scispace - formally typeset
Search or ask a question

Showing papers in "Plant Cell Reports in 2016"


Journal ArticleDOI
TL;DR: Some of the reported functions of expansins are reviewed and summarized and the potential uses of expansin in crop improvement programs are outlined.
Abstract: Results from various expansin related studies have demonstrated that expansins present an opportunity to improve various crops in many different aspects ranging from yield and fruit ripening to improved stress tolerance. The recent advances in expansin studies were reviewed. Besides producing the strength that is needed by the plants, cell walls define cell shape, cell size and cell function. Expansins are cell wall proteins which consist of four sub families; α-expansin, β-expansin, expansin-like A and expansin-like B. These proteins mediate cell wall loosening and they are present in all plants and in some microbial organisms and other organisms like snails. Decades after their initial discovery in cucumber, it is now clear that these small proteins have diverse biological roles in plants. Through their ability to enable the local sliding of wall polymers by reducing adhesion between adjacent wall polysaccharides and the part they play in cell wall remodeling after cytokinesis, it is now clear that expansins are required in almost all plant physiological development aspects from germination to fruiting. This is shown by the various reports from different studies using various molecular biology approaches such as gene achieve these many roles through their non-enzymatic wall loosening ability. This paper reviews and summarizes some of the reported functions of expansins and outlines the potential uses of expansins in crop improvement programs.

256 citations


Journal ArticleDOI
TL;DR: The status of diverse sterility-inducing cytoplasms and associated Rf factors reported across different field crops are reviewed along with exploring opportunities for integrating modern omics tools with CMS-based hybrid breeding.
Abstract: A comprehensive understanding of CMS/Rf system enabled by modern omics tools and technologies considerably improves our ability to harness hybrid technology for enhancing the productivity of field crops. Harnessing hybrid vigor or heterosis is a promising approach to tackle the current challenge of sustaining enhanced yield gains of field crops. In the context, cytoplasmic male sterility (CMS) owing to its heritable nature to manifest non-functional male gametophyte remains a cost-effective system to promote efficient hybrid seed production. The phenomenon of CMS stems from a complex interplay between maternally-inherited (mitochondrion) and bi-parental (nucleus) genomic elements. In recent years, attempts aimed to comprehend the sterility-inducing factors (orfs) and corresponding fertility determinants (Rf) in plants have greatly increased our access to candidate genomic segments and the cloned genes. To this end, novel insights obtained by applying state-of-the-art omics platforms have substantially enriched our understanding of cytoplasmic-nuclear communication. Concomitantly, molecular tools including DNA markers have been implicated in crop hybrid breeding in order to greatly expedite the progress. Here, we review the status of diverse sterility-inducing cytoplasms and associated Rf factors reported across different field crops along with exploring opportunities for integrating modern omics tools with CMS-based hybrid breeding.

204 citations


Journal ArticleDOI
TL;DR: The process in the EU to develop a legislation that properly matches the scientific progress is outlined and compared with existing frameworks in other countries and ideas for an alternative regulatory system are discussed.
Abstract: Novel plant genome editing techniques call for an updated legislation regulating the use of plants produced by genetic engineering or genome editing, especially in the European Union. Established more than 25 years ago and based on a clear distinction between transgenic and conventionally bred plants, the current EU Directives fail to accommodate the new continuum between genetic engineering and conventional breeding. Despite the fact that the Directive 2001/18/EC contains both process- and product-related terms, it is commonly interpreted as a strictly process-based legislation. In view of several new emerging techniques which are closer to the conventional breeding than common genetic engineering, we argue that it should be actually interpreted more in relation to the resulting product. A legal guidance on how to define plants produced by exploring novel genome editing techniques in relation to the decade-old legislation is urgently needed, as private companies and public researchers are waiting impatiently with products and projects in the pipeline. We here outline the process in the EU to develop a legislation that properly matches the scientific progress. As the process is facing several hurdles, we also compare with existing frameworks in other countries and discuss ideas for an alternative regulatory system.

197 citations


Journal ArticleDOI
TL;DR: A new multiplex CRISPR/Cas9 system that allows the co-expression of six sgRNA modules in one binary vector using a simple cloning strategy in Arabidopsis is designed and it is anticipated that the application of this multiplex system will strongly facilitate functional analysis of genes pathways and families.
Abstract: The recently developed CRISPR/Cas9 system is a promising technology for targeted genome editing in a variety of species including plants. However, the first generation systems were designed to target one or two gene loci at a time. We designed a new multiplex CRISPR/Cas9 system that allows the co-expression of six sgRNA modules in one binary vector using a simple (three steps) cloning strategy in Arabidopsis. The transcription of the sgRNA modules is under the control of three different RNA Polymerase III-dependent promoters. We tested the efficiency of the new multiplex system by targeting six of the fourteen PYL families of ABA receptor genes in a single transformation experiment. One line with mutations in all six targeted PYLs was identified from 15 T1 plants. The mutagenesis frequency for the six individual PYL targets in the T1 lines ranged from 13 to 93 %. In the presence of ABA, the transgenic line identified as containing mutations in all six PYL genes produced the highest germination rate in the T2 progeny (37 %). Among these germinated seedlings, half of the analyzed plants (15/30) were homozygous mutants for at least four targeted genes and two plants (6.7 %) contained homozygous mutations in five of the targeted PYLs and the other targeted PYL had biallelic mutations. Homozygous sextuple mutants were identified in the T3 progeny and characterized together with previously described triple and sextuple PYL mutants. We anticipate that the application of this multiplex CRISPR/Cas9 system will strongly facilitate functional analysis of genes pathways and families.

