation of zinc in the host plants was determined at two different sublethal substrate Zn concentrations. The mycobionts varied considerably in their protection of the autobionts against zinc toxicity. Several fungal species reduced zinc accumulation in the pine seedlings. A Thelephora terrestris (Ehrh.) Fr. Strain, however, increased the Zn concentration in its host plants. Specific zinc-retaining capacity of the mycelium and density of the extramatrical mycelium were important features determining the effectiveness of the zinc retention in the fungal symbiont.

Journal ArticleDOI
TL;DR: The hypothesis that a largeRoot biomass in montane forests is related to nutrients in low concentration and diluted in organic soils with high CEC and low bulk density is supported, and that fine root biomass in tropical forests in inversely related to calcium availability but not a phosphorus as has been suggested for other forests.
Abstract: The distribution of root biomass and physical and chemical properties of the soils were studied in a semideciduous and in a lower montane rain forest in Panama. Roots and soil samples were taken by means of soil cores (25 cm deep) and divided into five, 5-cm deep sections. Soils were wet-sieved to retrieve the roots that were classified in four diameter classes: very fine roots (<1 mm), fine roots (1–2 mm), medium roots (2–5 mm) and coarse roots (5–50 mm). Soil samples were analyzed for organic carbon, total nitrogen, available phosphorus, exchangeable bases, cation exchange capacity, pH, aluminium and exchangeable acidity. Total root biomass measured with the soil corer (roots <50 mm in diameter) was not different between the forests (9.45 t ha-1), while biomass of very fine roots was larger in the mountains (2.00 t ha-1) than in the lowlands (1.44 t ha-1). The soils in the semideciduous forest were low in available phosphorus, while in the mountains, soils had low pH, high exchangeable aluminium and exchangeable acidity, and low concentration of exchangeable bases. Phosphorus was in high concentration only in the first 5 cm of the soil. In both forests, there was an exponential reduction of root biomass with increasing depth, and most of the variation in the vertical distribution of roots less than 2 mm in diameter was explained by the concentration of nitrogen in the soils. The results of this study support the hypothesis that a large root biomass in montane forests is related to nutrients in low concentration and diluted in organic soils with high CEC and low bulk density, and that fine root biomass in tropical forests in inversely related to calcium availability but not a phosphorus as has been suggested for other forests.

Journal ArticleDOI
TL;DR: Homocaryotic mycelia obtained from spores of Laccaria bicolor S238 have been compared in vitro for their efficiency in solubilizing poorly soluble phosphates and there is very little room for improvement as the wild strain was shown to be one of the most efficientsolubilizers among the strains tested.
Abstract: Homocaryotic mycelia obtained from spores of Laccaria bicolor S238 have been compared in vitro for their efficiency in solubilizing poorly soluble phosphates. This could lead to genetic selection according to such criteria. However, there is very little room for improvement as the wild strain was shown to be one of the most efficient solubilizers among the strains tested. Twenty dicaryotic strains obtained by crossing the compatible homocaryons have also been compared and no clear heritability of this character has been found. The four phosphate salts used are most probably solubilized by the same mechanism which is polygenetically controlled

Journal ArticleDOI
TL;DR: In this paper, the effects of three concentrations of sodium chloride (NaCl) on seven citrus rootstocks were studied under greenhouse conditions, and the results showed that increasing the concentration of NaCl in the nutrition solution reduced growth proportionally and altered leaf and root mineral concentrations of all rootstocks.
Abstract: The effects of three concentrations of sodium chloride (NaCl) on seven citrus rootstocks were studied under greenhouse conditions. Leaf and root mineral concentrations and seedling growth were measured. Sodium chloride was added to the nutrient solution to achieve final osmotic potentials of −0.10, −0.20, and −0.35 MPa. Increasing the concentration of NaCl in the nutrition solution reduced growth proportionally and altered leaf and root mineral concentrations of all rootstocks. Significant differences in leaf and root mineral concentration among rootstocks were also found under stressed and non-stressed conditions. Salinity caused the greatest growth reduction in Milam lemon and trifoliate orange and the least reduction in sour orange and Cleopatra mandarin. No specific nutrient deficiency was the sole factor reducing growth and causing injury to citrus rootstocks. Sodium chloride sensitivity of citrus rootstocks in terms of leaf burn symptoms and growth reduction could be attributed more to Cl than to Na. Sodium and Cl concentrations were greater in the leaves than in the roots, particularly at the medium and high salinity levels. Root Cl was not useful for assessing injury because no differences were found in root Cl concentrations among rootstocks. Increasing salinity level did not affect the level of N and Ca in the roots but did reduce N and Ca levels in the leaves. No relationship in mineral concentration or accumulation seemed to exist between citrus leaves and roots. At the −0.10 MPa salinity level, sour orange, rough lemon, and Milam were not able to exclude either Na or Cl from their leaves. Trifoliate orange and its two hybrids (Swingle citrumelo and Carrizo citrange) excluded Na at the lowest salt level used, but were unable to exclude Na at the higher salinity levels. Similarly, Cleopatra mandarin excluded Cl at the lowest salt level, but was not able to exclude Cl at higher salt concentrations. Hence, the ability of citrus rootstocks to exclude Na or Cl breaks down at higher salt concentrations.

Journal ArticleDOI
TL;DR: In this paper, chelator-buffered nutrient solutions for precise imposition of Zn deficiencies were used for tomato (Lycopersicon esculentum L. cv) seedlings for 15 to 18 d in nutrient solutions containing 200, 600, or 1200 μM P, and 0 to 91 μM total Zn.
Abstract: Zinc-phosphorus interactions have been frequently studied using a diverse number of crop species, but attainment of reproducible Zn deficiencies, especially severe ones, has been hampered by the use of conventional hydroponic solutions wherein contaminating levels of Zn are often near-adequate for normal growth. We utilized novel, chelator-buffered nutrient solutions for precise imposition of Zn deficiencies. Tomato (Lycopersicon esculentum L. cv. Jackpot or Celebrity) seedlings were grown for 15 to 18 d in nutrient solutions containing 200, 600, or 1200 μM P, and 0 to 91 μM total Zn. Computed free Zn2+ activities were buffered at ≤10-10.3M by inclusion of a 100-μM excess (above the sum of the micronutrient metal concentrations) of the chelator DTPA. At total added Zn=0, acute Zn deficiency resulted in zero growth after seedling transfer, and plant death prior to termination. Free Zn2+ activities ≤10-10.6M resulted in Zn deficiencies ranging from mild to severe, but activities ≤10-11.2 were required to cause hyperaccumulation of shoot P to potentially toxic levels. Despite severe Zn deficiency (i.e. ca. 20% of control growth), tissue Zn levels were usually much higher than the widely reported critical value of 20 mg kg-1, which may be an artifact of the selection of DTPA for buffering free Zn2+. Across Zn treatments, increasing solution P depressed growth slightly, especially in Celebrity, but corresponding increases in tissue P (indicative of enhanced P toxicity) or decreases in tissue Zn (P-induced Zn deficiency) were not observed. The depressive effect of P was also not explained by reductions in the water-soluble Zn fraction. Within 40 h, restoration of Zn supply did not ameliorate high leakage rates (as measured by K+ efflux) of Zn-deficient roots. Similarly, transfer of Zn-sufficient plants to deficient solutions did not induce leakiness within 40 h. Foliar sprays of ZnSO4 almost completely corrected both Zn deficiency and membrane leakiness of plants grown in low-Zn solutions. Hence, maintenance of root membrane integrity appears to depend on the overall Zn nutritional status of the plant, and not on the presence of certain free Zn2+ levels in the root apoplasm.