scispace - formally typeset
Search or ask a question

Showing papers in "Plant and Soil in 2006"


Journal ArticleDOI
TL;DR: Preliminary results achieved in the engineering of bacterial strains for improving capacity for phosphate solubilization are presented, and application of this knowledge to improving agricultural inoculants is discussed.
Abstract: Plant growth-promoting bacteria (PGPB) are soil and rhizosphere bacteria that can benefit plant growth by different mechanisms. The ability of some microorganisms to convert insoluble phosphorus (P) to an accessible form, like orthophosphate, is an important trait in a PGPB for increasing plant yields. In this mini-review, the isolation and characterization of genes involved in mineralization of organic P sources (by the action of enzymes acid phosphatases and phytases), as well as mineral phosphate solubilization, is reviewed. Preliminary results achieved in the engineering of bacterial strains for improving capacity for phosphate solubilization are presented, and application of this knowledge to improving agricultural inoculants is discussed.

698 citations


Journal ArticleDOI
TL;DR: In this paper, the authors investigated the contribution of fine roots and the mycorrhizal external mycelium to soil organic matter (SOM) during a period of three growing seasons (1999-2001).
Abstract: The atmospheric concentration of CO2 is predicted to reach double current levels by 2075. Detritus from aboveground and belowground plant parts constitutes the primary source of C for soil organic matter (SOM), and accumulation of SOM in forests may provide a significant mechanism to mitigate increasing atmospheric CO2 concentrations. In a poplar (three species) plantation exposed to ambient (380 ppm) and elevated (580 ppm) atmospheric CO2 concentrations using a Free Air Carbon Dioxide Enrichment (FACE) system, the relative importance of leaf litter decomposition, fine root and fungal turnover for C incorporation into SOM was investigated. A technique using cores of soil in which a C4 crop has been grown (δ13C −18.1‰) inserted into the plantation and detritus from C3 trees (δ13C −27 to −30‰) was used to distinguish between old (native soil) and new (tree derived) soil C. In-growth cores using a fine mesh (39 μm) to prevent in-growth of roots, but allow in-growth of fungal hyphae were used to assess contribution of fine roots and the mycorrhizal external mycelium to soil C during a period of three growing seasons (1999–2001). Across all species and treatments, the mycorrhizal external mycelium was the dominant pathway (62%) through which carbon entered the SOM pool, exceeding the input via leaf litter and fine root turnover. The input via the mycorrhizal external mycelium was not influenced by elevated CO2, but elevated atmospheric CO2 enhanced soil C inputs via fine root turnover. The turnover of the mycorrhizal external mycelium may be a fundamental mechanism for the transfer of root-derived C to SOM.

351 citations


Journal ArticleDOI
TL;DR: Garrigues et al. as mentioned in this paper presented a model describing both soil and plant processes involved in water uptake at the scale of the whole root system with explicit account of individual roots.
Abstract: Soil water uptake by plant roots results from the complex interplay between plant and soil which modulates and determines transport processes at a range of spatial and temporal scales: at small scales, uptake rates are determined by local soil and root hydraulic properties but, at the plant scale, local processes interact within the root system and are integrated through the hydraulic architecture of the root system and plant transpiration. However, because of the inherent complexity of the root system (both structural and functional), plant roots are commonly account for with synthetic but over-simplifying descriptors, valid at a given spatial scale. In this article, we present a model describing both soil and plant processes involved in water uptake at the scale of the whole root system with explicit account of individual roots. This is achieved through the unifying concepts of root system architecture and hydraulic continuity between the soil and plant. The model is based on a combination of architectural, root system hydraulic and soil water transfer modelling. The model can reproduce qualitatively and quantitatively laboratory experimental data obtained from imaging of water uptake by light transmission (cf. Garrigues et al., Water uptake by plant roots: I-Formation and propagation of a water extraction front in mature root systems as evidenced by 2D light transmission imaging. Plant and soil (2006, this issue) or X-ray imaging for two soil types (a sand/clay mix and a sandy clay loam) and different narrow-leaf lupin root systems (taprooted and fibrous), using independently measured soil–plant parameters. Results of the experiments and modelling reported in this paper concur to show that a water extraction front formed on the root system. This uptake front’s spatial extension and propagation were closely related to the local dependence between root and soil hydraulic properties and root axial conductance. Hence, a sharp front formed in the sand/clay mix but was much more attenuated in the sandy loam. Comparison between taprooted and fibrous root systems grown in a sand/clay mix, show that the taprooted architecture induced a more spatially concentrated uptake zone (near the soil surface) with higher flux rates, but with xylem water potential at the base of the root system twice as low than in the fibrous architecture. Modelling provided evidence that hydraulic lift might have occurred when transpiration declined, particularly in soil prone to abrupt variations in soil water potential (sand/clay mix). Finally, such a model, explicitly coupling root system-soil water transfers, can be useful to study water uptake in relation with root architectural traits, distribution of root hydraulic conductance or influence of heterogeneous conditions (localised irrigation, root clumping).

292 citations


Journal ArticleDOI
TL;DR: In this article, the authors used two soils differing in levels of Cd and Zn, which were adjusted to six different pH levels, and found that decreasing pH significantly influenced plant metal uptake.
Abstract: For phytoextraction to be successful and viable in environmental remediation, strategies that can optimize plant uptake must be identified. Thlaspi caerulescens is an important hyperaccumulator of Cd and Zn, whether adjusting soil pH is an efficient way to enhance metal uptake by T. caerulescens must by clarified. This study used two soils differing in levels of Cd and Zn, which were adjusted to six different pH levels. Thlaspi caerulescens tissue metal concentrations and 0.1 M Sr(NO3)2 extractable soil metal concentrations were measured. The soluble metal form of both Cd and Zn was greatly increased with decreasing pH. Lowering pH significantly influenced plant metal uptake. For the high metal soil, highest plant biomass was at the lowest soil pH (4.74). The highest shoot metal concentration was at the second lowest pH (5.27). For low metal soil, due to low pH induced Al and Mn toxicity, both plant growth and metal uptake was greatest at intermediate pH levels. The extraordinary Cd phytoextraction ability of T. caerulescens was further demonstrated in this experiment. In the optimum pH treatments, Thlaspi caerulescens extracted 40% and 36% of total Cd in the low and high metal soils, respectively, with just one planting. Overall, decreasing pH is an effective strategy to enhance phytoextraction. But different soils had various responses to acidification treatment and a different optimum pH may exist. This pH should be identified to avoid unnecessarily extreme acidification of soils.