182 citations


Journal ArticleDOI
TL;DR: It is demonstrated that direct delivery of RGEN RNPs into protoplast cells of Petunia can be exploited as an efficient tool for site-directed mutagenesis of genes or genome editing in plant systems.
Abstract: Site-directed mutagenesis of nitrate reductase genes using direct delivery of purified Cas9 protein preassembled with guide RNA produces mutations efficiently in Petunia × hybrida protoplast system. The clustered, regularly interspaced, short palindromic repeat (CRISPR)-CRISPR associated endonuclease 9 (CRISPR/Cas9) system has been recently announced as a powerful molecular breeding tool for site-directed mutagenesis in higher plants. Here, we report a site-directed mutagenesis method targeting Petunia nitrate reductase (NR) gene locus. This method could create mutations efficiently using direct delivery of purified Cas9 protein and single guide RNA (sgRNA) into protoplast cells. After transient introduction of RNA-guided endonuclease (RGEN) ribonucleoproteins (RNPs) with different sgRNAs targeting NR genes, mutagenesis at the targeted loci was detected by T7E1 assay and confirmed by targeted deep sequencing. T7E1 assay showed that RGEN RNPs induced site-specific mutations at frequencies ranging from 2.4 to 21 % at four different sites (NR1, 2, 4 and 6) in the PhNR gene locus with average mutation efficiency of 14.9 ± 2.2 %. Targeted deep DNA sequencing revealed mutation rates of 5.3–17.8 % with average mutation rate of 11.5 ± 2 % at the same NR gene target sites in DNA fragments of analyzed protoplast transfectants. Further analysis from targeted deep sequencing showed that the average ratio of deletion to insertion produced collectively by the four NR-RGEN target sites (NR1, 2, 4, and 6) was about 63:37. Our results demonstrated that direct delivery of RGEN RNPs into protoplast cells of Petunia can be exploited as an efficient tool for site-directed mutagenesis of genes or genome editing in plant systems.

158 citations


Journal ArticleDOI
TL;DR: This review attempts to integrate the regulatory mechanisms of RBOHD-dependent ROS production by discussing the recent advance and could provide a valuable reference for studying ROS production in plant stress responses.
Abstract: Reactive oxygen species (ROS) are constantly produced in plants, as the metabolic by-products or as the signaling components in stress responses. High levels of ROS are harmful to plants. In contrast, ROS play important roles in plant physiology, including abiotic and biotic tolerance, development, and cellular signaling. Therefore, ROS production needs to be tightly regulated to balance their function. Respiratory burst oxidase homologue (RBOH) proteins, also known as plant nicotinamide adenine dinucleotide phosphate oxidases, are well studied enzymatic ROS-generating systems in plants. The regulatory mechanisms of RBOH-dependent ROS production in stress responses have been intensively studied. This has greatly advanced our knowledge of the mechanisms that regulate plant ROS production. This review attempts to integrate the regulatory mechanisms of RBOHD-dependent ROS production by discussing the recent advance. AtRBOHD-dependent ROS production could provide a valuable reference for studying ROS production in plant stress responses.

131 citations


Journal ArticleDOI
TL;DR: The bottlenecks of consumer acceptance of transgene-free food crops developed by genome editing are explored and some recommendations are made, including that people should not pursue a zero-risk bias regarding such crops.
Abstract: One of the major problems regarding consumer acceptance of genetically modified organisms (GMOs) is the possibility that their transgenes could have adverse effects on the environment and/or human health. Genome editing, represented by the CRISPR/Cas9 system, can efficiently achieve transgene-free gene modifications and is anticipated to generate a wide spectrum of plants. However, the public attitude against GMOs suggests that people will initially be unlikely to accept these plants. We herein explored the bottlenecks of consumer acceptance of transgene-free food crops developed by genome editing and made some recommendations. People should not pursue a zero-risk bias regarding such crops. Developers are encouraged to produce cultivars with a trait that would satisfy consumer needs. Moreover, they should carefully investigate off-target mutations in resultant plants and initially refrain from agricultural use of multiplex genome editing for better risk-benefit communication. The government must consider their regulatory status and establish appropriate regulations if necessary. The government also should foster communication between the public and developers. If people are informed of the benefits of genome editing-mediated plant breeding and trust in the relevant regulations, and if careful risk-benefit communication and sincere considerations for the right to know approach are guaranteed, then such transgene-free crops could gradually be integrated into society.

