scispace - formally typeset
Search or ask a question

Showing papers in "Plant Disease in 2016"


Journal ArticleDOI
TL;DR: The most relevant areas of application of sensor-based analyses are precision agriculture and plant phenotyping as discussed by the authors, which is facilitated by highly sophisticated and innovative methods of data analysis that lead to new insights derived from sensor data for complex plant-pathogen systems.
Abstract: Early and accurate detection and diagnosis of plant diseases are key factors in plant production and the reduction of both qualitative and quantitative losses in crop yield. Optical techniques, such as RGB imaging, multi- and hyperspectral sensors, thermography, or chlorophyll fluorescence, have proven their potential in automated, objective, and reproducible detection systems for the identification and quantification of plant diseases at early time points in epidemics. Recently, 3D scanning has also been added as an optical analysis that supplies additional information on crop plant vitality. Different platforms from proximal to remote sensing are available for multiscale monitoring of single crop organs or entire fields. Accurate and reliable detection of diseases is facilitated by highly sophisticated and innovative methods of data analysis that lead to new insights derived from sensor data for complex plant-pathogen systems. Nondestructive, sensor-based methods support and expand upon visual and/or molecular approaches to plant disease assessment. The most relevant areas of application of sensor-based analyses are precision agriculture and plant phenotyping.

680 citations


Journal ArticleDOI
TL;DR: It is concluded that there are opportunities for reduction in many parts of Europe without significant losses in crop yields, and that improvements and/or adoption of the knowledge and technologies of IPM can still achieve large gains in pesticide reduction.
Abstract: Whether modern agriculture without conventional pesticides will be possible or not is a matter of debate. The debate is meaningful within the context of rising health and environmental awareness on one hand, and the global challenge of feeding a steadily growing human population on the other. Conventional pesticide use has come under pressure in many countries, and some European Union (EU) Member States have adopted policies for risk reduction following Directive 2009/128/EC, the sustainable use of pesticides. Highly diverse crop production systems across Europe, having varied geographic and climatic conditions, increase the complexity of European crop protection. The economic competitiveness of European agriculture is challenged by the current legislation, which banned the use of many previously authorized pesticides that are still available and applied in other parts of the world. This challenge could place EU agricultural production at a disadvantage, so EU farmers are seeking help from the research community to foster and support integrated pest management (IPM). Ensuring stable crop yields and quality while reducing the reliance on pesticides is a challenge facing the farming community is today. Considering this, we focus on several diverse situations in European agriculture in general and in European crop protection in particular. We emphasize that the marked biophysical and socio-economic differences across Europe have led to a situation where a meaningful reduction in pesticide use can hardly be achieved. Nevertheless, improvements and/or adoption of the knowledge and technologies of IPM can still achieve large gains in pesticide reduction. In this overview, the current pest problems and their integrated management are discussed in the context of specific geographic regions of Europe, with a particular emphasis on reduced pesticide use. We conclude that there are opportunities for reduction in many parts of Europe without significant losses in crop yields.

258 citations



Journal ArticleDOI
TL;DR: Disease resistance/tolerance was observed in Australian citrus relative genera Eremocitrus and Microcitrus, which are sexually compatible with citrus and may be useful in future breeding trials to impart HLB resistance to cultivated citrus.
Abstract: Citrus huanglongbing (HLB) is a destructive disease with no known cure. To identify sources of HLB resistance in the subfamily Aurantioideae to which citrus belongs, we conducted a six-year field trial under natural disease challenge conditions in an HLB endemic region. The study included 65 Citrus accessions and 33 accessions belonging to 20 other closely related genera. For each accession, eight seedling trees were evaluated. Based on quantitative polymerase chain reaction analysis of the pathogen titers and disease symptoms, eight disease-response categories were identified. We report two immune, six resistant, and 14 tolerant accessions. Resistance and tolerance observed in different accessions may be attributed to a multitude of factors, including psyllid colonization ability, absence of pathogen multiplication, transient replication of the bacterium, lack of pathogen establishment in the plant, delayed infection, or recovery from infection. Most citrus cultivars were considered susceptible: 15 citrons, lemons, and limes retained leaves in spite of the disease status. Resistance and high levels of field tolerance were observed in many noncitrus genera. Disease resistance/tolerance was observed in Australian citrus relative genera Eremocitrus and Microcitrus, which are sexually compatible with citrus and may be useful in future breeding trials to impart HLB resistance to cultivated citrus.

