scispace - formally typeset
Search or ask a question

Showing papers in "Plant Cell Reports in 1998"


Journal ArticleDOI
TL;DR: Three transgenic cucumber strains showed the highest resistance against B. cinerea: the spread of disease was inhibited completely in these strains, which would serve as good breeding materials for disease resistance.
Abstract: A rice chitinase cDNA (RCC2) driven by the CaMV 35S promoter was introduced into cucumber (Cucumis sativus L.) through Agrobacterium mediation. More than 200 putative transgenic shoots were regenerated and grown on MS medium supplemented with 100 mg/l kanamycin. Sixty elongated shoots were examined for the presence of the integrated RCC2 gene and subsequently confirmed to have it. Of these, 20 were tested for resistance against gray mold (Botrytis cinerea) by infection with the conidia: 15 strains out of the 20 independent shoots exhibited a higher resistance than the control (non-transgenic plants). Three transgenic cucumber strains (designated CR29, CR32 and CR33) showed the highest resistance against B. cinerea: the spread of disease was inhibited completely in these strains. Chitinase gene expression in highly resistant transgenic strains (CR32 and CR33) was compared to that of a susceptible transgenic strain (CR20) and a control. Different responses for disease resistance were observed among the highly resistant strains. CR33 inhibited appressoria formation and penetration of hyphae. Although CR32 permitted penetration of hyphae, invasion of the infection hyphae was restricted. Furthermore, progenies of CR32 showed a segregation ratio of 3:1 (resistant:susceptible). As the disease resistance against gray mold was confirmed to be inheritable, these highly resistant transgenic cucumber strains would serve as good breeding materials for disease resistance.

192 citations


Journal ArticleDOI
TL;DR: The effects of cocultivation with Agrobacterium tumefaciens, regeneration and selection conditions on the transformation efficiency of citrange, including the number of regenerated escape shoots, have been investigated.
Abstract: The effects of cocultivation with Agrobacterium tumefaciens, regeneration and selection conditions on the transformation efficiency of citrange (Citrus sinensis L. Osbeck×Poncirus trifoliata L. Raf.) have been investigated. Factors such as cocultivation period, preculture of explants, use of acetosyringone or feeder plates during cocultivation, cocultivation on a medium rich in auxins, postcultivation in darkness, and different kanamycin concentrations for selection were assessed. A 3-day cocultivation on a medium rich in auxins improved transformation frequencies, since it increased the number of dividing cells competent for transformation, at the cut ends of the explants. Exposure of explants to darkness for 4 weeks on selection medium resulted in further callus development and increased the regeneration frequency of transgenic shoots. Furthermore, this treatment drastically reduced the number of regenerated escape shoots. A transformation efficiency of 41.3% was achieved using the optimized transformation procedure.

181 citations


Journal ArticleDOI
TL;DR: A simple and efficient protocol for regeneration-transformation of two diploid Medicago lines, selected previously as highly embryogenic genotypes, appears to be the most efficient and fastest reported so far for leguminous plants.
Abstract: We describe a simple and efficient protocol for regeneration-transformation of two diploid Medicago lines: the annual M. truncatula R108-1(c3) and the perennial M. sativa ssp. falcata (L.) Arcangeli PI.564263 selected previously as highly embryogenic genotypes. Here, embryo regeneration of R108-1 to complete plants was further improved by three successive in vitro regeneration cycles resulting in the line R108-1(c3). Agrobacterium tumefaciens-mediated transformation of leaf explants was carried out with promoter-gus constructs of two early nodulins (MsEnod12A and MsEnod12B) and one late nodulin (Srglb3). The transgenic plants thus produced on all explants within 3-4 months remained diploid and were fertile. This protocol appears to be the most efficient and fastest reported so far for leguminous plants.

179 citations


Journal ArticleDOI
TL;DR: Southern hybridization analyses of transformed embryogenic tissue confirmed T-DNA integration and Agrobacterium-mediated transformation of soybean embryogenic suspension cultures demonstrated T- DNA integration.
Abstract: Successful transformation of plant tissue using Agrobacterium relies on several factors including bacterial infection, host recognition, and transformation competency of the target tissue. Although soybean [Glycine max (L.) Merrill] embryogenic suspension cultures have been transformed via particle bombardment, Agrobacterium-mediated transformation of this tissue has not been demonstrated. We report here transformation of embryogenic suspension cultures of soybean using "Sonication-Assisted Agrobacterium-mediated Transformation" (SAAT). For SAAT of suspension culture tissue, 10-20 embryogenic clumps (2-4 mm in diameter) were inoculated with 1 ml of diluted (OD600nm 0.1-0.5) log phase Agrobacterium and sonicated for 0-300 s. After 2 days of co-culture in a maintenance medium containing 100 µM acetosyringone, the medium was removed and replaced with fresh maintenance medium containing 400 mg/l Timentin®. Two weeks after SAAT, the tissue was placed in maintenance medium containing 20 mg/l hygromycin and 400 mg/l Timentin®, and the medium was replenished every week thereafter. Transgenic clones were observed and isolated 6-8 weeks following SAAT. When SAAT was not used, hygromycin-resistant clones were not obtained. Southern hybridization analyses of transformed embryogenic tissue confirmed T-DNA integration.