107 citations


Journal ArticleDOI
TL;DR: expression and functional analysis demonstrated that the novel LcGST4 protein might function in anthocyanin accumulation in litchi, and confirmed that it shared universal activity with the GST family.
Abstract: A novel LcGST4 was identified and characterized from Litchi chinensis . Expression and functional analysis demonstrated that it might function in anthocyanin accumulation in litchi. Glutathione S-transferases (GSTs) have been defined as detoxification enzymes for their ability to recognize reactive electrophilic xenobiotic molecules as well as endogenous secondary metabolites. Anthocyanins are among the few endogenous substrates of GSTs for vacuolar accumulation. The gene encoding a GST protein that is involved in anthocyanin sequestration from Litchi chinensis Sonn. has not been reported. Here, LcGST4, an anthocyanin-related GST, was identified and characterized. Phylogenetic analysis showed that LcGST4 was clustered with other known anthocyanin-related GSTs in the same clade. Expression analysis revealed that the expression pattern of LcGST4 was strongly correlated with anthocyanin accumulation in litchi. ABA- and light-responsive elements were found in the LcGST4 promoter, which is in agreement with the result that the expression of LcGST4 was induced by both ABA and debagging treatment. A GST activity assay in vitro verified that the LcGST4 protein shared universal activity with the GST family. Functional complementation of an Arabidopsis mutant tt19 demonstrated that LcGST4 might function in anthocyanin accumulation in litchi. Dual luciferase assay revealed that the expression of LcGST4 was activated by LcMYB1, a key R2R3-MYB transcription factor that regulates anthocyanin biosynthesis in litchi.

100 citations


Journal ArticleDOI
TL;DR: A comprehensive account of the success and limitations of the biotechnological tools and techniques hitherto applied to tea and its wild relatives will form a basis for making further advances aimed at genetic improvement of tea in particular and of economically important woody perennials in general.
Abstract: This article presents a comprehensive review on the success and limitations of biotechnological approaches aimed at genetic improvement of tea with a purpose to explore possibilities to address challenging areas. Tea is a woody perennial tree with a life span of more than 100 years. Conventional breeding of tea is slow and limited primarily to selection which leads to narrowing down of its genetic base. Harnessing the benefits of wild relatives has been negligible due to low cross-compatibility, genetic drag and undesirable alleles for low yield. Additionally, being a recalcitrant species, in vitro propagation of tea is constrained too. Nevertheless, maneuvering with tissue/cell culture techniques, a considerable success has been achieved in the area of micropropagation, somatic embryogenesis as well as genetic transformation. Besides, use of molecular markers, “expressomics” (transcriptomics, proteomics, metabolomics), map-based cloning towards construction of physical maps, generation of expressed sequenced tags (ESTs) have facilitated the identification of QTLs and discovery of genes associated with abiotic or biotic stress tolerance and agronomic traits. Furthermore, the complete genome (or at least gene space) sequence of tea is expected to be accessible in the near future which will strengthen combinational approaches for improvement of tea. This review presents a comprehensive account of the success and limitations of the biotechnological tools and techniques hitherto applied to tea and its wild relatives. Expectedly, this will form a basis for making further advances aimed at genetic improvement of tea in particular and of economically important woody perennials in general.

95 citations


Journal ArticleDOI
TL;DR: Results indicated that CarNAC4 functions as a transcription factor involved in the regulation of drought and salt stress response in transgenicArabidopsis plants.
Abstract: CarNAC4 is a typical stress-responsive NAC transcription factor and enhances drought and salt stress tolerances in transgenic Arabidopsis. Chickpea (Cicer arietinum L.) is relatively vulnerable to abiotic stress conditions, but the tolerance mechanisms for such stresses in chickpea are largely unknown. To identify stress-related factors in chickpea, we previously constructed a cDNA library of chickpea leaves exposed to drought stress conditions. A cDNA encoding a putative NAC transcription factor (CarNAC4) was identified as a putative stress-responsive gene. Our study indicated that the transcript levels of CarNAC4 were enhanced in response to several abiotic stresses and phytohormones. Promoter analysis demonstrated that multiple stress-related cis-acting elements exist in promoter region of CarNAC4. CarNAC4 is localized in the nucleus and binds to the DNA sequence containing CGT[G/A], while the C-terminal region of CarNAC4 contains a transcriptional activation domain. Over-expression of CarNAC4 in Arabidopsis plants improved tolerance to drought and salt stresses. Transgenic plants exhibited greater reduced rates of water loss and more proline accumulation than Col-0 plants under drought stress and less MDA contents than Col-0 plants under salt stress. In addition, over-expression of CarNAC4 enhanced the expression of stress-responsive genes such as RD29A, ERD10, COR15A, COR47, KIN1 and DREB2A. These results indicated that CarNAC4 functions as a transcription factor involved in the regulation of drought and salt stress response.

88 citations


Journal ArticleDOI
TL;DR: Results indicated that VaPAT1 functions as a positive transcriptional regulator involved in grapevine abiotic stress responses and enhanced cold, drought and salt tolerance in transgenic Arabidopsis via modulation of the expression of a series of stress-related genes.
Abstract: VaPAT1 functions as a stress-inducible GRAS gene and enhanced cold, drought and salt tolerance in transgenic Arabidopsis via modulation of the expression of a series of stress-related genes. The plant-specific GRAS transcription factor family regulates diverse processes involved in plant growth, development and stress responses. In this study, VaPAT1, a GRAS gene from Vitis amurensis was isolated and functionally characterized. Sequence alignment and phylogenetic analysis showed that VaPAT1 has a high sequence identity to CmsGRAS and OsCIGR1, which belong to PAT1 branch of GRAS family and function in stress resistance. The transcription of VaPAT1 was markedly induced by stress-related phytohormone abscisic acid (ABA) and various abiotic stress treatments such as cold, drought and high salinity, however, it was repressed by exogenous gibberellic acid (GA) application. Overexpression of VaPAT1 increased the cold, drought and high salinity tolerance in transgenic Arabidopsis. When compared with wild type (WT) seedlings, the VaPAT1-overexpression lines accumulated higher levels of proline and soluble sugar under these stress treatments. Moreover, stress-related genes such as AtSIZ1, AtCBF1, AtATR1/MYB34, AtMYC2, AtCOR15A, AtRD29A and AtRD29B showed higher expression levels in VaPAT1 transgenic lines than in WT Arabidopsis under normal growth conditions. Together, our results indicated that VaPAT1 functions as a positive transcriptional regulator involved in grapevine abiotic stress responses.