117 citations


Journal ArticleDOI
TL;DR: In greenhouse studies, tomato plants treated with Ag-dsDNA-GO at either 75 or 100 μg/ml prior to artificial inoculation significantly reduced disease severity when compared with copper-mancozeb and negative controls (P = 0.05).
Abstract: Bacterial spot, caused by four Xanthomonas spp., is one of the most damaging diseases of tomato worldwide. Due to limited disease management options, growers rely heavily on copper-based bactericides, which are often ineffective due to the presence of copper-resistant Xanthomonas strains. This study was undertaken to characterize the antibacterial activity of a silver-based nanocomposite, Ag-dsDNA-GO, and its potential as an alternative to copper. Ag-dsDNA-GO at rates as low as 10 μg/ml killed all bacterial cells of copper-tolerant and -sensitive Xanthomonas perforans strains in suspensions containing approximately 103 CFU/ml within 15 min of exposure in vitro, whereas equivalent rates of copper (10, 25, and 50 μg/ml) were unable to significantly reduce populations compared with the untreated control after 24 h of exposure (P = 0.05). All copper concentrations killed the copper-sensitive X. perforans strain but required exposure for ≥1 h. Ag-dsDNA-GO also exhibited antibacterial activity against copper-tolerant X. vesicatoria, X. euvesicatoria, and X. gardneri strains. In greenhouse studies, tomato plants treated with Ag-dsDNA-GO at either 75 or 100 μg/ml prior to artificial inoculation significantly reduced disease severity when compared with copper-mancozeb and negative controls (P = 0.05). This study highlights the potential of Ag-dsDNA-GO as an alternative to copper in tomato transplant production.

92 citations


Journal ArticleDOI
TL;DR: Antimicrobial activity of Zinkicide for protection of leaves and fruit against Xanthomonas citri was comparable or exceeded that for commercial copper and zinc oxide formulations which may be attributed to translaminar movement of Zinkingicide.
Abstract: Antimicrobial activity of experimental formulations of two structurally different nano-zinc oxide materials, plate-like Zinkicide SG4 and particulate Zinkicide SG6, was evaluated against Xanthomonas citri subsp. citri, the cause of citrus canker. In vitro assay demonstrated Zinkicide SG4 had a twofold lower minimum inhibitory concentration (MIC) against Escherichia coli and X. alfalfae subsp. citrumelonis (62.5 to 250 µg/ml) compared with copper sulfate (250 µg/ml), copper hydroxide (250 to 500 µg/ml), or cuprous oxide/zinc oxide (125 to 250 µg/ml). Zinkicide SG6 had a sevenfold to eightfold lower MIC against Escherichia coli and X. alfalfae subsp. citrumelonis (31 to 250 μg/ml). Leaves of sweet orange (Citrus sinensis) and fruit of 'Ruby Red' grapefruit (C. paradisi) were evaluated for citrus canker disease control. A greenhouse assay with foliage demonstrated that spray treatment with Zinkicide reduced citrus canker lesion development after injection-infiltration of X. citri subsp. citri into the leaf intercellular space. In field trials conducted in Southeast Florida in 2014 and 2015, Zinkicide SG4 and SG6 reduction of grapefruit canker incidence exceeded that of cuprous oxide and cuprous oxide/zinc oxide bactericides. Zinkicide formulations were also effective against the fungal diseases, citrus scab (Elsinoe fawcetti) and melanose (Diaporthe citri), on grapefruit. No sign of phytotoxicity to the fruit rind was observed during either season. Antimicrobial activity of Zinkicide for protection of leaves and fruit against X. citri subsp. citri was comparable or exceeded that for commercial copper and zinc oxide formulations which may be attributed to translaminar movement of Zinkicide.

87 citations


Journal ArticleDOI
TL;DR: The severe epidemics and the occurrence of the large number of races in the 3 years indicate that efforts should be made to use diverse resistance genes, especially to combine effective all-stage resistance genes with genes for high-temperature adult-plant resistance.
Abstract: Stripe rust, caused by Puccinia striiformis f. sp. tritici, is one of the most important diseases on wheat in the United States. In 2011, severe wheat stripe rust caused extensive application of fu...