274 citations


Journal ArticleDOI
TL;DR: The key role of competition for soil N which occurs early in the crop cycle and greatly influences the subsequent growth and final performance of both species is demonstrated.
Abstract: Field experiments were carried out during three successive years to study through a dynamic approach the competition for soil N and its interaction with N2 fixation, leaf expansion and crop growth in pea–barley intercrops. The intensity of competition for soil N varied between experiments according to soil N supply and plant densities. This study demonstrates the key role of competition for soil N which occurs early in the crop cycle and greatly influences the subsequent growth and final performance of both species. Relative yield values for grain yield and N accumulation increased with the intensity of competition for soil N. Barley competed strongly for soil N in the intercrop. Its competitive ability increased steadily during the vegetative phase and remained constant after the beginning of pea flowering. The period of strong competition for soil N (500–800 degree-days after sowing) also corresponded to the period of rapid growth in leaf area for both species and therefore an increasing N demand. For each species, the leaf area per plant at the beginning of pea flowering was well correlated with crop nitrogen status. Barley may meet its N needs more easily in intercrops (IC) and has greater leaf area per plant than in sole crops (SC). Barley having a greater soil N supply results in an even higher crop N status and greater competitive ability relative to pea in intercrop. Competition by barley for soil N increased the proportion of pea N derived from fixation. The nitrogen nutrition index (NNI) values of pea were close to 1 whatever the soil N availability in contrast to barley. However N2 fixation started later than soil N uptake of pea and barley and was low when barley was very competitive for soil N. Due to the time necessary for the progressive development and activity of nodules, N2 fixation could not completely satisfy N demand at the beginning of the crop cycle. The amount of N2 fixed per plant in intercrops was not only a response to soil N availability but was largely determined by pea growth and was greatly affected when barley was too competitive.

241 citations


Journal ArticleDOI
TL;DR: In this article, the relative contributions of C3 and C4 plants to whole-ecosystem C storage (soil+plant) in grazed and ungrazed sites at three distinct locations (short-, mid-and tallgrass communities) along an east-west environmental gradient in the North American Great Plains were quantified.
Abstract: Isotopic signatures of 13 C were used to quantify the relative contributions of C3 and C4 plants to wholeecosystem C storage (soil+plant) in grazed and ungrazed sites at three distinct locations (short-, mid- and tallgrass communities) along an east–west environmental gradient in the North American Great Plains. Functional group composition of plant communities, the source and magnitude of carbon inputs, and total ecosystem carbon storage displayed inconsistent responses to long-term livestock grazing along this gradient. C4 plants [primarily Bouteloua gracilis (H.B.K.) Lag ex Steud.] dominated the long-term grazed site in the shortgrass community, whereas the ungrazed site was co-dominated by C3 and C4 species; functional group composition did not differ between grazed and ungrazed sites in the mid- and tallgrass communities. Above-ground biomass was lower, but the relative proportion of fine root biomass was greater, in grazed compared to ungrazed sites at all three locations. The grazed site of the shortgrass community had 24% more whole-ecosystem carbon storage compared to the ungrazed site (4022 vs. 3236 g C m )2 ). In contrast, grazed sites at the mid- and tallgrass communities had slightly lower (8%) whole-ecosystem carbon storage compared to ungrazed sites (midgrass: 7970 vs. 8683 g C m )2 ; tallgrass: 8273 vs. 8997 g C m )2 ). Differential responses between the shortgrass and the mid- and tallgrass communities with respect to grazing and whole-ecosystem carbon storage are likely a result of: (1) maintenance of larger soil organic carbon (SOC) pools in the mid- and tallgrass communities (7476–8280 g C m )2 ) than the shortgrass community (2517– 3307 g C m )2 ) that could potentially buffer ecosystem carbon fluxes, (2) lower root carbon/soil carbon ratios in the mid- and tallgrass communities (0.06–0.10) compared to the shortgrass community (0.20–0.27) suggesting that variation in root organic matter inputs would have relatively smaller effects on the size of the SOC pool, and (3) the absence of grazing-induced variation in the relative proportion of C3 and C4 functional groups in the mid- and tallgrass communities. We hypothesize that the magnitude and proportion of fine root mass within the upper soil profile is a principal driver mediating the effect of community composition on the biogeochemistry of these grassland ecosystems.

237 citations


Journal ArticleDOI
TL;DR: Alteration of the soil microbial community by plant invasion can provide a mechanism for both successful invasion and the resulting effects of invaders on the ecosystem.
Abstract: Plant invasions have the potential to significantly alter soil microbial communities, given their often considerable aboveground effects. We examined how plant invasions altered the arbuscular mycorrhizal fungi of native plant roots in a grassland site in California and one in Utah. In the California site, we used experimentally created plant communities composed of exotic (Avena barbata, Bromus hordeaceus) and native (Nassella pulchra, Lupinus bicolor) monocultures and mixtures. In the Utah semi-arid grassland, we took advantage of invasion by Bromus tectorum into long-term plots dominated by either of two native grasses, Hilaria jamesii or Stipa hymenoides. Arbuscular mycorrhizal fungi colonizing roots were characterized with PCR amplification of the ITS region, cloning, and sequencing. We saw a significant effect of the presence of exotic grasses on the diversity of mycorrhizal fungi colonizing native plant roots. In the three native grasses, richness of mycorrhizal fungi decreased; in the native forb at the California site, the number of fungal RFLP patterns increased in the presence of exotics. The exotic grasses also caused the composition of the mycorrhizal community in native roots to shift dramatically both in California, with turnover of Glomus spp., and Utah, with replacement of Glomus spp. by apparently non-mycorrhizal fungi. Invading plants may be able to influence the network of mycorrhizal fungi in soil that is available to natives through either earlier root activity or differential carbon provision compared to natives. Alteration of the soil microbial community by plant invasion can provide a mechanism for both successful invasion and the resulting effects of invaders on the ecosystem.

233 citations


Journal ArticleDOI
TL;DR: Data show that AM fungi provide important ecosystem functions in terms of plant nutrition and aggregate stability, but that a change in this one functional group had only a small effect on the wider soil biota.
Abstract: Effects of arbuscular mycorrhzal (AM) fungi on plant growth and nutrition are well-known, but their effects on the wider soil biota are less clear. This is in part due to difficulties with establishing appropriate non-mycorrhizal controls in the field. Here we present results of a field experiment using a new approach to overcome this problem. A previously well-characterized mycorrhizal defective tomato mutant (rmc) and its mycorrhizal wildtype progenitor (76R MYC+) were grown at an organic fresh market tomato farm (Yolo County, CA). At the time of planting, root in-growth cores amended with different levels of N and P, were installed between experimental plants to study localized effects of mycorrhizal and non-mycorrhizal tomato roots on soil ecology. Whilst fruit yield and vegetative production of the two genotypes were very similar at harvest, there were large positive effects of colonization of roots by AM fungi on plant nutrient contents, especially P and Zn. The presence of roots colonized by AM fungi also resulted in improved aggregate stability by increasing the fraction of small macroaggregates, but only when N was added. Effects on the wider soil community including nematodes, fungal biomass as indicated by ergosterol, microbial biomass C, and phospholipid fatty acid (PLFA) profiles were less pronounced. Taken together, these data show that AM fungi provide important ecosystem functions in terms of plant nutrition and aggregate stability, but that a change in this one functional group had only a small effect on the wider soil biota. This indicates a high degree of stability in soil communities of this organic farm.