172 citations


Journal ArticleDOI
TL;DR: Co-transformation was investigated as a method that would allow the use of a selectable marker during plant regeneration followed by recovery of progeny which contain the desired gene(s) but lack a marker gene.
Abstract: Co-transformation was investigated as a method that would allow the use of a selectable marker during plant regeneration followed by recovery of progeny which contain the desired gene(s) but lack a marker gene. Rapeseed (Brassica napus cv `212/86') and tobacco (Nicotiana tabacum cv `Xanthi NC') were co-cultivated with a single Agrobacterium tumefaciens strain containing two binary plasmids. Genes from both plasmids were expressed in approximately 50% of the primary transformants. Progeny expressing only one of the transgenes were observed in about 50% of the co-transformed lines, indicating that the genes were inserted at different loci. This single-strain co-transformation method allowed the use of a selectable marker during plant regeneration and subsequent recovery of marker-free progeny.

169 citations


Journal ArticleDOI
TL;DR: Ticarcillin/potassium clavulanate is a very good alternative to eliminate Agrobacterium tumefaciens in plant transformation and has the potential to be widely used for plants which are sensitive to carbenicillin and cefotaxime.
Abstract: Ticarcillin/potassium clavulanate is a very effective combination of antibiotics to eliminate Agrobacterium tumefaciens during tomato transformation. It shows no toxicity to tomato tissues at a concentration of 150 mg/l and significantly promotes callus formation and shoot regeneration. The transformation frequency was raised more than 40% in comparison to cefotaxime. Cefotaxime itself did not inhibit callus growth in culture medium, but it clearly decreased shoot differentiation. Together with kanamycin, cefotaxime shows a strong negative effect on callus growth, shoot regeneration and transformation efficiency. Unlike the widely used carbenicillin and cefotaxime, ticarcillin/potassium clavulanate is light stable and resistant to inactivation by β-lactamase. Furthermore, ticarcillin/potassium clavulanate is more economical than carbenicillin and cefotaxime. In conclusion, ticarcillin/potassium clavulanate is a very good alternative to eliminate Agrobacterium tumefaciens in plant transformation and has the potential to be widely used for plants which are sensitive to carbenicillin and cefotaxime.

165 citations


Journal ArticleDOI
TL;DR: The results show that regenerants from the plant micropropagation system are genetically stable, and no aberration in RAPD banding patterns among the tested shoots.
Abstract: Random amplified polymorphic DNA (RAPD) markers were used to determine the genetic stability of long-term (more than 10 years) micropropagated shoots of Japanese black pine (Pinus thunbergii Parl.). Thirty-six shoots consisting of three morphotypes (short, medium, and long needles) were randomly chosen from about 4,000 micropropagated shoots regenerated from the explants of a single nematode-resistant mother plant. Out of 126 primers screened, 30 gave 134 clear reproducible bands. A total of 4,824 bands obtained from these studies exhibited no aberration in RAPD banding patterns among the tested shoots. Our results show that regenerants from our plant micropropagation system are genetically stable.

163 citations


Journal ArticleDOI
TL;DR: Sonication-assisted Agrobacterium-mediated transformation (SAAT) tremendously improves the efficiency of Agrobacterial infection by introducing large numbers of microwounds into the target plant tissue by evaluating the effects of cultivars, binary vectors, optical density, and acetosyringone on transient β-glucuronidase activity.
Abstract: Sonication-assisted Agrobacterium-mediated transformation (SAAT) tremendously improves the efficiency of Agrobacterium infection by introducing large numbers of microwounds into the target plant tissue. Using immature cotyledons of soybean as explants, we evaluated the effects of the following parameters on transient β-glucuronidase (GUS) activity: cultivars, binary vectors, optical density of Agrobacterium during infection, duration of sonication treatment, co-culture conditions, length of explant preculture and addition of acetosyringone during co-culture. The extent of tissue disruption caused by sonication was also determined. The highest GUS expression was obtained when immature cotyledons were sonicated for 2 s in the presence of Agrobacterium (0.11 OD600nm) followed by co-cultivation with the abaxial side of the explant in contact with the culture medium for 3 days at 27°C. The addition of acetosyringone to the co-culture medium enhanced transient expression. No differences were observed when different cultivars or binary vectors were used. Cotyledons sonicated for 2 s had moderate tissue disruption, while the longer treatments resulted in more extensive damage.