66 citations



Journal ArticleDOI
TL;DR: The presence of TR4 in Pakistan and Lebanon is confirmed and its continued expansion and distribution in Western Asia is confirmed, indicating increasing damage will undoubtedly occur in these countries in the near future.
Abstract: Panama disease of banana, caused byFusarium oxysporumf. sp.cubense(Foc), poses a great risk to global banana production. Tropical race 4 (TR4) of Foc, which affects Cavendish bananas as well as many other banana cultivars (Ploetz 2006), was confirmed for the first time outside Southeast Asia in Jordan in 2013 (Garcia-Bastidas et al. 2014). In Pakistan, bananas are produced in the Sindh and Balochistan provinces (91% [31,000 ha] and 9% of the country’s production, respectively). Symptoms ofFusariumwilt, including wilting of leaves and vascular discoloration in rhizomes and pseudostems, were first observed in 2012 in a 2-ha Cavendish plantation in Baoo Pooran (ca. 24°N, 68°E), Sindh Province. By January 2014, approximately 121 ha were affected. In Lebanon, bananas are produced for local consumption and regional export, especially to Syria. Yellowing of leaves and internal vascular discoloration in the pseudostems was first observed in Cavendish plants in October 2013 in the Mansouri and Berghliyeh regions. Thus far, 1 ha has been affected. Infected pseudostem tissue samples from Pakistan and Lebanon were processed for Foc isolation and characterization as described byGarcia-Bastidas et al. (2014). White colonies developed from the surface sterilized (70% ethanol) tissue on Komada’s medium (Leslie and Summerell 2006) and nine single microconidia isolates were generated, four from the Pakistan sample and five from the Lebanon samples and transferred to quarter-strength PDA. All isolates phenotypically resembledF. oxysporum(Leslie and Summerell 2006) and were diagnosed as vegetative compatibility group (VCG) 01213, which was confirmed by PCR, thereby corroborating that VCG01213 only represents TR4 strains (Ploetz 2006). Subsequently, one of the isolates from Pakistan (Pak1.1A) and one isolate each from Mansouri (Leb1.1A) and Berghliyeh (Leb1.2C) in Lebanon were analyzed for pathogenicity. Inoculum production and inoculation were according toDita et al. (2010)by dipping (30 min, 106spores/ml) root-wounded 10-week-old Cavendish cv. Grand Naine plants, which were then placed in sand in 3-liter pots under 28°C, 70% relative humidity, and a 16-h diurnal light periods for 6 weeks. Sets of three plants were each treated with either Pak1.1A, Leb1.1A, Leb1.2C, or TR4 (reference isolate II-5, which was diagnosed as TR4 by PCR and pathogenicity analyses, seeDita et al. 2010). Control sets were each treated with either Foc Race1 (Cruz das Almas, Brazil, seeDita et al. 2010) or water. After 4 weeks, all plants inoculated with the isolates from Pakistan, Lebanon, and TR4 (II-5) produced typical symptoms of Fusarium wilt. After 6 weeks, internal symptoms were recorded and tissue was collected from all plants and plated on Komada’s medium. TR4 was confirmed by PCR from isolates that were recovered from all symptomatic plants. No isolates were recovered from plants infected with Race 1 or the water controls, all of which remained asymptomatic. Thus, we confirm the presence of TR4 in Pakistan and Lebanon and its continued expansion and distribution in Western Asia. Although comparatively limited production areas have been affected to date, increasing damage will undoubtedly occur in these countries in the near future.

64 citations


Journal ArticleDOI
TL;DR: The identities and relative representation of the Colletotrichum species causing the bitter rot disease in Kentucky are unknown as mentioned in this paper, but they are known to cause the disease in about 475 counties in the US.
Abstract: Multiple species of Colletotrichum can cause bitter rot disease of apple, but the identities and relative representation of the species causing the disease in Kentucky are unknown. In total, 475 Co...

60 citations


Journal ArticleDOI
TL;DR: Improved methods being developed to identify and quantify the pathogen inoculum in individual fields may help producers avoid high-risk fields and select IPM packages that enhance yield stability.
Abstract: Pulse crops (annual grain legumes such as field pea, lentil, dry bean, and chickpea) have become an important component of the cropping system in the northern Great Plains of North America over the last three decades. In many areas, the intensity of damping-off, seedling blight, root rot, and premature ripening of pulse crops is increasing, resulting in reduction in stand establishment and yield. This review provides a brief description of the important pathogens that make up the root rot complex and summarizes root rot management on pulses in the region. Initially, several specific Fusarium spp., a range of Pythium spp., and Rhizoctonia solani were identified as important components of the root rot disease complex. Molecular approaches have recently been used to identify the importance of Aphanomyces euteiches on pulses, and to demonstrate that year-to-year changes in precipitation and temperature have an important effect on pathogen prevalence. Progress has been made on management of root rot, but more IPM tools are required to provide effective disease management. Seed-treatment fungicides can reduce damping-off and seedling blight for many of the pathogens in this disease complex, but complex cocktails of active ingredients are required to protect seedlings from the pathogen complex present in most commercial fields. Partial resistance against many of the pathogens in the complex has been identified, but is not yet available in commercial cultivars. Cultural practices, especially diversified cropping rotations and early, shallow seeding, have been shown to have an important role in root rot management. Biocontrol agents may also have potential over the long term. Improved methods being developed to identify and quantify the pathogen inoculum in individual fields may help producers avoid high-risk fields and select IPM packages that enhance yield stability.

Journal ArticleDOI
TL;DR: Direct evidence that natural sexual reproduction occurs in the P. tritici population in China is provided, but the frequency appears to be very low.
Abstract: The stripe rust pathogen Puccinia striiformis f. sp. tritici frequently causes significant yield losses in China, due to rapid development of new races that overcome resistance in wheat cultivars. ...