Journal ArticleDOI
TL;DR: This review summarises the recent progress in DSB-induced gene targeting by homologous recombination in plants and discusses the most recent developments in using the CRISPR/Cas system to improve these processes for plants.
Abstract: This review summarises the recent progress in DSB-induced gene targeting by homologous recombination in plants. We are getting closer to efficiently inserting genes or precisely exchanging single amino acids. Although the basic features of double-strand break (DSB)-induced genome engineering were established more than 20 years ago, only in recent years has the technique come into the focus of plant biologists. Today, most scientists apply the recently discovered CRISPR/Cas system for inducing site-specific DSBs in genes of interest to obtain mutations by non-homologous end joining (NHEJ), which is the prevailing and often imprecise mechanism of DSB repair in somatic plant cells. However, predefined changes like the site-specific insertion of foreign genes or an exchange of single amino acids can be achieved by DSB-induced homologous recombination (HR). Although DSB induction drastically enhances the efficiency of HR, the efficiency is still about two orders of magnitude lower than that of NHEJ. Therefore, significant effort have been put forth to improve DSB-induced HR based technologies. This review summarises the previous studies as well as discusses the most recent developments in using the CRISPR/Cas system to improve these processes for plants.

Journal ArticleDOI
Zhouping Liu1, Yanfei Ding1, Feijuan Wang1, Yaoyao Ye1, Cheng Zhu1 
TL;DR: The influence of SA on Cd-induced stress in plants and the potential regulation mechanism for alleviating Cd toxicity are reviewed.
Abstract: We review and introduce the importance of salicylic acid in plants under cadmium stress, and provide insights into potential regulatory mechanisms for alleviating cadmium toxicity. Cadmium (Cd) is a widespread and potentially toxic environmental pollutant, originating mainly from rapid industrial processes, the application of fertilizers, manures and sewage sludge, and urban activities. It is easily taken up by plants, resulting in obvious toxicity symptoms, including growth retardation, leaf chlorosis, leaf and root necrosis, altered structures and ultrastructures, inhibition of photosynthesis, and cell death. Therefore, alleviating Cd toxicity in plants is a major aim of plant research. Salicylic acid (SA) is a ubiquitous plant phenolic compound that has been used in many plant species to alleviate Cd toxicity by regulating plant growth, reducing Cd uptake and distribution in plants, protecting membrane integrity and stability, scavenging reactive oxygen species and enhancing antioxidant defense system, improving photosynthetic capacity. Furthermore, SA functions as a signaling molecule involved in the expression of several important genes. Significant amounts of research have focused on understanding SA functions and signaling in plants under Cd stress, but several questions still remain unanswered. In this article, the influence of SA on Cd-induced stress in plants and the potential regulation mechanism for alleviating Cd toxicity are reviewed.

Journal ArticleDOI
TL;DR: The results suggested that the MsZEP gene may be involved in alfalfa responses to different abiotic stresses and nodules, and could enhance drought and salt tolerance of transgenic tobacco by heterologous expression.
Abstract: The zeaxanthin epoxidase gene ( MsZEP ) was cloned and characterized from alfalfa and validated for its function of tolerance toward drought and salt stresses by heterologous expression in Nicotiana tabacum. Zeaxanthin epoxidase (ZEP) plays important roles in plant response to various environment stresses due to its functions in ABA biosynthetic and the xanthophyll cycle. To understand the expression characteristics and the biological functions of ZEP in alfalfa (Medicago sativa), a novel gene, designated as MsZEP (KM044311), was cloned, characterized and overexpressed in Nicotiana tabacum. The open reading frame of MsZEP contains 1992 bp nucleotides and encodes a 663-amino acid polypeptide. Amino acid sequence alignment indicated that deduced MsZEP protein was highly homologous to other plant ZEP sequences. Phylogenetic analysis showed that MsZEP was grouped into a branch with other legume plants. Real-time quantitative PCR revealed that MsZEP gene expression was clearly tissue-specific, and the expression levels were higher in green tissues (leaves and stems) than in roots. MsZEP expression decreased in shoots under drought, cold, heat and ABA treatment, while the expression levels in roots showed different trends. Besides, the results showed that nodules could up-regulate the MsZEP expression under non-stressful conditions and in the earlier stage of different abiotic stress. Heterologous expression of the MsZEP gene in N. tabacum could confer tolerance to drought and salt stress by affecting various physiological pathways, ABA levels and stress-responsive genes expression. Taken together, these results suggested that the MsZEP gene may be involved in alfalfa responses to different abiotic stresses and nodules, and could enhance drought and salt tolerance of transgenic tobacco by heterologous expression.