156 citations


Journal ArticleDOI
TL;DR: Mature embryos had a high frequency of callus induction and regeneration capacity, and therefore, being available throughout the year, can be used as an effective explant source in wheat tissue culture.
Abstract: Immature and mature embryos of 12 common winter wheat (Triticum aestivum) genotypes were cultured in vitro to develop an efficient method of callus formation and plant regeneration from mature embryo culture, and to compare the responses of both embryo cultures. Fifteen days after anthesis, immature embryos were aseptically dissected from seeds and placed with the scutellum upwards on a solid agar medium containing the inorganic components of Murashige and Skoog (MS) and 2 mg/l 2,4-dichlorophenoxyacetic acid (2,4-D). Mature embryos were moved slightly in the imbibed seeds. The seeds with moved embryos were placed furrow downwards in dishes containing 8 mg/l 2,4-D for callus induction. The developed calli and regenerated plants were maintained on 2,4-D-free MS medium. Plants regenerated from both embryo cultures were vernalized and grown to maturity in soil. Regenerated plantlets all maintained the hexaploid chromosome number. A strong genotypic effect on the culture responses was found for both explant cultures. Callus induction rate, regeneration capacity of callus and number of plants regenerated were independent of each other. Mature embryos had a high frequency of callus induction and regeneration capacity, and therefore, being available throughout the year, can be used as an effective explant source in wheat tissue culture.

153 citations


Journal ArticleDOI
TL;DR: A biolistic particle delivery system was used to genetically transform embryogenic tissue of Pinus radiata, using a uidA reporter gene under the control of either the tandem CaMV 35S or the artificial Emu promoter, and the npt II selectable marker controlled by the CaMv 35S promoter.
Abstract: A biolistic particle delivery system was used to genetically transform embryogenic tissue of Pinus radiata. The introduced DNA contained a uidA reporter gene under the control of either the tandem CaMV 35S or the artificial Emu promoter, and the npt II selectable marker controlled by the CaMV 35S promoter. The average number of stable, geneticin-resistant lines recovered was 0.5 per 200 mg fresh weight bombarded tissue. Expression of the uidA reporter gene was detected histochemically and fluorimetrically in transformed embryogenic tissue and in derived mature somatic embryos and regenerated plants. The integration of uidA and npt II genes into the Pinus radiata genome was demonstrated using PCR amplification of the inserts and Southern hybridisation analysis. The expression of both genes in transformed tissue was confirmed by Northern hybridisation analysis. More than 150 transgenic Pinus radiata plants were produced from 20 independent transformation experiments with four different embryogenic clones.

153 citations


Journal ArticleDOI
TL;DR: Although callus-free multiple-shoot formation was a function of cytokinin activity alone, faster bud break coupled with an enhanced frequency of shoot development and internode elongation were dependent on the synergistic influence of gibberellic acid (GA3) along with BA when used at an optimal concentration.
Abstract: A protocol is described for rapid and large-scale propagation of the woody aromatic and medicinal shrub Vitex negundo by in vitro culture of nodal segments from mature plants. Of the three different cytokinins – N6-benzyladenine (BA), kinetin, and thidiazuron – evaluated as supplements to Murashige and Skoog (MS) medium, BA at an optimal concentration of 2.0 mg/l was most effective in inducing bud break. Although callus-free multiple-shoot formation was a function of cytokinin activity alone, faster bud break coupled with an enhanced frequency of shoot development (92%) and internode elongation were dependent on the synergistic influence of gibberellic acid (GA3) when used at an optimal concentration (0.4 mg/l) along with BA (2.0 mg/l). The frequency of shoot proliferation was markedly influenced by the explanting season. By repeated subculturing of nodal segments harvested from the in vitro-formed axenic shoots on MS containing 1.0 mg/l BA and 0.4 mg/l GA3, prolific shoot cultures free from proximal callusing and showing a high-frequency multiplication rate were established. The percentage shoot multiplication (98–100%) as well as the number of shoots per node (six to eight) were highest during the first three culture passages, after which there was a gradual decline in shoot development. Rooting was best induced (94%) in shoots excised from proliferated shoot cultures on half-strength MS medium augmented with an optimal combination of indole-3-acetic acid and indole-3-butyric acid each at 1.0 mg/l. Vermi-compost was the most suitable planting substrate for hardening inside a plant growth chamber and its use ensured high-frequency survival (93%) of regenerated plants prior to outdoor transfer. Micropropagated plants established in garden soil were uniform and identical to the donor plant with respect to growth characteristics as well as vegetative and floral morphology.