Journal ArticleDOI
TL;DR: Strain 5B6 has strong potential for protecting plants against viruses by increasing defense priming of salicylic acid and jasmonic acid signaling in pepper under field conditions, and is the first report of the protection of a plant against viral diseases by foliar application of leaf-associated bacilli.
Abstract: Beneficial plant-associated bacteria protect host plants against pathogens, including viruses. However, leaf-associated (phyllosphere) bacteria have rarely been investigated as potential triggers of plant systemic defense against plant viruses. We found that leaf-colonizing Bacillus amyloliquefaciens strain 5B6 (isolated from a cherry tree leaf) protected Nicotiana benthamiana and pepper plants against Cucumber mosaic virus (CMV). In a field trial, treatment with strain 5B6 significantly reduced the relative contents of CMV coat protein RNA compared with the water control over a 3-year period, as revealed by quantitative reverse-transcription polymerase chain reaction. The expression of Capsicum annuum pathogenesis-related (PR) genes CaPR4, CaPR5, and CaPR10 was upregulated in field-grown pepper plants treated with strain 5B6. In addition, the accumulation of two naturally occurring viruses, Broad bean wilt virus and Pepper mottle virus, was reduced by foliar treatment with strain 5B6, which is similar to the results for benzothiadiazole treatment as a positive control. Taken together, the results suggest that strain 5B6 has strong potential for protecting plants against viruses by increasing defense priming of salicylic acid and jasmonic acid signaling in pepper under field conditions. This is the first report of the protection of a plant against viral diseases by foliar application of leaf-associated bacilli.

Journal ArticleDOI
TL;DR: This work surveys potato fields and water sources in Poland to establish the presence and diversity of Dickeya spp.
Abstract: Bacteria from the genera Dickeya (formerly Erwinia chrysanthemi) and Pectobacterium (formerly E. carotovora) are the agents of blackleg and soft rot on many important crops. In 2005, Dickeya solani was isolated for the first time in Poland from a symptomatic potato plant. To establish the presence and diversity of Dickeya spp. in Poland, we surveyed potato fields and water sources, including surface waters near potato fields and water from potato-processing facilities and sewage plants. Only D. dianthicola and D. solani were isolated from symptomatic potato, and only D. zeae and D. chrysanthemi were isolated from water sources. The Dickeya spp. isolated from potato formed a relatively homogenous group, while those from water sources were more diverse. To our knowledge, this is the first comprehensive characterization of Dickeya spp. isolated during several years from regions with a temperate climate in Central Europe.

Journal ArticleDOI
TL;DR: Pathotype complexity has increased in populations of P.Sojae in the United States, emphasizing the increasing importance of stacked Rps genes in combination with high partial resistance as a means of limiting losses to P. sojae.
Abstract: Pathotype diversity of Phytophthora sojae was assessed in 11 states in the United States during 2012 and 2013. Isolates of P. sojae were recovered from 202 fields, either from soil samples using a soybean seedling bioassay or by isolation from symptomatic plants. Each isolate was inoculated directly onto 12 soybean differentials; no Rps gene or Rps 1a, 1b, 1c, 1k, 3a, 3b, 3c, 4, 6, 7, or 8. There were 213 unique virulence pathotypes identified among the 873 isolates collected. None of the Rps genes were effective against all the isolates collected but Rps6 and Rps8 were effective against the majority of isolates collected in the northern regions of the sampled area. Virulence toward Rps1a, 1b, 1c, and 1k ranged from 36 to 100% of isolates collected in each state, while virulence to Rps6 and Rps8 was less than 36 and 10%, respectively. Depending on the state, the effectiveness of Rps3a ranged from totally effective to susceptible to more than 40% of the isolates. Pathotype complexity has increased in popul...

Journal ArticleDOI
TL;DR: Data from this research contribute to the understanding of the effect of soil temperature on the risk of soybean and corn damping off, which may aid in the development of more effective management practices.
Abstract: Damping off of soybean and corn, caused by Pythium spp., is favored by cool temperatures and wet soil conditions and is primarily managed using fungicide seed treatments. The goal of this research was to determine the effect of temperature on aggressiveness and fungicide sensitivity of Pythium spp. recovered from soybean and corn in Iowa. A total of 21 isolates of four of the most prevalent Pythium spp. in Iowa were screened. Seed and seedling assays were used to quantify the aggressiveness of P. lutarium, P. oopapillum, P. sylvaticum, and P. torulosum on soybean and corn at 13, 18, and 23°C. Isolates recovered from soybean or corn were equally pathogenic on both hosts. P. torulosum was more aggressive at 13°C compared with 18 and 23°C. Conversely, P. sylvaticum was more aggressive at 18 and 23°C than at 13°C. A plate assay was used to assess fungicide sensitivity to seven fungicides that are commonly used as seed treatments, and EC50 values at each of the three temperatures were determined and compared. EC50 values for P. torulosum were higher for all fungicides tested at 13°C, compared with 18 or 23°C, whereas EC50 values for P. sylvaticum were higher for all fungicides at 18 and 23°C compared with 13°C. These data contribute to our understanding of the effect of soil temperature on the risk of soybean and corn damping off, which may aid in the development of more effective management practices.