Journal ArticleDOI
TL;DR: The SSCP analysis will be a useful genotyping method for rapid identification of CRISPR/Cas9-induced mutants, including the most desirable homozygous mutants, and has high potential for similar applications in other plant species.
Abstract: A method based on DNA single-strand conformation polymorphism is demonstrated for effective genotyping of CRISPR/Cas9-induced mutants in rice. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) has been widely adopted for genome editing in many organisms. A large proportion of mutations generated by CRISPR/Cas9 are very small insertions and deletions (indels), presumably because Cas9 generates blunt-ended double-strand breaks which are subsequently repaired without extensive end-processing. CRISPR/Cas9 is highly effective for targeted mutagenesis in the important crop, rice. For example, homozygous mutant seedlings are commonly recovered from CRISPR/Cas9-treated calli. However, many current mutation detection methods are not very suitable for screening homozygous mutants that typically carry small indels. In this study, we tested a mutation detection method based on single-strand conformational polymorphism (SSCP). We found it can effectively detect small indels in pilot experiments. By applying the SSCP method for CRISRP-Cas9-mediated targeted mutagenesis in rice, we successfully identified multiple mutants of OsROC5 and OsDEP1. In conclusion, the SSCP analysis will be a useful genotyping method for rapid identification of CRISPR/Cas9-induced mutants, including the most desirable homozygous mutants. The method also has high potential for similar applications in other plant species.

Journal ArticleDOI
TL;DR: Some of the recent advances in CRISPR/Cas9 technology that have profound implications for improving the study of plant biology are described and are paving the way towards new horizons for biotechnologies and crop development.
Abstract: The increasing burden of the world population on agriculture requires the development of more robust crops. Dissecting the basic biology that underlies plant development and stress responses will inform the design of better crops. One powerful tool for studying plants at the molecular level is the RNA-programmed genome editing system composed of a clustered regularly interspaced short palindromic repeats (CRISPR)-encoded guide RNA and the nuclease Cas9. Here, some of the recent advances in CRISPR/Cas9 technology that have profound implications for improving the study of plant biology are described. These tools are also paving the way towards new horizons for biotechnologies and crop development.

Journal ArticleDOI
TL;DR: It is indicated that H2S serves as a multi-faceted transducer that enhances the nitric oxide-induced hypoxia tolerance in maize seedlings.
Abstract: Our data present H 2 S in a new role, serving as a multi-faceted transducer to different response mechanisms during NO-induced acquisition of tolerance to flooding-induced hypoxia in maize seedling roots. Nitric oxide (NO), serving as a secondary messenger, modulates physiological processes in plants. Recently, hydrogen sulfide (H2S) has been demonstrated to have similar signaling functions. This study focused on the effects of treatment with H2S on NO-induced hypoxia tolerance in maize seedlings. The results showed that treatment with the NO donor sodium nitroprusside (SNP) enhanced survival rate of submerged maize roots through induced accumulation of endogenous H2S. The induced H2S then enhanced endogenous Ca2+ levels as well as the Ca2+-dependent activity of alcohol dehydrogenase (ADH), improving the capacity for antioxidant defense and, ultimately, the hypoxia tolerance in maize seedlings. In addition, NO induced the activities of key enzymes in H2S biosynthesis, such as l-cysteine desulfhydrases (l-CDs), O-acetyl-l-serine (thiol)lyase (OAS-TL), and β-Cyanoalanine Synthase (CAS). SNP-induced hypoxia tolerance was enhanced by the application of NaHS, but was eliminated by the H2S-synthesis inhibitor hydroxylamine (HA) and the H2S-scavenger hypotaurine (HT). H2S concurrently enhanced the transcriptional levels of relative hypoxia-induced genes. Together, our findings indicated that H2S serves as a multi-faceted transducer that enhances the nitric oxide-induced hypoxia tolerance in maize (Zea mays L.)

Journal ArticleDOI
TL;DR: It is indicated that OsPGK2a-P gene is differentially regulated in contrasting rice cultivars under stress and its overexpression confers salt stress tolerance in transgenic tobacco and appears to be a potential candidate for increasing salinity stress tolerance and enhanced yield in crop plants.
Abstract: Our results indicate that OsPGK2a-P gene is differentially regulated in contrasting rice cultivars under stress and its overexpression confers salt stress tolerance in transgenic tobacco. Phosphoglycerate kinase (PGK; EC = 2.7.2.3) plays a major role for ATP production during glycolysis and 1, 3-bisphosphoglycerate production to participate in the Calvin cycle for carbon fixation in plants. Whole genome analysis of rice reveals the presence of four PGK genes (OsPgks) on different chromosomes. Comparative expression analysis of OsPgks in rice revealed highest level of transcripts for OsPgk2 at most of its developmental stages. Detailed characterization of OsPgk2 transcript and protein showed that it is strongly induced by salinity stress in two contrasting genotypes of rice, i.e., cv IR64 (salt sensitive) and landrace Pokkali (salt tolerant). Ectopic expression of OsPgk2a-P (isolated from Pokkali) in transgenic tobacco improved its salinity stress tolerance by higher chlorophyll retention and enhanced proline accumulation, besides maintaining better ion homeostasis. Ectopically expressing OsPgk2a-P transgenic tobacco plants showed tall phenotype with more number of pods than wild-type plants. Therefore, OsPgk2a-P appears to be a potential candidate for increasing salinity stress tolerance and enhanced yield in crop plants.