233 citations


Journal ArticleDOI
TL;DR: The observed stability in leaf-specific apparent hydraulic conductance indicates that the two non-phreatophyte species are able to maintain sufficient water supply to their foliage via, mostly likely, effective morphological adjustment at the scale of the individual plant.
Abstract: Plant water-use strategy is considered to be a function of the complex interactions between species of different functional types and the prevailing environmental conditions. The functional type of a plant’s root system is fundamental in determining the water-use strategy of desert shrubs and the physiological responses of the plant to an occasional rainfall event, or rain pulse. In this current study of Tamarix ramosissima Ledeb. Fl.Alt., Haloxylon ammodendron (C.A.Mey.) Bunge and Reaumuria soongorica (Pall.) Maxim., three dominant shrub species in the Gurbantonggut Desert (Central Asia), plant root systems were excavated in their native habitat to investigate their functional types and water-use strategies. We monitored leaf water potential, photosynthesis and transpiration rate during a 39-day interval between successive precipitation events during which time the upper soil water changed markedly. Plant apparent hydraulic conductance and water-use efficiency were calculated for the varying soil water conditions. Our results show that: 1) The three species of shrub belong to two functional groups: phreatophyte and non-phreatophyte; 2) The photosynthetic capacity and leaf-specific apparent hydraulic conductance of the three species was stable during the time that the water condition in the upper soil changed; 3) Transpiration, leaf water potential and water-use efficiency in Tamarix ramosissima Ledeb. Fl.Alt. were stable during the period of observation, but varied significantly for the other two species. Tamarix ramosissima Ledeb. Fl.Alt., as a phreatophyte, relies mostly on groundwater for survival; its physiological activity is not inhibited in any way by the deficiency in upper soil water. Non-phreatophyte Haloxylon ammodendron (C.A.Mey.) Bunge and Reaumuria soongorica (Pall.) Maxim. use precipitation-derived upper soil water for survival, and thus respond clearly to rain pulse events in terms of leaf water potential and transpiration. The observed similarity in leaf-specific photosynthesis capacity among all three species indicates that the two non-phreatophyte species are able to maintain normal photosynthesis within a wide range of plant water status. The observed stability in leaf-specific apparent hydraulic conductance indicates that the two non-phreatophyte species are able to maintain sufficient water supply to their foliage via, mostly likely, effective morphological adjustment at the scale of the individual plant.

224 citations


Journal ArticleDOI
TL;DR: In this article, the response of litter for the dominant tree species in disturbed (pine), rehabilitated (pine and broadleaf mixed) and mature (monsoon evergreen broadleaf) forests in subtropical China to simulated N deposition was studied to address the following hypothesis: (1) litter decomposition is faster in mature forest (high soil N availability) than in rehabilitated/disturbed forests (low-soil N availability).
Abstract: The response of decomposition of litter for the dominant tree species in disturbed (pine), rehabilitated (pine and broadleaf mixed) and mature (monsoon evergreen broadleaf) forests in subtropical China to simulated N deposition was studied to address the following hypothesis: (1) litter decomposition is faster in mature forest (high soil N availability) than in rehabilitated/disturbed forests (low soil N availability); (2) litter decomposition is stimulated by N addition in rehabilitated and disturbed forests due to their low soil N availability; (3) N addition has little effect on litter decomposition in mature forest due to its high soil N availability. The litterbag method (a total of 2880 litterbags) and N treatments: Control-no N addition, Low-N: −5 g N m−2 y−1, Medium-N: −10 g N m−2 y−1, and High-N: −15 g N m−2 y−1, were employed to evaluate decomposition. Results indicated that mature forest, which has likely been N saturated due to both long-term high N deposition in the region and the age of the ecosystem, had the highest litter decomposition rate, and exhibited no significant positive and even some negative response to nitrogen additions. However, both disturbed and rehabilitated forests, which are still N limited due to previous land use history, exhibited slower litter decomposition rates with significant positive effects from nitrogen additions. These results suggest that litter decomposition and its responses to N addition in subtropical forests of China vary depending on the nitrogen status of the ecosystem.

223 citations


Journal ArticleDOI
TL;DR: In this article, a two-year experiment with two soil moisture by four nitrogen treatments was conducted to investigate the effects of N application rates and soil moisture on soil N dynamics, crop yield, N uptake and use efficiency in an intensive wheat-maize double cropping system (wheat and maize rotation) in the North China Plain.
Abstract: There is a growing concern about excessive nitrogen (N) and water use in agricultural systems in North China due to the reduced resource use efficiency and increased groundwater pollution. A two-year experiment with two soil moisture by four N treatments was conducted to investigate the effects of N application rates and soil moisture on soil N dynamics, crop yield, N uptake and use efficiency in an intensive wheat–maize double cropping system (wheat–maize rotation) in the North China Plain. Under the experimental conditions, crop yield of both wheat and maize did␣not␣increase significantly at N rates above 200 kg N ha−1. Nitrogen application rates affected little on ammonium-N (NH4-N) content in the 0–100 cm soil profiles. Excess nitrate-N (NO3-N), ranging from 221 kg N ha−1 to 620 kg N ha−1, accumulated in the 0–100 cm soil profile at the end of second rotation in the treatments with N rates of 200 kg N ha−1 and 300 kg N ha−1. In general, maize crop has higher N use efficiency than wheat crop. Higher NO3-N leaching occurred in maize season than in wheat season due to more water leakage caused by the concentrated summer rainfall. The results of this study indicate that the optimum N rate may be much lower than that used in many areas in the North China Plain given the high level of N already in the soil, and there is great potential for reducing N inputs to increase N use efficiency and to mitigate N leaching into the groundwater. Avoiding excess water leakage through controlled irrigation and matching N application to crop N demand is the key to reduce NO3-N leaching and maintain crop yield. Such management requires knowledge of crop water and N demand and soil N dynamics as they change with variable climate temporally and spatially. Simulation modeling can capture those interactions and is considered as a powerful tool to assist in␣the␣future optimization of N and irrigation managements.