Journal ArticleDOI
TL;DR: The aim of this review is to analyze the recent advances achieved regarding the bio-ecology of the endemic and emerging pathogens that threaten cork oak trees with particular emphasis on the species more directly involved in oak decline.
Abstract: Cork oak (Quercus suber) forests are economically and culturally intertwined with the inhabitants of the Mediterranean basin and characterize its rural landscape. These forests cover over two million hectares in the western Mediterranean basin and sustain a rich biodiversity of endemisms as well as representing an important source of income derived from cork production. Currently cork oak forests are threatened by several factors including human-mediated disturbances such as poor or inappropriate management practices, adverse environmental conditions (irregular water regime with prolonged drought periods), and attacks of pathogens and pests. All these adverse factors can interact, causing a complex disease commonly known as “oak decline.” Despite the numerous investigations carried out so far, decline continues to be the main pathological problem of cork oak forests because of its complex etiology and the resulting difficulties in defining suitable control strategies. An overview of the literature indicat...

Journal ArticleDOI
TL;DR: The identification of SrTmp virulence in the Ug99 race group in several countries in one year emphasizes the relevance of coordinated international surveillance efforts and utilization of diverse sources of resistance to control stem rust in wheat.
Abstract: detected at two locations in Uganda (Rubaya and Muko in Kabale region) and at five locations in Rwanda (Kinigi, Rwerere, Rufungo, Gatebe, and Kamenyo). Three isolates derived from stem rust samples collected on cv. PBW343 (carrying Sr31) in Sakha in the Nile Delta region in Egypt were also typed as TTKTK. In addition, DNA from isolates of race TTKTK were analyzed using a diagnostic qPCR assay (Ug99 RG stage-1, Szabo, unpublished data), which confirmed that these samples belong to the Ug99 lineage. The identification of SrTmp virulence in the Ug99 race group in several countries in one year emphasizes the relevance of coordinated international surveillance efforts and utilization of diverse sources of resistance to control stem rust in wheat. Further studies are in progress to determine the detailed relationship of the newly emerged races and other Pgt isolates identified in the Ug99 group.

Journal ArticleDOI
TL;DR: Meta-analysis indicated that resistant cultivars in combination with fluopyram seed treatment or in-furrow application could provide effective management of SDS, and that the baseline disease influenced the yield and disease response to fungicide treatments.
Abstract: The effect of fungicides on severity of sudden death syndrome (SDS; caused by Fusarium virguliforme), plant establishment, and soybean yield was evaluated in 12 field experiments conducted in Illinois, Indiana, Iowa, Michigan, and Ontario in 2013 and 2014. Two soybean cultivars that differed in susceptibility to SDS were planted in fields with a history of SDS or with artificial augmentation of F. virguliforme. Efficacy of seed, in-furrow, and foliar-applied fungicides was assessed. SDS levels varied across locations and years. Fluopyram applied on the seed or in-furrow reduced foliar disease index maximum up to 95% in 5 of the 12 experiments. In three experiments with significant (P < 0.10) treatment effect, fluopyram seed treatment improved yields up to 11% compared with the base seed treatment comprising prothioconazole + penflufen + metalaxyl and clothianidin + Bacillus firmus. Meta-analysis also indicated that the fluopyram seed treatment and in-furrow application were effective at reducing SDS and i...

Journal ArticleDOI
TL;DR: Among the alternatives to copper, chitosan provided the best GDM protection and reduced the vigor of the vegetation, inducing physiological changes without negative effects on grape production.
Abstract: Grapevine downy mildew (GDM) is one of the most serious diseases of grapevines. With limitations in the use of copper-based products imposed for organic agriculture by the European Union, research for alternatives is encouraged. The aim of this research was to follow a 2-year trial to evaluate the control of GDM using some alternative compounds, and to determine their effects on shoot growth, plant photosynthesis, and grape quality and quantity. Under low disease pressure, Bordeaux mixture, copper hydroxide, laminarin combined with low copper, and 0.5 and 0.8% chitosan had the lowest GDM incidence, reduced on leaves by 96, 95, 75, 56, and 81%, respectively, compared with the untreated control in the last survey. With high disease pressure, Bordeaux mixture, laminarin combined with Saccharomyces extracts, and 0.5 and 0.8% chitosan had the lowest GDM incidence, reduced on grape by 86, 37, 66, and 75%, respectively, compared with the untreated control in the survey of mid-July. Chitosan at 0.8% lowered net photosynthesis, due to reduced stomatal conductance, leaf area, and dry weight, with no negative effects observed on the quantity of the grape berries and the quality parameters of their juice. Among the alternatives to copper, chitosan provided the best GDM protection and reduced the vigor of the vegetation, inducing physiological changes without negative effects on grape production.