Journal ArticleDOI
TL;DR: Callus induction and plant regeneration through somatic embryogenesis in Phalaenopsis Richard Shaffer `Santa Cruz' were examined and Histological observation suggested that the PLB segments formed calli were somatic embryos.
Abstract: Callus induction and plant regeneration through somatic embryogenesis in Phalaenopsis Richard Shaffer `Santa Cruz' were examined. Protocorm-like body (PLB) segments formed calli in Vacin and Went medium with sucrose. The optimal concentration of sucrose was 40 g ⋅ l–1. Medium containing 200 ml ⋅ l–1 coconut water together with 40 g ⋅ l–1 sucrose was effective for callus induction. Gellan gum was suitable than agar as a gelling agent for callus induction. The calli easily formed PLBs after being transferred to a medium without sucrose. Histological observation suggested that the PLBs were somatic embryos. No variation was observed in the flowering plants regenerated through somatic embryogenesis.

Journal ArticleDOI
TL;DR: Repeated subculturing through five cycles of nodes and leaves of shoot cultures enabled continuous production of healthy callus-free shoots without any sign of decline, and 90% of the rooted plants were established in polybags after hardening.
Abstract: Rapid clonal multiplication of Aegle marmelos (L.) Corr. (Rutaceae), a medicinal tree, was achieved by enhanced axillary bud proliferation in young single-node segments of a 25-year-old tree cultured in Murashige and Skoog (MS) nutrient medium. Bud break was dependent on cytokinin supply, but the synergistic combination of 2.5 mg l–1 6-benzylaminopurine (BAP) and 1.0 mg l–1 indole-3-acetic acid (IAA) induced the formation of 12.1 shoots of up to 5.2 cm length in 48% of the explants after 7 weeks of culture. Explants of in-vitro-grown shoots – node, whole leaf, shoot tip and internode – were subcultured in the presence of 0.05–2.5 mg l–1 BAP to produce 11.3, 18.4, 5.3 and 3.2 shoots and shoot buds at a 100%, 70%, 95% and 40% rate respectively, in 7 weeks. Different shoot nodes and leaves were equally regenerative and adventitious organogenesis in the latter was confined to cut petiolar ends. Nodal explants responded most favourably at low BAP (0.05–0.1 mg l–1) and produced uniform (3.8–5.3 cm) shoots facilitating their simultaneous harvest for rooting. Repeated subculturing through five cycles of nodes and leaves of shoot cultures enabled continuous production of healthy callus-free shoots without any sign of decline. Shoot cuttings (3.0–5.2 cm) were best rooted in half-strength MS medium with 0.5 mg l–1 IAA (70%) or 10.0 mg l–1 indole-3-butyric acid (90%). Eighty-eight percent of the rooted plants were established in polybags after hardening.

Journal ArticleDOI
TL;DR: Cotyledonary node transformation efficiency was evaluated using a sonication assisted Agrobacterium-mediated transformation (SAAT) protocol, three dissimilar A. tumefaciens strains, and explants derived from 28 diverse cultivars and/or genotypes of soybean.
Abstract: Cotyledonary node transformation efficiency was evaluated using a sonication assisted Agrobacterium-mediated transformation (SAAT) protocol, three dissimilar A. tumefaciens strains, and explants derived from 28 diverse cultivars and/or genotypes of soybean [Glycine max (L.) Merr.]. The explants were evaluated at 10 and 45 days after co-cultivation for transformation with a binary vector containing both a GUS-intron gene and an NPTII selectable marker. The best overall strain of A. tumefaciens was determined to be KYRT1 based on stable GUS transformation of soybean cotyledonary node explants measured at the terminal 45 day evaluation point. SAAT did not increase stable transformation at 45 days post co-cultivation. SAAT was determined to significantly decrease shoot proliferation of some genotypes, but it is unclear what effect this may have on the recovery of transformed shoots. Significant differences were also detected between genotypes for transformation and shoot proliferation frequency.