Journal ArticleDOI
TL;DR: Molecular methods (terminal restriction fragment length polymorphism analyses based on the large subunit of the rRNA gene) are used to examine AMF community structure in sites dominated by the invasive mycorrhizal forb, Centaurea maculosa Lam, and in adjacent native grassland sites, indicating that significantAMF community alteration occurs following C.maculosa invasion.
Abstract: While several recent studies have described changes in microbial communities associated with exotic plant invasion, how arbuscular mycorrhizal fungi (AMF) communities respond to exotic plant invasion is not well known, despite the salient role of this group in plant interactions. Here, we use molecular methods (terminal restriction fragment length polymorphism analyses based on the large subunit of the rRNA gene) to examine AMF community structure in sites dominated by the invasive mycorrhizal forb, Centaurea maculosa Lam. (spotted knapweed), and in adjacent native grassland sites. Our results indicate that significant AMF community alteration occurs following C. maculosa invasion. Moreover, a significant reduction in the number of restriction fragment sizes was found for samples collected in C. maculosa-dominated areas, suggesting reduced AMF diversity. Extraradical hyphal lengths exhibited a significant, on average 24%, reduction in C. maculosa-versus native grass-dominated sites. As both AMF community composition and abundance were altered by C.maculosa invasion, these data are strongly suggestive of potential impacts on AMF-mediated ecosystem processes. Given that the composition of AMF communities has the potential to differentially influence different plant species, our results may have important implications for site restoration after weed invasion.

Journal ArticleDOI
TL;DR: This is the first report on genotypic variation in the root growth angle of rice on upland fields and should prove useful for rough estimations of genotypes in the vertical root distribution of upland rice becauseRoot growth angle is rapidly and easily measured.
Abstract: Deep root development, which is important for the drought resistance in rice (Oryza sativa L.), is a complex trait combining various root morphologies. The objective of this study was to elucidate genotypic variation in deep root development in relation to morphological indicators such as vertical root distribution and root growth angle. Two experiments were conducted: one on upland fields, and one in pots and fields. In experiment 1, the root systems of six rice cultivars on upland fields were physio-morphologically analyzed under different water regimes (irrigated and intermittent drought conditions during panicle development). In experiment 2, cultivar differences in root growth angles were evaluated with 12 cultivars using the basket method under irrigated conditions. No cultivar × environment interactions were found for total root length or deep root length between irrigated and drought conditions in experiment 1. This suggests that constitutive root growth, which is genetically determined, is important for deep root development under intermittent drought conditions during reproductive stage. Among root traits, the deep root ratio (i.e., deep root weight divided by total root weight) was most closely related to deep root length under both water regimes. This suggested that vertical root distribution constitutively affects deep root length. Significant genotypic variation existed in the nodal root diameter and root growth angle of upland rice in experiment 2. It was considered that genotypes with thick roots allocated more assimilates to deep roots through root growth angles higher to the horizontal plane on upland fields. This is the first report on genotypic variation in the root growth angle of rice on upland fields. It should prove useful for rough estimations of genotypic variation in the vertical root distribution of upland rice because root growth angle is rapidly and easily measured.

Journal ArticleDOI
TL;DR: Ryser et al. as mentioned in this paper investigated the variation in specific root length and root surface area in response to variation in N and P supply among 10 temperate pasture species with contrasting root morphologies and contrasting N andP requirements.
Abstract: reflecting the difficulty in extracting fine roots from the soil, and the enormous length these roots can attain. For example, Dittmer (1937) excavated the entire root system of a single rye plant, which consisted of 13,815,672 branches and had a total length of 622 km with a surface area of 237 m, and a total root hair length of 11,000 km. Since then, progress has been made in the methodology of assessing root length and in understanding the variation in it, but there still remains an air of mystery around root length as even the newest findings are often contradictory. Investigations have often focused on Specific Root Length (SRL), a trait which characterizes the economical aspects of a root system, stating the costs––mass––per potential return––root length. SRL has been shown to increase, decrease, or stay constant in response to nutrient limitation (Ryser 1998). Furthermore, root length does not always respond to specific ions, such as nitrate or phosphate, in manner like theories based on the mobility of these ions would predict (Robinson 1996; Leyser and Fitter 1998). In this issue, Hill et al. (2006) describe an elegant experiment to tackle this mystery. They investigate the variation in specific root length and root surface area in response to variation in N and P supply among 10 temperate pasture species with contrasting root morphologies and contrasting N and P requirements. They investigate the traits contributing to variation in root surface area: biomass allocation to roots, SRL, root fineness and tissue mass density. The results show that the root morphology of a species indeed corresponds well with its phosphorus requirements. The data also clearly illustrate the general importance of phenotypic plasticity for the maintenance of resource acquisition capacity at low levels of the resource, as all species were able to maintain a fairly constant root length across a wide range of P treatments, despite a large variation in total plant mass and root mass. However, the degree of the plastic response was not related to the P uptake capacity of the species, and the patterns cannot readily be generalized. In response to P limitation, some species changed their biomass allocation pattern, some changed root fineness, and others root tissue mass density. There was no consistent relationship in the nutrient level at which the species began to modify their root characteristics and their nutrient requirement. P. Ryser (&) Department of Biology, Laurentian University, Ramsey Lake Road, Sudbury, Ontario, Canada, P3E 2C6 e-mail: pryser@laurentian.ca Plant Soil (2006) 286:1–6 DOI 10.1007/s11104-006-9096-1

Journal ArticleDOI
TL;DR: The results indicate that many rhizobia isolated from soils in Iran are able to mobilize P from organic and inorganic sources and this beneficial effect should be tested with crops grown in Iran.
Abstract: Agricultural soils in Iran are predominantly calcareous with very low plant available phosphorus (P) content. In addition to their beneficial N2-fixing activity with legumes, rhizobia can improve plant P nutrition by mobilizing inorganic and organic P. Isolates from different cross-inoculation groups of rhizobia, obtained from Iranian soils were tested for their ability to dissolve inorganic and organic phosphate. From a total of 446 rhizobial isolates tested for P solubilization by the formation of visible dissolution halos on agar plates, 198 (44%) and 341(76%) of the isolates, solubilized Ca3(PO4)2 (TCP) and inositol hexaphosphate (IHP), respectively. In the liquid Sperber TCP medium, phosphate-solubilizing bacteria (Bacillus sp. and Pseudomonas fluorescens) used as positive controls released an average of 268.6 mg L−1 of P after 360 h incubation. This amount was significantly (P < 0.05) higher than those observed with all rhizobia tested. The group of Rhizobium leguminosarum bv. viciae mobilized in liquid TCP Sperber medium significantly (P < 0.05) more P (197.1 mg L−1 in 360 h) than other rhizobia tested,. This group also showed the highest dissolution halo on the TCP solid Sperber medium. The release of soluble P was significantly correlated with a drop in the pH of the culture filtrates indicating the importance of acid production in the mobilization process. None of the 70 bradyrhizobial isolates tested was able to solubilize TCP. These results indicate that many rhizobia isolated from soils in Iran are able to mobilize P from organic and inorganic sources and this beneficial effect should be tested with crops grown in Iran.