Journal ArticleDOI
TL;DR: Sequencing of the cytochrome b gene of sensitive and resistant isolates showed that QoI-resistant isolates contained either G143A or F129L amino acid substitutions, which indicates that quinone-outside inhibitor (QoI) fungicide applications are needed for disease control ofAnthracnose fruit rot of strawberry.
Abstract: Anthracnose fruit rot of strawberry, caused by Colletotrichum acutatum, is a major disease in Florida and frequent quinone-outside inhibitor (QoI) fungicide applications are needed for disease control. From 1994 to 2014, 181 C. acutatum isolates were collected from multiple strawberry fields in Florida with or without QoI spray history. Sensitivity to azoxystrobin and pyraclostrobin was tested based upon mycelial growth and germ tube elongation inhibition. Mean effective concentration where growth was reduced by 50% (EC50) values for isolates collected prior to 2013 based upon mycelial growth were 0.22 and 0.013 μg/ml and upon germ tube elongation were 0.57 and 0.03 μg/ml for azoxystrobin and pyraclostrobin, respectively. Mycelial growth and germ tube elongation of 48 isolates collected in 2013 and 2014 were not inhibited with azoxystrobin at 3 μg/ml and pyraclostrobin at 0.110 μg/ml. A fungicide discriminatory dose assay indicated that 43 of the 48 isolates had EC50 values higher than 100 and 10 μg/ml fo...

Journal ArticleDOI
TL;DR: Tomato chlorosis virus (ToCV) is implicated in tomato yellows disease in many countries worldwide and more than 36 weed species have been recorded as natural reservoirs, acting as unique sources both for the virus and its vectors when susceptible crops are harvested.
Abstract: Tomato chlorosis virus (ToCV) is implicated in tomato yellows disease in many countries worldwide. It has a wide host range, including cultivated species as well as arable weeds, and it is transmitted in a semipersistent manner by at least five whitefly species or biotypes of the genera Trialeurodes and Bemisia. ToCV is not seed transmitted and more than 36 weed species have been recorded as natural reservoirs, acting as unique sources both for the virus and its vectors when susceptible crops are harvested. In this study, experiments were conducted to determine the transmission parameters of ToCV by biotype Q, the most abundant biotype of Bemisia tabaci in Greece. Results showed that biotype Q is an efficient vector of ToCV and it is able to retain the virus for at least 6 days. This vector was then used for the evaluation of four widespread weed species (Solanum nigrum, Sonchus oleraceus, Amaranthus retroflexus, and Chenopodium album) as ToCV sources through transmission experiments. Solanum nigrum was s...

Journal ArticleDOI
TL;DR: American stem rust differential lines following standard race-typing procedure and infection type (IT) criteria determining virulence and avirulence were used, thereby extending the geographical distribution of Ug99-related races in Egypt.
Abstract: American stem rust differential lines following standard race-typing procedure and infection type (IT) criteria determining virulence and avirulence (Jin et al. 2008). In addition, three supplemental tester lines of Siouxland (carrying Sr24+Sr31), Sisson (carrying Sr31+Sr36), and Triumph 64 (donor of SrTmp) were included to confirm virulence/avirulence to Sr24, Sr31, Sr36, and SrTmp. The experiments were repeated two to three times. Three races in the Ug99 race group were detected; TTKST (four isolates, IT 3+4 for Sr24, Sr31, and cv. Siouxland) from Al-Sharqia, TTKTK (13 isolates, IT 4 for Sr31, SrTmp, and cv. Triumph 64) from Sakha, and TTKSK (2 isolates, IT 4 for Sr31) from Nubaria. This is the first confirmation of races in the Ug99 race group in Egypt, thereby extending the geographical distribution of Ug99-related races. Since Egypt may play a role as green-bridge for P. graminis f. sp. tritici between East and North African countries and the wheat belts in the Middle East and Mediterranean regions, the rust surveillance efforts should be intensified in affected countries as well as in neighboring regions.

Journal ArticleDOI
Xue Xiang1, Z X Cao1, X T Zhang1, Y Wang1, Yuhui Zhang1, Zongxiang Chen1, Xuebiao Pan1, Shimin Zuo1 
TL;DR: It is found that overexpression of the OsOSM1 gene, encoding an osmotin protein belonging to the pathogenesis-related protein 5 family, is able to improve rice resistance toSB in field tests, and provides a new target for engineering resistance to SB.
Abstract: Sheath blight (SB), caused by Rhizoctonia solani, is one of the most destructive rice diseases worldwide. It has been difficult to generate SB-resistant varieties through conventional breeding because of the quantitative nature of rice resistance to SB. In this study, we found that overexpression of the OsOSM1 gene, encoding an osmotin protein belonging to the pathogenesis-related protein 5 family, is able to improve rice resistance to SB in field tests. Although there are two osmotin genes in rice, OsOSM1 is the one mainly expressed in leaf sheath at the booting stage, coinciding with the critical stage of SB development in the field. In addition, OsOSM1 expression is strongly induced by R. solani in SB-resistant rice variety YSBR1 but not in susceptible varieties, suggesting its involvement in SB resistance. Overexpression of OsOSM1 (OsOSM1ox) in susceptible variety Xudao 3 significantly increases resistance to SB in transgenic rice. The OsOSM1 mRNA levels in different transgenic lines are found to be positively correlated with their SB resistance levels. Intriguingly, although extremely high levels of OsOSM1 were detrimental to rice development, appropriately elevated levels of OsSOM1 were obtained that enhanced rice SB resistance without affecting rice development or grain yield. The OsSOM1 protein is localized on plasma membrane. OsOSM1 is upregulated by jasmonic acid (JA); furthermore, JA-responsive marker genes are induced in OsOSM1ox lines. These results suggest that the activation of JA signaling pathway may account for the increased resistance in transgenic OsOSM1ox lines. Taken together, our results demonstrate that OsOSM1 plays an important role in defense against rice SB disease and provides a new target for engineering resistance to SB.