Journal ArticleDOI
TL;DR: Totipotent calli of Cymbidium ensifolium var.
Abstract: Totipotent calli of Cymbidium ensifolium var. misericors, a locally grown orchid of high commercial value, were induced from sections of pseudobulbs, rhizomes and roots of seed-derived plantlets on 1/2-strength Murashige and Skoog medium plus 10 mg/l 2,4-dichlorophenoxyacetic acid and 0.1 mg/l thiadiazuron. The calli could be maintained by subculturing in the same medium. The calli could be induced to develop further along one of three distinct morphogeneic routes: (1) production of rhizomes, (2) production of shoot buds, or (3) development of granular embryoids. Efficient mass propagation was possible via rhizome proliferation and embryoid formation.

Journal ArticleDOI
TL;DR: A protocol for consistent production of fertile transgenic rice plants was established utilizing microparticle bombardment of embryogenic tissues, which has facilitated a number of studies using rice as a model for genetic transformation and will enable the large-scale production of transgenic Rice plants for genomic studies.
Abstract: A protocol for consistent production of fertile transgenic rice plants was established utilizing microparticle bombardment of embryogenic tissues (Oryza sativa L. japonica cv. Taipei 309). This system has been employed to produce several thousand independently transformed plant lines carrying the hygromycin phosphotransferase (hph) gene and various genes of interest. The most efficient target tissue was highly embryogenic callus or suspension cell aggregates, when they were given an osmotic pre- and post-transformation treatment of 0.6 m carbohydrate. By optimizing the age of the tissue at the time of gene transfer and applying an improved selection procedure, transgenic plants were recovered in 8 weeks from the time of gene transfer, at an average of 22.3±9.7 per 100 calli and 22.4±8.0 plant lines per dish of suspension cell aggregates. This system has facilitated a number of studies using rice as a model for genetic transformation and will enable the large-scale production of transgenic rice plants for genomic studies.

Journal ArticleDOI
TL;DR: The genotype × cultural conditions interactions were significant indicating the importance of developing genotype-specific protocols to maximize microtuberization.
Abstract: Twenty-two genotypes of potato (Solanum tuberosum L.) were induced to form microtubers under six in vitro culture conditions. Cultures maintained under a short photoperiod (10 h of 6-12 μmol m-2 s-1) and low temperatures (day 20°±2°C and night 18°±2°C) had both a higher yield (255 mg/plantlet) and a greater number (2/plantlet) of microtubers than those maintained under long days (16 h of 38-50 μmol m-2 s-1) combined with high temperatures (day 28°±2°C and night 25°±2°C) (yield 207 mg/plantlet; microtuber number, 0.9/plantlet), over a wide range of genotypes. After the plantlets had been cultured under long days for an initial period of 60 days, continuous darkness advanced microtuberization by 2-3 months in various genotypes. Under short-day and low-temperature conditions the addition of 6-benzylaminopurine increased microtuber yield from 255 mg/plantlet to 645 mg/plantlet and average microtuber weight from 115 mg to 364 mg. A similar pattern was observed under conditions of long days and high temperature, and continuous darkness and low-temperature. Microtubers produced under light had a greater number of eyes (maximum average: 5.96/microtuber) than those produced in the dark (maximum average: 3.50/plantlet). The genotype × cultural conditions interactions were significant indicating the importance of developing genotype-specific protocols to maximize microtuberization.

Journal ArticleDOI
TL;DR: Sucrose was found to modulate polyphenol accumulation in Vitis vinifera cell cultures, and the major sugars accumulated in grape cells were glucose and fructose, reaching 40% of the dry weight.
Abstract: Sucrose was found to modulate polyphenol accumulation in Vitis vinifera cell cultures. The production of anthocyanins increased 12-fold after addition of 0.15 M sucrose, while that of stilbenes was only slightly affected. Sucrose did not play a physical role because metabolic sugars were required for the induction of polyphenol accumulation. Indeed, the polyols, mannitol and sorbitol, had no effect on this accumulation. We established a model system to investigate the mechanism of sucrose regulation of polyphenol production without inhibition of grape cell growth. After addition of sucrose to the culture medium, the major sugars accumulated in grape cells were glucose and fructose, reaching 40% of the dry weight. The increase in the level of these hexoses closely coincided with the increase in anthocyanin accumulation in grape cells.