Journal ArticleDOI
TL;DR: It is suggested that differences among the studied species in use of different P pools and in the width of the rhizosphere are relatively small, irrespective of plant species.
Abstract: This study investigates the distribution of carboxylates and acid phosphatases as well as the depletion of different phosphorus (P) fractions in the rhizosphere of three legume crop species and a cereal, grown in a soil with two different levels of residual P. White lupin (Lupinus albus L.), field pea (Pisum sativum L.), faba bean (Vicia faba L.) and spring wheat (Triticum aestivum L.) were grown in small sand-filled PVC tubes to create a dense root mat against a 38-μm mesh nylon cloth at the bottom, where it was in contact with the soil of interest contained in another tube. The soil had either not been fertilised (P0) or fertilised with 15 (P15) kg P ha−1 in previous years. The mesh size did not allow roots to grow into the soil, but penetration of root hairs and diffusion of nutrients and root exudates was possible, and a rhizosphere was established. At harvest, thin (1 mm) slices of this rhizosphere soil were cut, down to a 10-mm distance from the mesh surface. The rhizosphere of white lupin, particularly in the P0 treatment, contained citrate, mostly in the first 3 mm, with concentrations decreasing with distance from the root. Acid phosphatase activity was enhanced in the rhizosphere of all species, as compared with bulk soil, up to a distance of 4 mm. Phosphatase activity was highest in the rhizosphere of white lupin, followed by faba bean, field pea and wheat. Both citrate concentrations and phosphatase activities were higher in P0 compared with P15. The depletion of both inorganic (Pi) and organic (Po) phosphorus fractions was greatest at the root surface, and decreased gradually with distance from the root. The soil P fractions that were most depleted as a result of root activity were the bicarbonate-extractable (0.5 M) and sodium hydroxide-extractable (0.1 M) pools, irrespective of plant species. This study suggests that differences among the studied species in use of different P pools and in the width of the rhizosphere are relatively small.

Journal ArticleDOI
TL;DR: The root morphology of ten temperate pasture species (four annual grasses, four perennial grasses and two annual dicots) was compared and their responses to P and N deficiency were characterised.
Abstract: The root morphology of ten temperate pasture species (four annual grasses, four perennial grasses and two annual dicots) was compared and their responses to P and N deficiency were characterised. Root morphologies differed markedly; some species had relatively fine and extensive root systems (Vulpia spp., Holcus lanatus L. and Lolium rigidum Gaudin), whilst others had relatively thick and small root systems (Trifolium subterraneum L. and Phalaris aquatica L.). Most species increased the proportion of dry matter allocated to the root system at low P and N, compared with that at optimal nutrient supply. Most species also decreased root diameter and increased specific root length in response to P deficiency. Only some of the species responded to N deficiency in this way. Root morphology was important for the acquisition of P, a nutrient for which supply to the plant depends on root exploration of soil and on diffusion to the root surface. Species with fine, extensive root systems had low external P requirements for maximum growth and those with thick, small root systems generally had high external P requirements. These intrinsic root characteristics were more important determinants of P requirement than changes in root morphology in response to P deficiency. Species with different N requirements could not be distinguished clearly by their root morphological attributes or their response to N deficiency, presumably because mass flow is relatively more important for N supply to roots in soil.

Journal ArticleDOI
TL;DR: Comparing crop species in their adaptive response to a low-P availability in order to gain knowledge to be used for improving crop P-acquisition efficiency from soils that are low in P or that have a high capacity to retain P.
Abstract: The capacity of plant roots to increase their carboxylate exudation at a low plant phosphorus (P) status is an adaptation to acquire sufficient P at low soil P availability. Our objective was to compare crop species in their adaptive response to a low-P availability, in order to gain knowledge to be used for improving crop P-acquisition efficiency from soils that are low in P or that have a high capacity to retain P. In the present screening study we compared 13 crop species, grown in sand at either 3 or 300 μM of P, and measured root mass ratio, cluster-root development, rhizosphere pH and carboxylate composition of root exudates. Root mass ratio decreased with increasing P supply for Triticum aestivum L., Brassica napus L., Cicer arietinum L. and Lens culinaris Medik., and increased only for Pisum sativum L., while the Lupinus species and Vicia faba L. were not responsive. Lupinus species that had the potential to produce root clusters either increased or decreased biomass allocation to clusters at 300 μM of P compared with allocation at 3 μM of P. All Lupinus species acidified their rhizosphere more than other species did, with average pH decreasing from 6.7 (control) to 4.3 for Lupinus pilosus L. and 5.9 for Lupinus atlanticus L.; B. napus maintained the most alkaline rhizosphere, averaging 7.4 at 300 μM of P. Rhizosphere carboxylate concentrations were lowest for T. aestivum, B. napus, V. faba, and L. culinaris than for the other species. Exuded carboxylates were mainly citrate and malate for all species, with the exception of L. culinaris and C. arietinum, which produced mainly citrate and malonate. Considerable variation in the concentration of exuded carboxylates and protons was found, even with a genus. Cluster-root forming species did not invariably have the highest concentrations of rhizosphere carboxylates. Lupinus species varied both in P-uptake and in the sensitivity of their cluster-root development to external P supply. Given the carbon cost of cluster roots, a greater plasticity in their formation and exudation (i.e. reduced investment in cluster roots and exudation at higher soil P, a negative feedback response) is a desirable trait for agricultural species that may have variable access to readily available P.