Journal ArticleDOI
Li Shou1, Jiong Gao1, Lingya Yao1, Guodong Ren1, Xiaoyu Zhu1, Shan Gao1, Kai Qiu1, Xin Zhou1, Benke Kuai1 
TL;DR: The data suggest that ANAC072 plays a positive role during natural and dark-induced leaf senescence, and the transcript level of NYE1, a key regulatory gene in chlorophyll degradation, relied on the function of ANAC 072.
Abstract: Key message ANAC072 positively regulates both age- and dark-induced leaf senescence through activating the transcription ofNYE1.

Journal ArticleDOI
Xin He1, Longfu Zhu1, Lian Xu1, W. W. Guo1, Xianlong Zhang1 
TL;DR: It is suggested that GhATAF1, the cotton stress-responsive NAC transcription factor, plays important roles in the response to both abiotic stress and biotic stress by coordinating the phytohormone signaling networks.
Abstract: Dual function of GhATAF1 in the responses to salinity stress and Verticillium dahliae infection in cotton. NAC (NAM/ATAF1/2/CUC2) is a large plant-specific transcription factor family that plays important roles in the response to abiotic stresses. We previously isolated a cotton NAC transcription factor gene, GhATAF1, which was up-regulated by ABA, cold and salt stresses and classified into AFAT1/2, a sub-family of NAC. Here, we report that GhATAF1 was also highly induced by MeJA, SA and Verticillium dahliae inoculation, which implied that GhATAF1 was involved not only in the response to abiotic stress but also in the response to biotic stress. GhATAF1 was localized in the nucleus and possessed transactivation activity. Overexpression of GhATAF1 enhanced cotton plant tolerance to salt stress by enhancing the expression of various stress-related genes, including the ABA response gene GhABI4; the transporter gene GhHKT1, involved in Na(+)/K(+) homeostasis; and several stress-response genes (GhAVP1, GhRD22, GhDREB2A, GhLEA3, and GhLEA6). Additionally, overexpressing GhATAF1 increased cotton plant susceptibility to the fungal pathogens V. dahliae and Botrytis cinerea, coupled with the suppression of JA-mediated signaling and the activation of SA-mediated signaling. Our results suggested that GhATAF1, the cotton stress-responsive NAC transcription factor, plays important roles in the response to both abiotic stress and biotic stress by coordinating the phytohormone signaling networks.

Journal ArticleDOI
TL;DR: It is shown that the Arabidopsis senescence-associated NAC transcription factor NAC016 directly activates SGR1 transcription, and nac016-1SGR1-OX plants showed an early leaf yellowing phenotype, confirming that Nac016 directly activated S GR1 expression in the leaf senescENCE regulatory cascade.
Abstract: The Arabidopsis transcriptional factor NAC016 directly activates chlorophyll degradation during leaf senescence by binding to the promoter of SGR1 and upregulating its transcription. During leaf senescence or abiotic stress in Arabidopsis thaliana, STAYGREEN1 (SGR1) promotes chlorophyll (Chl) degradation, acting with Chl catabolic enzymes, but the mechanism regulating SGR1 transcription remains largely unknown. Here, we show that the Arabidopsis senescence-associated NAC transcription factor NAC016 directly activates SGR1 transcription. Under senescence-promoting conditions, the expression of SGR1 was downregulated in nac016-1 mutants and upregulated in NAC016-overexpressing (NAC016-OX) plants. By yeast one-hybrid and chromatin immunoprecipitation assays, we found that NAC016 directly binds to the SGR1 promoter, which contains the NAC016-specific binding motif (termed the NAC016BM). Furthermore, nac016-1 SGR1-OX plants showed an early leaf yellowing phenotype, similar to SGR1-OX plants, confirming that NAC016 directly activates SGR1 expression in the leaf senescence regulatory cascade. Although we found that NAC016 activates SGR1 expression in senescing leaves, this transcriptional regulation is considerably weaker in maturing seeds; the seeds of sgr1-1 mutants (also known as nonyellowing1-1, nye1-1) stayed green, while the seeds of nac016-1 mutants turned from green to yellow normally. We also found that the abscisic acid (ABA) signaling-related transcription factor genes ABI5 and EEL and the ABA biosynthesis gene AAO3, which activate SGR1 expression directly or indirectly, were significantly downregulated in nac016-1 mutants and upregulated in NAC016-OX plants. However, the NAC016BM does not exist in their promoter regions, indicating that NAC016 may indirectly activate these ABA signaling and biosynthesis genes, probably by directly activating transcriptional cascades regulated by the NAC transcription factor NAP. The NAC016-mediated regulatory cascades of SGR1 and other Chl degradation-related genes are discussed.