Journal ArticleDOI
TL;DR: Results indicate that peroxidase and chitinase may have a role in insect resistance in wheat cultivars containing the Dn-1 gene for resistance to the Russian wheat aphid Diuraphis noxia.
Abstract: The intercellular peroxidase and chitinase activities of three wheat cultivars [Triticum aestivum L. cvs `Tugela DN', `Molopo DN' (Gariep) and `Betta DN'] containing the Dn-1 gene for resistance to the Russian wheat aphid (RWA) Diuraphis noxia (Mordvilko) and the corresponding near-isogenic susceptible cultivars (`Tugela', `Molopo' and `Betta') were studied under conditions of infestation and non-infestation. The aim was to gain information on the mechanism of resistance. The resistance response was induced by RWA infestation. Infestation rapidly induced the activities of both enzymes selectively in resistant wheat to levels of magnitudes higher than those in susceptible wheat. The genetic background in which the Dn-1 resistance gene is bred played a role and the level of activity corresponded to the level of resistance. Immunologic studies confirmed that the induction of enzyme activities was due to the induction of higher protein levels. These results indicate that peroxidase and chitinase may have a role in insect resistance.

Journal ArticleDOI
TL;DR: The morphogenetic potential of node, internode and leaf explants of Brahmi was investigated to develop reliable protocols for shoot regeneration and somatic embryogenesis, and presence of 6-benzylaminopurine or kinetin influenced the degree of callus formation.
Abstract: The morphogenetic potential of node, internode and leaf explants of Brahmi [Bacopa monniera (L.) Wettst.] was investigated to develop reliable protocols for shoot regeneration and somatic embryogenesis. The explants were excised from shoots raised from axillary buds of nodal explants cultured on Murashige and Skoog (MS) basal medium. Presence of 6-benzylaminopurine (BA) or kinetin influenced the degree of callus formation, from which a large number of shoot buds regenerated. Leaf explants gave the largest number of shoot buds followed by node and internode explants. BA was superior to kinetin; BA at 1.5 – 2.0 mg/l appeared to be optimum for inducing the maximum number of shoot buds. MS + 0.1 mg/l BA + 0.2 mg/l indole-3-acetic acid was the most suitable for shoot elongation. Elongated shoots were rooted on full- or half-strength MS medium with or without 0.5 – 1.0 mg/l indole-3-butyric acid or 0.5 – 1.0 mg/l α-naphthaleneacetic acid. The rooted plants were successfully established in soil. Calli derived from nodal explants cultured on MS medium containing 0.5 mg/l 2,4-dichlorophenoxyacetic acid (2,4-D), when subcultured on MS medium containing 0.1 or 0.5 mg/l BA or 0.2 mg/l 2,4-D + 0.1 or 0.5 mg/l kinetin, developed somatic embryos. The somatic embryos germinated either on the same media or on MS basal medium, and the resulting plantlets were successfully transplanted to soil.

Journal ArticleDOI
TL;DR: A modified Gamborg's B5 medium used in this study was effective for both callus induction and regeneration of transgenic shoots and could also effectively maintain the organogenic capability of callus for more than a year.
Abstract: An efficient system for Agrobacterium-mediated transformation of Eucalyptus camaldulensis and production of transgenic plants was developed. Transformation was accomplished by cocultivation of hypocotyl segments with Agrobacterium tumefaciens containing a binary Ti-plasmid vector harboring chimeric neomycin phosphotransferase and β-glucuronidase (GUS) genes. A modified Gamborg's B5 medium used in this study was effective for both callus induction and regeneration of transgenic shoots. This medium could also effectively maintain the organogenic capability of callus for more than a year. Culturing transgenic shoots in Murashige and Skoog medium supplemented with 0.1 mg ⋅ l–1 benzylaminopurine prior to root induction in rooting medium markedly increased the rootability of shoots that were recalcitrant to rooting. Histochemical assay revealed the expression of the GUS gene in leaf, stem, and root tissues of transgenic plants. Insertion of the GUS gene in the nuclear genome of transgenic plants was verified by genomic Southern hybridization analysis, further confirming the integration and expression of T-DNA in these plants.

Journal ArticleDOI
TL;DR: The frequency of regeneration from encapsulated embryos was significantly affected by the concentration of sodium alginate, the presence or absence of nutrient salts in the capsule, and the duration of exposure to calcium chloride.
Abstract: Carica papaya L. (papaya) single somatic embryos (2.0 mm diameter) produced in a high-frequency liquid production system were encapsulated in two different synthetic encapsulation compounds. The frequency of regeneration from encapsulated embryos was significantly affected by (1) the concentration of sodium alginate, (2) the presence or absence of nutrient salts in the capsule, and (3) the duration of exposure to calcium chloride. A 2.5% sodium alginate concentration in a half-strength MS salts base resulted in significantly higher germination frequencies than other treatments. A relatively short (10 min) exposure to CaCl2 provided uniform encapsulation of embryos and the highest frequencies of successful germination (77.5%). Germinated artificial seeds produced normal plantlets.