Journal Article
TL;DR: Root morphology was important for the acquisition of P, a nutrient for which supply to the plant depends on root exploration of soil and on diffusion to the root surface, and species with fine, extensive root systems had low internal P requirements for maximum growth and those with thick, small root systems generally had high external P requirements.
Abstract: The root morphology of ten temperate pasture species (four annual grasses, four perennial grasses and two annual dicots) was compared and their responses to P and N deficiency were characterised. Root morphologies differed markedly; some species had relatively fine and extensive root systems (Vulpia spp., Holcus lanatus L. and Lolium rigidum Gaudin), whilst others had relatively thick and small root systems (Trifolium subterraneum L. and Phalar is aquatica L.). Most species increased the proportion of dry matter allocated to the root system at low P and N, compared with that at optimal nutrient supply. Most species also decreased root diameter and increased specific root length in response to P deficiency. Only some of the species responded to N deficiency in this way. Root morphology was important for the acquisition of P, a nutrient for which supply to the plant depends on root exploration of soil and on diffusion to the root surface. Species with fine, extensive root systems had low external P requirements for maximum growth and those with thick, small root systems generally had high external P requirements. These intrinsic root characteristics were more important determinants of P requirement than changes in root morphology in response to P deficiency. Species with different N requirements could not be distinguished clearly by their root morphological attributes or their response to N deficiency, presumably because mass flow is relatively more important for N supply to roots in soil.

Journal ArticleDOI
TL;DR: The proposed bioluminescence assay can be used to characterize and determine the BNI activity of plant roots, thus it could become a powerful tool in genetically exploiting the B NI trait in crops and pastures.
Abstract: A bioluminescence assay using recombinant Nitrosomonas europaea was adopted to detect and quantify natural nitrification inhibitors in plant–soil systems. The recombinant strain of N. europaea produces a distinct two-peak luminescence due to the expression of luxAB genes, introduced from Vibrio harveyi, during nitrification. The bioluminescence produced in this assay is highly correlated with NO 2 − production (r 2 = 0.94). Using the assay, we were able to detect significant amounts of a nitrification inhibitor produced by the roots of Brachiaria humidicola (Rendle) Schweick. We propose that the inhibitory activity produced/released from plants be termed ‘biological nitrification inhibition’ (BNI) to distinguish it from industrially produced inhibitors. The amount of BNI activity produced by roots was expressed in units defined in terms of the action of a standard inhibitor allylthiourea (AT). The inhibitory effect from 0.22 μM AT in an assay containing 18.9 mM of NH 4 + is defined as one AT unit of activity. A substantial amount of BNI activity was released from the roots of B. humidicola (15–25 AT unit g−1 root dry wt day−1). The BNI activity released was a function of the growth stage and N content of the plant. Shoot N levels were positively correlated with the release of BNI activity from roots (r 2 = 0.76). The inhibitor/s released from B. humidicola roots suppressed soil nitrification. Additions of 20 units of BNI per gram of soil completely inhibited NO 3 − formation in a 55-day study and remained functionally stable in the soil for 50 days. Both the ammonia monooxygenase and the hydroxylaminooxidoreductase enzymatic pathways in Nitrosomonas were effectively blocked by the BNI activity released from B. humidicola roots. The proposed bioluminescence assay can be used to characterize and determine the BNI activity of plant roots, thus it could become a powerful tool in genetically exploiting the BNI trait in crops and pastures.

Journal ArticleDOI
TL;DR: A review of wetland biogeochemistry and microbial ecology can be found in this paper, where the authors highlight areas where further research is needed to increase our mechanistic understanding of the wetland system functioning.
Abstract: Soil microorganisms mediate many processes such as nitrification, denitrification, and methanogenesis that regulate ecosystem functioning and also feed back to influence atmospheric chemistry. These processes are of particular interest in freshwater wetland ecosystems where nutrient cycling is highly responsive to fluctuating hydrology and nutrients and soil gas releases may be sensitive to climate warming. In this review we briefly summarize research from process and taxonomic approaches to the study of wetland biogeochemistry and microbial ecology, and highlight areas where further research is needed to increase our mechanistic understanding of wetland system functioning. Research in wetland biogeochemistry has most often been focused on processes (e.g., methanogenesis), and less often on microbial communities or on populations of specific microorganisms of interest. Research on process has focused on controls over, and rates of, denitrification, methanogenesis, and methanotrophy. There has been some work on sulfate and iron transformations and wetland enzyme activities. Work to date indicates an important process level role for hydrology and soil nutrient status. The impact of plant species composition on processes is potentially critical, but is as yet poorly understood. Research on microbial communities in wetland soils has primarily focused on bacteria responsible for methanogenesis, denitrification, and sulfate reduction. There has been less work on taxonomic groups such as those responsible for nitrogen fixation, or aerobic processes such as nitrification. Work on general community composition and on wetland mycorrhizal fungi is particularly sparse. The general goal of microbial research has been to understand how microbial groups respond to the environment. There has been relatively little work done on the interactions among environmental controls over process rates, environmental constraints on microbial activities and community composition, and changes in processes at the ecosystem level. Finding ways to link process-based and biochemical or gene-based assays is becoming increasingly important as we seek a mechanistic understanding of the response of wetland ecosystems to current and future anthropogenic perturbations. We discuss the potential of new approaches, and highlight areas for further research.

Journal ArticleDOI
TL;DR: The results suggested that N fixation could be improved by yield maximization in an intercropping system, and that total dry matter yield (sink strength) was more critical for the legume to increase Ndfa.
Abstract: A field experiment was carried out to quantify biological nitrogen fixation (BNF) using the 15N isotope natural abundance method in maize (Zea mays L.)/faba bean (Vicia faba L.) and wheat (Triticum aestivum L.)/faba bean intercropping systems. Faba bean was yielding more in the maize/faba bean intercropping, but not in the wheat/faba bean intercropping. Biomass, grain yield and N acquisition of faba bean were significantly increased when intercropped with maize, and decreased significantly with wheat, irrespective of N-fertilizer application, indicating that the legume could gain or lose productivity in an intercropping situation. There was yield advantage of maize/faba bean intercropping, but no in wheat/faba bean intercropping. The grain yield of the faba bean intercropped with maize was greater than that of faba bean monoculture due to increases of the stems per plant and the pods per stem of faba bean. N fertilization inhibited N fixation of faba bean in maize/faba bean and wheat/faba bean intercropping and faba bean monoculture. The responses of different cropping systems to N-fertilizer application, however, were not identical, with competitive intercropping (wheat/faba bean) being more sensitive than facilitative intercropping (maize/faba bean). Intercropping increased the percentage of N derived from air (%Ndfa) of the wheat/faba bean system, but not that of the maize/faba bean system when no N fertilizer was applied. When receiving 120 kg N/ha, however, intercropping did not significantly increase %Ndfa either in the wheat/faba bean system or in the maize/faba bean system in comparison with faba bean in monoculture. The amount of shoot N derived from air (Ndfa), however, increased significantly when intercropped with maize, irrespective of N-fertilizer application. Ndfa decreased when intercropped with wheat, albeit not significantly at 120 kg N/ha. Ndfa was correlated more closely with dry matter yield, grain yield and competitive ratio, than with %Ndfa. This indicates that that total dry matter yield (sink strength), not %Ndfa, was more critical for the legume to increase Ndfa. The results suggested that N fixation could be improved by yield maximization in an intercropping system.