Journal ArticleDOI
TL;DR: This study represents the first report of three additional species of Lasiodiplodia as causal agents of postharvest stem-end rot of immature coconut in Brazil and distinguished morphologically and phylogenetically and were proven to be pathogenic to coconut following artificial inoculation.
Abstract: Coconut palm (Cocos nucifera L.) is one of the most important perennial tropical crops. Stem-end rot is the major postharvest disease of coconut in Brazil. The fungus Lasiodiplodia theobromae is the only species that has been reported to be associated with this disease. However, a comprehensive study elucidating the true identity of this pathogen with molecular tools has never been conducted. In recent years, new species of Lasiodiplodia have been proposed after molecular studies were performed, indicating the existence of a species complex. The aims of this research were to study the etiology of the postharvest stem-end rot of immature coconut based on a combination of morphological and phylogenetic analyses, to establish the phylogenetic position of such taxa, and to assess the pathogenicity of each taxon. Four species were identified: L. brasiliense, L. egyptiacae, L. pseudotheobromae, and L. theobromae. All of the species were distinguished morphologically and phylogenetically and were proven to be pa...

Journal ArticleDOI
TL;DR: This study marks the first application of WGS for fungal plant pathogen diagnosis and demonstrates the power of this approach to rapidly identify causal agents of new diseases.
Abstract: Early and accurate diagnosis of new plant pathogens is vital for the rapid implementation of effective mitigation strategies and appropriate regulatory responses. Most commonly, pathogen identification relies on morphology and DNA marker analysis. However, for new diseases, these approaches may not be sufficient for precise diagnosis. In this study, we used whole-genome sequencing (WGS) to identify the causal agent of a new disease affecting Sarcococca hookeriana (sarcococca). Blight symptoms were observed on sarcococca and adjacent Buxus sempervirens (boxwood) plants in Maryland during 2014. Symptoms on sarcococca were novel, and included twig dieback and dark lesions on leaves and stems. A Calonectria sp. was isolated from both hosts and used to fulfill Koch’s postulates but morphology and marker sequence data precluded species-level identification. A 51.4-Mb WGS was generated for the two isolates and identified both as Calonectria pseudonaviculata. A single-nucleotide polymorphism at a noncoding site d...

Journal ArticleDOI
Y C Han, X G Zeng, F Y Xiang, Li Ren1, F Y Chen, Y C Gu 
TL;DR: Results indicate that pathogenicity and adaptation to temperature are important factors in the distribution of Colletotrichum spp.
Abstract: Anthracnose caused by Colletotrichum spp. is a serious disease of strawberry. The etiology of anthracnose of strawberry is complex, and several Colletotrichum spp. have been regarded as causal agents. In the present study, multilocus (actin, β-tubulin, calmodulin, glyceraldehyde-3-phosphate dehydrogenase, and chitin synthase) phylogenetic analysis revealed that 100 isolates of Colletotrichum associated with anthracnose of strawberry in central China belong to five species. In total, 97 isolates were identified belonging to the Colletotrichum gloeosporioides species complex, with C. murrayae, C. gloeosporioides, C. fructicola, and C. aenigma accounting for 81, 8, 4, and 4% of the total isolates, respectively. Three isolates belonging to the C. acutatum complex were identified as C. nymphaeae. On inoculated strawberry plants, isolates of C. fructicola and C. murrayae species showed strong pathogenicity to both leaves and petioles of strawberry, with plant mortality 30 days after inoculation of 77.8 and 55.6%, respectively. C. gloeosporioides, C. aenigma, and C. nymphaeae showed strong pathogenicity to leaves but weak pathogenicity to petioles, with plant mortality 30 days after inoculation of 5.6, 16.7, and 11.1%, respectively. The five species were divided into four classes based on their maximum growth temperatures. Isolates of C. murrayae and C. gloeosporioides were more tolerant to high temperature (>34°C) than isolates of other species, followed by C. fructicola and C. aenigma. Isolates of C. nymphaeae, which are only distributed in areas of higher altitude (1,100 m), were highly sensitive to higher temperature. These results indicate that pathogenicity and adaptation to temperature are important factors in the distribution of Colletotrichum spp. on strawberry plants. This research may increase our understanding of how Colletotrichum spp. emerge and spread to geographical regions with different latitudes or elevations.