Journal ArticleDOI
TL;DR: Agars with different performance in bioassays were analysed for physical and chemical properties and the best agars had a relatively low salt content and an extremely high content of trace elements.
Abstract: Agars with different performance in bioassays were analysed for physical and chemical properties. Agars with the highest gel strength had the best performance. Good performance was also related to a low pH of a suspension of agars and to a low sulphur content. The diffusion rate of ions in gels differed between agars, but could not explain differences in agar performance. The time of autoclaving had a marked effect on the gel strength, however, without affecting the performance. Chemical analysis revealed large differences between agars. The best agars had a relatively low salt content. One of the best agars had an extremely high content of trace elements. Agar impurities, especially of the trace elements were tightly bound to the agars. Up to 30% of the Murashige and Skoog (MS) salts were also immobilized in the gel. At pH 4.2, less nitrogen and phosphate were available from the MS medium than at pH 5.7. Chlorine could be washed out completely and appeared to be a good marker for agar quality and purity. With AgNO3, chlorine contamination could easily be visualized.

Journal ArticleDOI
TL;DR: Transgenic Washington navel orange [Citrus sinensis (L.) Osbeck] plants were obtained using Agrobacterium-mediated transformation of seedling epicotyl tissue and stable integration of the transgene sequence was confirmed by expression of the plant intron-containing GUS gene, PCR and Southern hybridization.
Abstract: Transgenic Washington navel orange [Citrus sinensis (L.) Osbeck] plants were obtained using Agrobacterium-mediated transformation of seedling epicotyl tissue. An average of 45% (58 out of 128 segments) of the epicotyl segments produced shoots expressing the β-glucuronidase (GUS)-intron reporter gene when using Agrobacterium strain C58 C1, compared to 29% (38 out of 128 segments) for EHA101-5 and 0% for LBA4404. Co-culture of 21-day-old Washington navel epicotyl stem segments gave greater transformation efficiency than co-culture of 35- or 56-day-old stem segments. After 6 weeks, regenerated shoots were micro-grafted in vivo onto seedling rootstocks of Carrizo citrange. Stable integration of the transgene sequence was confirmed by expression of the plant intron-containing GUS gene, PCR and Southern hybridization. The apomictic (non-zygotic) state of the transgenic plants was confirmed by isoenzyme and random amplified polymorphic DNA analyses. More than 50 transgenic plants have been obtained and are growing in the greenhouse.

Journal ArticleDOI
TL;DR: The present protocol for coconut regeneration using plumules from mature zygotic embryos as explants, and media with the synthetic growth regulators 2,4-dichlorophenoxyacetic acid and 6-benzylaminopurine represents an improvement in time and yield over previous protocols.
Abstract: A protocol was developed for coconut regeneration using plumules from mature zygotic embryos as explants, and media with the synthetic growth regulators 2,4-dichlorophenoxyacetic acid and 6-benzylaminopurine. Evidence for the regeneration process from these tissues occurring through somatic embryogenesis is presented. The somatic embryos were capable of germination, subsequent development into plantlets and successful transfer to the nursery. The yields were larger, nearly twofold for calli and over tenfold for calli bearing somatic embryos, than those previously reported with inflorescence explants. The present protocol thus represents an improvement in time and yield over previous protocols. Even though plumule explants are not the ideal tissue source due to possible genetic heterogeneity, the improvements made here may be applicable to tissues from mature plants. In addition, micropropagation of coconut using plumules is potentially useful when they are obtained from fruit produced from selected parents of outstanding performance, such as those resistant to diseases.

Journal ArticleDOI
TL;DR: Both capacities were greatly increased when the rolA, rolB and rolC genes were present together, which demonstrates that the activity of the three rol-gene-encoded functions is synergistic.
Abstract: Transformation of Nicotiana tabacum cv. Xanthi leaf sections with the pPCV002-ABC (rol genes A, B and C together under the control of their own promoter) or pPCV002-CaMVC (rol gene C alone under the control of the CaMV 35S promoter) construction present in trans-acting Agrobacterium tumefaciens vectors yielded several transgenic root lines. The two types (rolABC and rolC) of transgenic root lines were examined for their nicotine productivity in relation to growth rate and the amount of rolC gene product measured with specific antibodies. In all cases, the changes in the amount of this polypeptide were positively correlated with the capacity of the transgenic roots to grow and produce nicotine. Both capacities were greatly increased when the rolA, rolB and rolC genes were present together, which demonstrates that the activity of the three rol-gene-encoded functions is synergistic. Consistent observations were also made in the corresponding regenerated plants.