Journal ArticleDOI
Anne Willems1
TL;DR: The taxonomy of rhizobia, bacteria capable of nodulating leguminous plants, has changed considerably over the last 20 years, with the original genus Rhizobium, a member of the alpha-Proteobacteria, now divided into several genera as mentioned in this paper.
Abstract: The taxonomy of rhizobia, bacteria capable of nodulating leguminous plants, has changed considerably over the last 20 years, with the original genus Rhizobium, a member of the alpha-Proteobacteria, now divided into several genera. The study of new geographically dispersed host plants, has been a source of many new species and is expected to yield many more. Here we provide an overview of the history of the rhizobia, but focus on the Rhizobium-Allorhizobium-Agrobacterium relationship. Finally, we review recent reports of nodulation and nitrogen fixation with legume hosts by bacteria that are outside the traditional rhizobial phylogenetic lineages. They include species of Methylobacterium and Devosia in the alpha-Proteobacteria and of Burkholderia and Ralstonia in the beta-Proteobacteria.

Journal ArticleDOI
TL;DR: This review presents progress made in the field of microbial antagonists of plant-parasitic nematodes, including nematophagous fungi, endophytic fungi, actinomycetes and bacteria.
Abstract: Plant-parasitic nematodes cause significant economic losses to a wide variety of crops. Chemical control is a widely used option for plant-parasitic nematode management. However, chemical nematicides are now being reappraised in respect of environmental hazard, high costs, limited availability in many developing countries or their diminished effectiveness following repeated applications. This review presents progress made in the field of microbial antagonists of plant-parasitic nematodes, including nematophagous fungi, endophytic fungi, actinomycetes and bacteria. A wide variety of microorganisms are capable of repelling, inhibiting or killing plant-parasitic nematodes, but the commercialisation of these microorganisms lags far behind their resource investigation. One limiting factor is their inconsistent performance in the field. No matter how well suited a nematode antagonist is to a target nematode in a laboratory test, rational management decision can be made only by analysing the interactions naturally occurring among “host plant–nematode target–soil–microbial control agent (MCA)–environment”. As we begin to develop a better understanding of the complex interactions, microbial control of nematodes will be more fine-tuned. Multidisciplinary collaboration and integration of biological control with other control methods will␣also contribute to more successful control practices.

Journal ArticleDOI
TL;DR: The positive correlation and genetic linkage for the traits between the field trials and the hydroponic culture demonstrated that greater seedling vigor of root and shoot is an important factor influencing N uptake in wheat.
Abstract: The objective of this study was to map QTLs for N uptake (NUP) in wheat, and to investigate factors influencing NUP. Two independent field trials with low N (LN) and high N (HN) treatments were conducted in the growing seasons of 2002–2003 (trial 1) and 2003–2004 (trial 2) to measure NUP per plant (N accumulated in the aerial part at maturity stage) of a doubled haploid (DH) population consisting of 120 DH lines derived from winter wheat varieties Hanxuan 10 and Lumai 14. A hydroponic culture with all nutrients supplied sufficiently was conducted to investigate shoot dry weight (SDW), root dry weight (RDW), tiller number (TN) and NUP (total plant N uptake) per plant of this mapping population at seedling stage. SDW, RDW, TN and NUP investigated in the hydroponic culture were significantly and positively correlated with each other, and with NUP under both LN and HN conditions in the field trials. Nine and eight QTLs for NUP were detected under LN and HN conditions in the field trials, respectively. Four to five QTLs for SDW, RDW, TN and NUP were detected in the hydroponic culture. One SDW QTL, three RDW QTLs, two TN QTLs detected in the hydroponic culture were linked with QTLs for NUP under LN or HN condition in the field trials. The positive correlation and genetic linkage for the traits between the field trials and the hydroponic culture demonstrated that greater seedling vigor of root and shoot is an important factor influencing N uptake in wheat.

Journal ArticleDOI
TL;DR: In this article, a hydroponic experiment was carried out to characterize the oxidative stress responses of maize seedlings (Zea mays L. cv. Dekalb DK604) to cadmium (Cd) and mercury (Hg).
Abstract: A hydroponic experiment was carried out to characterize the oxidative stress responses of maize seedlings (Zea mays L. cv. Dekalb DK604) to cadmium (Cd) and mercury (Hg). Plants were grown hydroponically for 7 days in a nutrient solution supplemented with several concentrations of Cd and Hg: 0.0 (control), 6 or 30 μM. Growth was inhibited by both metals. The effect was more severe in plants exposed to Hg. Oxidative stress was caused by the exposure to the metals, as quantified by malondialdehyde and carbonyl accumulation, by-products of lipid peroxidation and protein oxidation, respectively. The activity of ascorbate peroxidase (APX) and superoxide dismutase (SOD), enzymes involved in the scavenging of reactive oxygen species, were measured upon metal treatment. We found an activation of a cytosolic APX isoform, as identified by using a specific polyclonal antiserum. However, there were negligible changes in SOD activity. Analysis of thiol-peptides revealed that at 6 μM Cd a remarkable increase in root reduced glutathione (GSH) content occurred, and little effect on the relative content of oxidised glutathione (GSSG) was observed. However, at 30 μM Cd and in plants exposed to 6 and 30 μM of Hg, GSH root content either remained stable or decreased significantly, while the proportion of GSSG increased. Moreover, only Cd was able to induce accumulation of phytochelatins at both assayed concentrations. Apparently, Hg was more toxic than Cd, as inferred from the magnitude of the changes found in the physiological parameters tested.

