scispace - formally typeset
Search or ask a question
JournalISSN: 1467-7644

Plant Biotechnology Journal 

Wiley-Blackwell
About: Plant Biotechnology Journal is an academic journal published by Wiley-Blackwell. The journal publishes majorly in the area(s): Biology & Medicine. It has an ISSN identifier of 1467-7644. It is also open access. Over the lifetime, 2610 publications have been published receiving 151666 citations.
Topics: Biology, Medicine, Gene, Genome, Population


Papers
More filters
Journal ArticleDOI
TL;DR: The developed array and cluster identification algorithms provide an opportunity to infer detailed haplotype structure in polyploid wheat and will serve as an invaluable resource for diversity studies and investigating the genetic basis of trait variation in wheat.
Abstract: High-density single nucleotide polymorphism (SNP) genotyping arrays are a powerful tool for studying genomic patterns of diversity, inferring ancestral relationships between individuals in populations and studying marker-trait associations in mapping experiments. We developed a genotyping array including about 90,000 gene-associated SNPs and used it to characterize genetic variation in allohexaploid and allotetraploid wheat populations. The array includes a significant fraction of common genome-wide distributed SNPs that are represented in populations of diverse geographical origin. We used density-based spatial clustering algorithms to enable high-throughput genotype calling in complex data sets obtained for polyploid wheat. We show that these model-free clustering algorithms provide accurate genotype calling in the presence of multiple clusters including clusters with low signal intensity resulting from significant sequence divergence at the target SNP site or gene deletions. Assays that detect low-intensity clusters can provide insight into the distribution of presence-absence variation (PAV) in wheat populations. A total of 46 977 SNPs from the wheat 90K array were genetically mapped using a combination of eight mapping populations. The developed array and cluster identification algorithms provide an opportunity to infer detailed haplotype structure in polyploid wheat and will serve as an invaluable resource for diversity studies and investigating the genetic basis of trait variation in wheat.

1,451 citations

Journal ArticleDOI
TL;DR: The current understanding of the mechanisms by which plants control senescence and the processes that are involved is presented.
Abstract: Senescence in green plants is a complex and highly regulated process that occurs as part of plant development or can be prematurely induced by stress. In the last decade, the main focus of research has been on the identification of senescence mutants, as well as on genes that show enhanced expression during senescence. Analysis of these is beginning to expand our understanding of the processes by which senescence functions. Recent rapid advances in genomics resources, especially for the model plant species Arabidopsis, are providing scientists with a dazzling array of tools for the identification and functional analysis of the genes and pathways involved in senescence. In this review, we present the current understanding of the mechanisms by which plants control senescence and the processes that are involved.

704 citations

Journal ArticleDOI
TL;DR: V vectors have been developed which allow the direct cloning of genes into the binary plasmid by both restriction enzyme-based cloning and GATEWAY recombination and N- or C-terminal histidine tags may be fused to the target sequence as required.
Abstract: Agro-infiltration of leaf tissue with binary vectors harbouring a sequence of interest is a rapid method of expressing proteins in plants. It has recently been shown that flanking the sequence to be expressed with a modified 5'-untranslated region (UTR) and the 3'-UTR from Cowpea mosaic virus (CPMV) RNA-2 (CPMV-HT) within the binary vector pBINPLUS greatly enhances the level of expression that can be achieved [Sainsbury, F. and Lomonossoff, G.P. (2008)Plant Physiol. 148, 1212-1218]. To exploit this finding, a series of small binary vectors tailored for transient expression (termed the pEAQ vectors) has been created. In these, more than 7 kb of non-essential sequence was removed from the pBINPLUS backbone and T-DNA region, and unique restriction sites were introduced to allow for accommodation of multiple expression cassettes, including that for a suppressor of silencing, on the same plasmid. These vectors allow the high-level simultaneous expression of multiple polypeptides from a single plasmid within a few days. Furthermore, vectors have been developed which allow the direct cloning of genes into the binary plasmid by both restriction enzyme-based cloning and GATEWAY recombination. In both cases, N- or C-terminal histidine tags may be fused to the target sequence as required. These vectors provide an easy and quick tool for the production of milligram quantities of recombinant proteins from plants with standard plant research techniques at a bench-top scale.

696 citations

Journal ArticleDOI
TL;DR: In this paper, the CRISPR/Cas9-induced gene mutations in Arabidopsis were mostly somatic mutations in the early generation, although some mutations could be stably inherited in later generations.
Abstract: The CRISPR/Cas9 system has been demonstrated to efficiently induce targeted gene editing in a variety of organisms including plants. Recent work showed that CRISPR/Cas9-induced gene mutations in Arabidopsis were mostly somatic mutations in the early generation, although some mutations could be stably inherited in later generations. However, it remains unclear whether this system will work similarly in crops such as rice. In this study, we tested in two rice subspecies 11 target genes for their amenability to CRISPR/Cas9-induced editing and determined the patterns, specificity and heritability of the gene modifications. Analysis of the genotypes and frequency of edited genes in the first generation of transformed plants (T0) showed that the CRISPR/Cas9 system was highly efficient in rice, with target genes edited in nearly half of the transformed embryogenic cells before their first cell division. Homozygotes of edited target genes were readily found in T0 plants. The gene mutations were passed to the next generation (T1) following classic Mendelian law, without any detectable new mutation or reversion. Even with extensive searches including whole genome resequencing, we could not find any evidence of large-scale off-targeting in rice for any of the many targets tested in this study. By specifically sequencing the putative off-target sites of a large number of T0 plants, low-frequency mutations were found in only one off-target site where the sequence had 1-bp difference from the intended target. Overall, the data in this study point to the CRISPR/Cas9 system being a powerful tool in crop genome engineering.

679 citations

Journal ArticleDOI
TL;DR: Evidence is presented indicating that no gene can act as a universal reference, implying the need for a systematic validation of reference genes.
Abstract: Reverse transcription-polymerase chain reaction (RT-PCR) approaches have been used in a large proportion of transcriptome analyses published to date. The accuracy of the results obtained by this method strongly depends on accurate transcript normalization using stably expressed genes, known as references. Statistical algorithms have been developed recently to help validate reference genes, and most studies of gene expression in mammals, yeast and bacteria now include such validation. Surprisingly, this important approach is under-utilized in plant studies, where putative housekeeping genes tend to be used as references without any appropriate validation. Using quantitative RT-PCR, the expression stability of several genes commonly used as references was tested in various tissues of Arabidopsis thaliana and hybrid aspen (Populus tremula x Populus tremuloides). It was found that the expression of most of these genes was unstable, indicating that their use as references is inappropriate. The major impact of the use of such inappropriate references on the results obtained by RT-PCR is demonstrated in this study. Using aspen as a model, evidence is presented indicating that no gene can act as a universal reference, implying the need for a systematic validation of reference genes. For the first time, the extent to which the lack of a systematic validation of reference genes is a stumbling block to the reliability of results obtained by RT-PCR in plants is clearly shown.

642 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
2023125
2022227
2021293
2020242
2019207
2018178