Journal ArticleDOI
TL;DR: The xylose isomerase selection system is independent of antibiotic or herbicide resistance genes, but depends on an enzyme that is generally recognized as safe for use in the starch industry and which is already being widely utilized in specific food processes.
Abstract: A new method for the selection of transgenic plants has been developed. It is based upon selection of transgenic plant cells expressing the xylA gene from Streptomyces rubiginosus, which encodes xylose isomerase, on medium containing xylose. The xylose isomerase selection system was tested in potato and the transformation frequency was found to be approximately ten fold higher than with kanamycin selection. The level of enzyme activity in the transgenic plants selected on xylose was 5- to 25-fold higher than the enzyme activity in control plants. Potato transformants were stable over two generations in Southern blotting analysis. This novel selection system is more efficient than the traditionally used kanamycin-based selection systems. In addition, the xylose isomerase system is independent of antibiotic or herbicide resistance genes, but depends on an enzyme that is generally recognized as safe for use in the starch industry and which is already being widely utilized in specific food processes.

Journal ArticleDOI
TL;DR: Cotyledon explants of Korean ginseng produced somatic embryos directly on growth regulator-free medium, and plants with well-developed shoots and roots regenerated from single embryos were successfully acclimatized in a greenhouse when they were planted in soil.
Abstract: Cotyledon explants of Korean ginseng (Panax ginseng C. A. Meyer) produced somatic embryos directly on growth regulator-free medium. Somatic embryos developed as either multiple or single-state forms, depending on the degree of maturity of the cotyledons. Cotyledon explants from midmature zygotic embryos formed multiple embryos, while cotyledons from fully mature zygotic embryos formed single embryos. Somatic single embryos regenerated into normal plantlets with both roots and shoots, while multiple embryos did not produce roots but regenerated only into multiple shoots. In full-strength MS basal medium, the root growth of plantlets derived from single embryos was weak compared to that of shoots. Deletion of ammonium nitrate from the MS medium promoted the root growth of the plantlets. The ginseng plants with well-developed shoots and roots regenerated from single embryos were successfully acclimatized in a greenhouse when they were planted in soil.

Journal ArticleDOI
TL;DR: Although there was much variation in regeneration capacity among the cultivars, plants were obtained from all cultivars except Almunia, and the medium containing dicamba gave the best embryogenic callus induction, maintenance and regeneration.
Abstract: Thirty-two barley cultivars grown in Spain, 18 of the two-row type and 14 of the six-row type, were screened for plant regeneration from cultured immature embryos. Although there was much variation in regeneration capacity among the cultivars, plants were obtained from all cultivars except Almunia. No statistical differences were found in the percentage of regeneration between two- and six-row types. The influence of the auxins 2,4-dichlorophenoxyacetic acid, dicamba, and picloram on the induction and maintenance of embryogenesis and regeneration capacity after 3-4 months in culture, were evaluated for cultivars Cobra, Hop and Reinette. Hop had the highest rates of maintenance of embryogenic capacity and plant regeneration. The medium containing dicamba gave the best embryogenic callus induction, maintenance and regeneration. Five regeneration media, differing in growth regulators and micronutrient composition, as well as partial desiccation of the calli before regeneration, were tested. The regeneration medium containing 10 μM copper sulfate gave the best results. Regeneration frequencies after 3-4 months in culture of cultivar Hop were raised from 59.5 to 93.7% in this medium. Silver nitrate and partial desiccation of the calli also enhanced plant regeneration, but the medium containing 10 μM of silver nitrate reduced root formation.

Journal ArticleDOI
TL;DR: Southern blot analysis demonstrated stable integration of the uidA gene into the cassava genome in five lines of transformed embryogenic suspension cultures and in two plant lines.
Abstract: A protocol was developed for Agrobacterium-mediated transformation of embryogenic suspension cultures of cassava. The bacterial strain ABI containing the binary vector pMON977 with the nptII gene as selectable marker and an intron-interrupted uidA gene (encoding β-glucuronidase) as visible marker was used for the experiments. Selection of transformed tissue with paromomycin resulted in the establishment of antibiotic-resistant, β-glucuronidase-expressing lines of friable embryogenic callus, from which embryos and subsequently plants were regenerated. Southern blot analysis demonstrated stable integration of the uidA gene into the cassava genome in five lines of transformed embryogenic suspension cultures and in two plant lines.