Journal ArticleDOI
TL;DR: In this paper, the impact of N placement depth and no-till (NT) practice on the emissions of NO, N2O, CH4 and CO2 from soils was evaluated.
Abstract: To evaluate the impact of N placement depth and no-till (NT) practice on the emissions of NO, N2O, CH4 and CO2 from soils, we conducted two N placement experiments in a long-term tillage experiment site in northeastern Colorado in 2004. Trace gas flux measurements were made 2–3 times per week, in zero-N fertilizer plots that were cropped continuously to corn (Zea mays L.) under conventional-till (CT) and NT. Three N placement depths, replicated four times (5, 10 and 15 cm in Exp. 1 and 0, 5 and 10 cm in Exp. 2, respectively) were used. Liquid urea–ammonium nitrate (UAN, 224 kg N ha−1) was injected to the desired depth in the CT- or NT-soils in each experiment. Mean flux rates of NO, N2O, CH4 and CO2 ranged from 3.9 to 5.2 μg N m−2 h−1, 60.5 to 92.4 μg N m−2 h−1, −0.8 to 0.5 μg C m−2 h−1, and 42.1 to 81.7 mg C m−2 h−1 in both experiments, respectively. Deep N placement (10 and 15 cm) resulted in lower NO and N2O emissions compared with shallow N placement (0 and 5 cm) while CH4 and CO2 emissions were not affected by N placement in either experiment. Compared with N placement at 5 cm, for instance, averaged N2O emissions from N placement at 10 cm were reduced by more than 50% in both experiments. Generally, NT decreased NO emission and CH4 oxidation but increased N2O emissions compared with CT irrespective of N placement depths. Total net global warming potential (GWP) for N2O, CH4 and CO2 was reduced by deep N placement only in Exp. 1 but was increased by NT in both experiments. The study results suggest that deep N placement (e.g., 10 cm) will be an effective option for reducing N oxide emissions and GWP from both fertilized CT- and NT-soils.

Journal ArticleDOI
TL;DR: In this paper, a field experiment simulating the warming and drought in a Mediterranean shrubland dominated by Erica multiflora and Globularia alypum with the aim to simulate the next future climate conditions predicted by the IPCC and ecophysiological models was conducted.
Abstract: We conducted a field experiment simulating the warming and drought in a Mediterranean shrubland dominated by Erica multiflora and Globularia alypum with the aim to simulate the next future climate conditions predicted by the IPCC and ecophysiological models. As P is frequently a limiting nutrient in Mediterranean ecosystems, we investigated the drought and warming effects on soil phosphatases activities, soil P contents and availability, litter and leaf P concentration, and the capacity of this community to maintain soil P reserves and retain this nutrient in the ecosystem. Warming treatment increased soil and air temperature (an average of 1°C) and drought treatment decreased soil water content in one of the seasons analysed (28% in autum 2004). Warming increased (68%) the activities of soil acid phosphatases in summer and alkaline phosphatase activity (22%) in spring 2004, and increased P concentrations in E. multiflora. Instead, warming decreased P concentrations in litterfall of this same species, E. multiflora, and soil HCO3-extractable Pi (Olsen-Pi) in some seasons, decreasing total P soil concentration (37%) after 6 years of treatment. The drought treatment did not change soil phosphatase activities, nor available Pi. The effects of climate change on soil P dynamics in Mediterranean areas will thus be strongly dependent on whether the main variable involved in the local change is warming or drought. If warming is the main change without significant changes in water availability, the increases of biological activity can accelerate plant growth, P capture by plants and increase soil-phosphatase activity, altogether decreasing P contents in soil. If drought is the main change, a reduction in P demands by plants is expected, increasing P stocks in soils.

Journal ArticleDOI
TL;DR: It is shown for the first time that tolerance to low Zn availability is related to the capacity of a plant to exude LMWOAs and confirmed that exudation of L MWOAs must be regarded a multiple stress response.
Abstract: The objectives of this paper were to determine (1) if lowland rice (Oryza sativa L.) plants respond similarly to low zinc (Zn) and phosphorus (P) availability by increased root exudation of low-molecular weight organic anions (LMWOAs) and (2) if genotypic variation in tolerance to low soil supply of either Zn or P is related to LMWOA exudation rates. Exudation of LMWOAs can increase bioavailability of both Zn and P to the plant, through partly similar chemical mechanisms. We used seven lowland rice genotypes and showed in two experiments that genotypes that grow relatively well on a soil with low Zn availability also grow well on a sparingly soluble Ca-phosphate (r = 0.80, P = 0.03). We measured exudation rates of LMWOAs on nutrient solution and found that both Zn and P deficiency induced significant increases. Among the LMWOAs detected oxalate was quantitatively the most important, but citrate is considered more effective in mobilizing Zn. Citrate exudation rates correlated with tolerance to low soil levels of Zn (P=0.05) and P (P = 0.07). In a low-Zn-field we found an increased biomass production at higher plant density, which is supportive for a concentration-dependent rhizosphere effect on Zn bioavailability such as LMWOA exudation. We, for the first time, showed that tolerance to low Zn availability is related to the capacity of a plant to exude LMWOAs and confirmed that exudation of LMWOAs must be regarded a multiple stress response.

Journal ArticleDOI
TL;DR: In this paper, the authors compared the response of mature Manzanilla olive trees to a PRD and an RDI treatment in which about 50% of the crop evapotranspiration (ETc) was supplied daily by localised irrigation.
Abstract: It is widely believed that partial root drying (PRD) reduces water losses by transpiration without affecting yield. However, experimental work carried out to date does not always support this hypothesis. In many cases a PRD treatment has been compared to a full irrigated treatment, so doubt remains on whether the observed benefits correspond to the switching of irrigation or just to PRD being a deficit irrigation treatment. In addition, not always a PRD treatment has been found advantageous as compared to a companion regulated deficit irrigation (RDI) treatment. In this work we have compared the response of mature ‘Manzanilla‘ olive trees to a PRD and an RDI treatment in which about 50% of the crop evapotranspiration (ETc) was supplied daily by localised irrigation. We alternated irrigation in the PRD treatment every 2 weeks in 2003 and every 3 weeks in 2004. Measurements of stem water potential (Ψstem), stomatal conductance (gs) and net CO2 assimilation rate (A) were made in trees of both treatments, as well as in trees irrigated to 100% of ETc (Control trees) and in Rain-fed trees. Sap flow was also measured in different conductive organs of trees under both PRD and RDI treatments, to evaluate the influence of alternating irrigation on root water uptake and tree water consumption. We found small and random differences in Ψstem, gs and A, which gave no evidence of PRD causing a positive effect on the olive tree performance, as compared to RDI. Stomatal conductance decreased in PRD trees as compared to Control trees, but a similar decrease in gs was also recorded in the RDI trees. Sap flow measurements, which reflected water use throughout the irrigation period, also showed no evidence of gs being more reduced in PRD than in RDI trees. Daily water consumption was also similar in the trees of the deficit irrigation treatments, for most days, throughout the irrigation period. Alternating irrigation in PRD trees did not cause a change in either water taken up by main roots at each side of the trees, or in the sap flow of both trunk locations and main branches of each side. Results from this work, and from previous work conducted in this orchard, suggest that transpiration is restricted in trees under deficit irrigation, in which roots are left in drying soil when water is applied by localised irrigation, and that there is no need to alternate irrigation for achieving this effect.