Journal ArticleDOI
TL;DR: Results suggest that overexpression of RsmyB1 promotes anthocyanin production by triggering the expression of endogenous bHLH genes as potential binding partners for RsMYB1, and it might be one of the best targets for anthocianins production by single gene manipulation being applicable in diverse plant species.
Abstract: RsMYB1, a MYB TF of red radish origin, was characterized as a positive regulator to transcriptionally activate the anthocyanin biosynthetic machinery by itself in Arabidopsis and tobacco plants. Anthocyanins, providing the bright red-orange to blue-violet colors, are flavonoid-derived pigments with strong antioxidant activity that have benefits for human health. We isolated RsMYB1, which encodes an R2R3-MYB transcription factor (TF), from red radish plants (Raphanus sativus L.) that accumulate high levels of anthocyanins. RsMYB1 shows higher expression in red radish than in common white radish, in both leaves and roots, at different growth stages. Consistent with RsMYB1 function as an anthocyanin-promoting TF, red radishes showed higher expression of all six anthocyanin biosynthetic and two anthocyanin regulatory genes. Transient expression of RsMYB1 in tobacco showed that RsMYB1 is a positive regulator of anthocyanin production with better efficiency than the basic helix-loop-helix (bHLH) TF gene B-Peru. Also, the synergistic effect of RsMYB1 with B-Peru was larger than the effect of the MYB TF gene mPAP1D with B-peru. Arabidopsis plants stably expressing RsMYB1 produced red pigmentation throughout the plant, accompanied by up-regulation of the six structural and two regulatory genes for anthocyanin production. This broad transcriptional activation of anthocyanin biosynthetic machinery in Arabidopsis included up-regulation of TRANSPARENT TESTA8, which encodes a bHLH TF. These results suggest that overexpression of RsMYB1 promotes anthocyanin production by triggering the expression of endogenous bHLH genes as potential binding partners for RsMYB1. In addition, RsMYB1-overexpressing Arabidopsis plants had a higher antioxidant capacity than did non-transgenic control plants. Taken together, RsMYB1 is an actively positive regulator for anthocyanins biosynthesis in radish plants and it might be one of the best targets for anthocyanin production by single gene manipulation being applicable in diverse plant species.

Journal ArticleDOI
TL;DR: The various methods of RGEN RNPs tool delivery into plant cells and their limitations to adopt this technology to numerous crop plants are discussed, with focus on the importance of developing DNA-free genome edited crop plants, including perennial crop plants.
Abstract: Evolution of the next-generation clustered, regularly interspaced, short palindromic repeat/Cas9 (CRISPR/Cas9) genome editing tools, ribonucleoprotein (RNA)-guided endonuclease (RGEN) RNPs, is paving the way for developing DNA-free genetically edited crop plants. In this review, I discuss the various methods of RGEN RNPs tool delivery into plant cells and their limitations to adopt this technology to numerous crop plants. Furthermore, focus is given on the importance of developing DNA-free genome edited crop plants, including perennial crop plants. The possible regulation on the DNA-free, next-generation genome-edited crop plants is also highlighted.

Journal ArticleDOI
TL;DR: The methods developed in this work remove the cost barrier previously limiting high-throughput screening of genome-editing and gene silencing targets in switchgrass, paving the way for more efficient development of transgenic plants.
Abstract: Key message A switchgrass protoplast system was developed, achieving a cost reduction of ~1000-fold, a threefold increase in transformation efficiency, and a fourfold reduction in required DNA quantity compared to previous methods.

Journal ArticleDOI
TL;DR: Evidence is provided that the D-class MADS-box AGL11 plays a major and direct role in seed development in fleshy fruits, providing a valuable tool for further analysis of fruit development.
Abstract: Key message Seedlessness, one of the most desired traits in fleshy fruits, can be obtained altering solely AGL11 gene, a D -class MADS-box. Opposite to overlapping functions described for ovule identity.

Journal ArticleDOI
TL;DR: This study represents the first comprehensive transcriptome-based gene expression profiling under salt stress in radish and could facilitate further dissecting the molecular mechanism underlying salt stress response and provide a valuable platform for further genetic improvement of salt tolerance in Radish breeding programs.
Abstract: Transcriptome-based gene expression analysis identifies many critical salt-responsive genes in radish and facilitates further dissecting the molecular mechanism underlying salt stress response. Salt stress severely impacts plant growth and development. Radish, a moderately salt-sensitive vegetable crop, has been studied for decades towards the physiological and biochemical performances under salt stress. However, no systematic study on isolation and identification of genes involved in salt stress response has been performed in radish, and the molecular mechanism governing this process is still indistinct. Here, the RNA-Seq technique was applied to analyze the transcriptomic changes on radish roots treated with salt (200 mM NaCl) for 48 h in comparison with those cultured in normal condition. Totally 8709 differentially expressed genes (DEGs) including 3931 up- and 4778 down-regulated genes were identified. Functional annotation analysis indicated that many genes could be involved in several aspects of salt stress response including stress sensing and signal transduction, osmoregulation, ion homeostasis and ROS scavenging. The association analysis of salt-responsive genes and miRNAs exhibited that 36 miRNA–mRNA pairs had negative correlationship in expression trends. Reverse-transcription quantitative PCR (RT-qPCR) analysis revealed that the expression profiles of DEGs were in line with results from the RNA-Seq analysis. Furthermore, the putative model of DEGs and miRNA-mediated gene regulation was proposed to elucidate how radish sensed and responded to salt stress. This study represents the first comprehensive transcriptome-based gene expression profiling under salt stress in radish. The outcomes of this study could facilitate further dissecting the molecular mechanism underlying salt stress response and provide a valuable platform for further genetic improvement of salt tolerance in radish breeding programs.