Journal ArticleDOI
TL;DR: New protocols for spray and point inoculation of P. striiformis on wheat are presented, along with the prospect for applying these in rust research and resistance breeding activities.
Abstract: The fungus Puccinia striiformis causes yellow (stripe) rust on wheat worldwide. In the present article, new methods utilizing an engineered fluid (Novec 7100) as a carrier of urediniospores were compared with commonly used inoculation methods. In general, Novec 7100 facilitated a faster and more flexible application procedure for spray inoculation and it gave highly reproducible results for virulence phenotyping. Six point inoculation methods were compared to find the most suitable for assessment of pathogen aggressiveness. The use of Novec 7100 and dry dilution with Lycopodium spores gave an inoculation success rate of 100% in two independent trials, which was significantly higher and more consistent than for spore suspension in Soltrol 170, water, water + Tween 20, and Noble agar + Tween 20. Both Soltrol 170 and Novec 7100 allowed precise quantification of inoculum, which is important for the assessment of quantitative epidemiological parameters. New protocols for spray and point inoculation of P. strii...

Journal ArticleDOI
TL;DR: Identifying the diversity, distribution, and occurrence of these fungal pathogens is useful for the management of citrus branch canker and dieback disease in the desert citrus-growing regions of California.
Abstract: Several members of the families Botryosphaeriaceae and Diatrypaceae are known as canker and dieback pathogens of a number of woody hosts. Because desert citrus production in California can occur in proximity to table grape production, it was suspected that fungi associated with grapevine cankers might also be associated with citrus branch canker and dieback decline. To determine the fungi associated with branch canker and dieback disease of citrus in the southern California desert regions, surveys were conducted from 2011 to 2013 in the major citrus-growing regions of Riverside, Imperial, and San Diego Counties. Cankered tissues were collected from branches showing symptoms typical of branch canker and dieback. Various fungal species were recovered from necrotic tissues and species were identified morphologically and by phylogenetic comparison of partial sequences of the internal transcribed spacer (ITS) region (ITS1-5.8S-ITS2), β-tubulin gene, and elongation factor 1-α genes with those of other species in GenBank. Four fungi, including Neoscytalidium hyalinum, Eutypella citricola, E. microtheca, and an unnamed Eutypella sp., were associated with branch canker. N. hyalinum was the most frequently recovered fungus from symptomatic tissues (31%) followed by E. citricola (10%), E. microtheca (4%), and the Eutypella sp. (2%). In pathogenicity tests, all fungi caused lesions when inoculated on 'Lisbon' lemon (citrus) branches. Lesions caused by the Eutypella sp. were significantly longer than those of the other Eutypella spp.; however, they did not differ significantly from those produced by N. hyalinum. The most-parsimonious unrooted trees based on the combined data of ITS and partial β-tubulin gene region sequences showed three distinct clades of Eutypella spp. (E. citricola, E. microtheca, and an unidentified Eutypella sp.). Similarly, ITS and partial translation elongation factor 1-α gene region sequences differentiated two species of Neoscytalidium, N. hyalinum and N. novaehollandiae. Identifying the diversity, distribution, and occurrence of these fungal pathogens is useful for the management of citrus branch canker and dieback disease in the desert citrus-growing regions of California.

Journal ArticleDOI
TL;DR: This study has identified commercially feasible application methods of BABA and JA, which induce durable disease resistance in tomato without concurrent impacts on plant growth or colonization by plant-beneficial AMF.
Abstract: Resistance-inducing chemicals can offer broad-spectrum disease protection in crops, but can also affect plant growth and interactions with plant-beneficial microbes. We have evaluated different application methods of β-aminobutyric acid (BABA) and jasmonic acid (JA) for long-lasting induced resistance in tomato against Botrytis cinerea. In addition, we have studied nontarget effects on plant growth and root colonization by arbuscular mycorrhizal fungi (AMF). Germinating seeds for 1 week in BABA- or JA-containing solutions promoted seed germination efficiency, did not affect plant growth, and induced resistance in 4-week-old plants. When formulating BABA and JA in carboxymethyl cellulose seed coating, only BABA was able to induce resistance in 4-week-old plants. Root treatment of 1-week-old seedlings with BABA or JA also induced resistance in 4-week-old plants. However, this seedling treatment repressed plant growth at higher concentrations of the chemicals, which was particularly pronounced in hydroponically grown plants after BABA treatment. Both seed coating with BABA, and seedling treatments with BABA or JA, did not affect AMF root colonization in soil-grown tomato. Our study has identified commercially feasible application methods of BABA and JA, which induce durable disease resistance in tomato without concurrent impacts on plant growth or colonization by plant-beneficial AMF.