Journal ArticleDOI
TL;DR: It is suggested that OsWRKY51 is a positive transcriptional regulator of defense signaling and has direct DNA binding ability to the promoter of OsPR10a, although it is reported to be a negative regulator in GA signaling.
Abstract: OsWRKY51 functions as a positive transcriptional regulator in defense signaling against Xanthomonas oryzae pv. oryzae by direct DNA binding to the promoter of defense related gene, OsPR10a. OsWRKY51 in rice (Oryza sativa L.) is induced by exogenous salicylic acid (SA) and inoculation with Xanthomonas oryzae pv. oryzae (Xoo). To examine the role of OsWRKY51 in the defense response of rice, we generated OsWRKY51 overexpressing and underexpressing transgenic rice plants. OsWRKY51-overexpressing transgenic rice lines were more resistant to Xoo and showed greater expression of defense-related genes than wild-type (WT) plants, while OsWRKY51-underexpressing lines were more susceptible to Xoo and showed less expression of defense-associated genes than WT plants. Transgenic lines overexpressing OsWRKY51 showed growth retardation compared to WT plants. In contrast, transgenic lines underexpressing OsWRKY51 by RNA interference showed similar plant height with WT plants. Transient expression of OsWRKY51-green fluorescent protein fusion protein in rice protoplasts revealed that OsWRKY51 was localized in the nucleus. OsWRKY51 bound to the W-box and WLE1 elements of the OsPR10a promoter. Based on these results, we suggest that OsWRKY51 is a positive transcriptional regulator of defense signaling and has direct DNA binding ability to the promoter of OsPR10a, although it is reported to be a negative regulator in GA signaling.

Journal ArticleDOI
TL;DR: The factors and genes associated with the development of leaf angles in rice are summarized, the regulatory mechanisms based on the signaling of BR, IAA, and GA are outlined, and the contribution of crosstalk between BR and IAA or GA in the formation of leaf angle is discussed.
Abstract: Leaf angle is an important agronomic trait in rice (Oryza sativa L.). It affects both the efficiency of sunlight capture and nitrogen reservoirs. The erect leaf phenotype is suited for high-density planting and thus increasing crop yields. Many genes regulate leaf angle by affecting leaf structure, such as the lamina joint, mechanical tissues, and the midrib. Signaling of brassinosteroids (BR), auxin (IAA), and gibberellins (GA) plays important roles in the regulation of lamina joint bending in rice. In addition, the biosynthesis and signaling of BR are known to have dominant effects on leaf angle development. In this review, we summarize the factors and genes associated with the development of leaf angle in rice, outline the regulatory mechanisms based on the signaling of BR, IAA, and GA, and discuss the contribution of crosstalk between BR and IAA or GA in the formation of leaf angle. Promising lines of research in the transgenic engineering of rice leaf angle to increase grain yield are proposed.

Journal ArticleDOI
TL;DR: A comprehensive review on the genetic and biochemical mechanisms governing rice-planthoppers interactions is presented, aiming to contribute substantial planthopper control and facilitate breeding for resistance to planthoppers in rice.
Abstract: This article presents a comprehensive review on the genetic and biochemical mechanisms governing rice-planthopper interactions, aiming to contribute substantial planthopper control and facilitate breeding for resistance to planthoppers in rice. The rice planthopper is the most destructive pest of rice and a substantial threat to rice production. The brown planthopper (BPH), white-backed planthopper (WBPH) and small brown planthopper (SBPH) are three species of delphacid planthoppers and important piercing-sucking pests of rice. Host-plant resistance has been recognized as the most practical, economical and environmentally friendly strategy to control planthoppers. Until now, at least 30, 14 and 34 major genes/quantitative trait loci for resistance to BPH, WBPH and SBPH have been identified, respectively. Recent inheritance and molecular mapping of gene analysis showed that some planthopper-resistance genes in rice derived from different donors aggregate in clusters, while resistance to these three species of planthoppers in a single donor is governed not by any one dominant gene but by multiple genes. Notably, Bph14, Bph26, Bph3 and Bph29 were successfully identified as BPH-resistance genes in rice. Biological and chemical studies on the feeding of planthoppers indicate that rice plants have acquired various forms of defence against planthoppers. Between the rice-planthopper interactions, rice plants defend against planthoppers through activation the salicylic acid-dependent systemic acquired resistance but not jasmonate-dependent hormone response pathways. Transgenic rice for the planthopper-resistance mechanism shows that jasmonate and its metabolites function diversely in rice’s resistance to planthopper. Understanding the genetic and biochemical mechanisms underlying resistance in rice will contribute to the substantial control of such pests and facilitate breeding for rice’s resistance to planthopper more efficiently.

Journal ArticleDOI
TL;DR: This review presents latest information on in vitro propagation, genetic engineering and molecular advances made in lily.
Abstract: Modern powerful techniques in plant biotechnology have been developed in lilies (Lilium spp., Liliaceae) to propagate, improve and make new phenotypes. Reliable in vitro culture methods are available to multiply lilies rapidly and shorten breeding programs. Lilium is also an ideal model plant to study in vitro pollination and embryo rescue methods. Although lilies are recalcitrant to genetic manipulation, superior genotypes are developed with improved flower colour and form, disease resistance and year round forcing ability. Different DNA molecular markers have been developed for rapid indirect selection, genetic diversity evaluation, mutation detection and construction of Lilium linkage map. Some disease resistance-QTLs are already mapped on the Lilium linkage map. This review presents latest information on in vitro propagation, genetic engineering and molecular advances made in lily.