scispace - formally typeset
Search or ask a question

Showing papers in "Plant Physiology in 1991"


Journal ArticleDOI
TL;DR: In this paper, Salicylic acid was found to be an endogenous inducer of resistance in Cucumis sativus L. plants with Pseudomonas syringae Pathovar Syringae.
Abstract: Inoculation of one true leaf of cucumber (Cucumis sativus L.) plants with Pseudomonas syringae pathovar syringae results in the systemic appearance of salicylic acid in the phloem exudates from petioles above, below, and at the site of inoculation. Analysis of phloem exudates from the petioles of leaves 1 and 2 demonstrated that the earliest increases in salicylic acid occurred 8 hours after inoculation of leaf 1 in leaf 1 and 12 hours after inoculation of leaf 1 in leaf 2. Detaching leaf 1 at intervals after inoculation demonstrated that leaf 1 must remain attached for only 4 hours after inoculation to result in the systemic accumulation of salicylic acid. Because the levels of salicylic acid in phloem exudates from leaf 1 did not increase to detectable levels until at least 8 hours after inoculation with P. s. pathovar syringae, the induction of increased levels of salicylic acid throughout the plant are presumably the result of another chemical signal generated from leaf 1 within 4 hours after inoculation. Injection of salicylic acid into tissues at concentrations found in the exudates induced resistance to disease and increased peroxidase activity. Our results support a role for salicylic acid as an endogenous inducer of resistance, but our data also suggest that salicylic acid is not the primary systemic signal of induced resistance in cucumber.

518 citations


Journal ArticleDOI
TL;DR: The results suggest that osmotic adjustment due to increased proline deposition plays an important role in the maintenance of root elongation at low water potentials.
Abstract: Seedlings of maize (Zea mays L. cv WF9 × Mo 17) growing at low water potentials in vermiculite contained greatly increased proline concentrations in the primary root growth zone. Proline levels were particularly high toward the apex, where elongation rates have been shown to be completely maintained over a wide range of water potentials. Proline concentration increased even in quite mild treatments and reached 120 millimolal in the apical millimeter of roots growing at a water potential of −1.6 megapascal. This accounted for almost half of the osmotic adjustment in this region. Increases in concentration of other amino acids and glycinebetaine were comparatively small. We have assessed the relative contributions of increased rates of proline deposition and decreased tissue volume expansion to the increases in proline concentration. Proline content profiles were combined with published growth velocity distributions to calculate net proline deposition rate profiles using the continuity equation. At low water potential, proline deposition per unit length increased by up to 10-fold in the apical region of the growth zone compared to roots at high water potential. This response accounted for most of the increase in proline concentration in this region. The results suggest that osmotic adjustment due to increased proline deposition plays an important role in the maintenance of root elongation at low water potentials.

493 citations


Journal ArticleDOI
TL;DR: The biochemical capability of glandular secreting trichomes and the potential for its future manipulation to exploit this external storage compartment is the focus of this review.
Abstract: Secreting glandular plant trichome types which accumulate large quantities of metabolic products in the space between their gland cell walls and cuticle permit the plant to amass secretions in a compartment that is virtually outside the plant body. These structures not only accumulate and store what are often phytotoxic oils but they position these compounds as an apparent first line of defense at the surface of the plant. Recent advances in methods for isolation and study of trichome glands have allowed more precise analysis of gland cell metabolism and enzymology. Isolation of mutants with altered trichome phenotypes provides new systems for probing the genetic basis of trichome development. These advances and their continuation can pave the way for future attempts at modification of trichome secretion. The biochemical capability of glandular secreting trichomes and the potential for its future manipulation to exploit this external storage compartment is the focus of this review.

473 citations


Journal ArticleDOI
TL;DR: The results clearly demonstrate that the effect of salinity on assimilation rate was mostly due to the reduction of stomatal conductance, and that calculation of p(l) may be overestimated in salt stressed plants, because of heterogeneity ofStomatal aperture over the leaf surface.
Abstract: The effects of salinity on growth, stomatal conductance, photosynthetic capacity, and carbon isotope discrimination (Δ) of Gossypium hirsutum L. and Phaseolus vulgaris L. were evaluated. Plants were grown at different NaCl concentrations from 10 days old until mature reproductive structures were formed. Plant growth and leaf area development were strongly reduced by salinity, in both cotton and bean. Stomatal conductance also was reduced by salinity. The Δ always declined with increasing external salinity concentration, indicating that stomatal limitation of photosynthesis was increased. In cotton plant dry matter, Δ correlated with the ratio of intercellular to atmospheric CO2 partial pressures (pl/pa) calculated by gas exchange. This correlation was not clear in bean plants, although Δ showed a more pronounced salt induced decline in bean than in cotton. Possible effects of heterogeneity of stomatal aperture and consequent overestimation of pl as determined from gas exchange could explain these results. Significant differences of Δ between leaf and seed material were observed in cotton and bean. This suggests different patterns of carbon allocation between leaves and seeds. The photon yield of O2 evolution determined at rate-limiting photosynthetic photon flux density was insensitive to salinity in both species analyzed. The light- and CO2-saturated rate of CO2 uptake and O2 evolution showed a salt induced decline in both species. Possible explanations of this observation are discussed. O2 hypersensitivity was observed in salt stressed cotton plants. These results clearly demonstrate that the effect of salinity on assimilation rate was mostly due to the reduction of stomatal conductance, and that calculation of pl may be overestimated in salt stressed plants, because of heterogeneity of stomatal aperture over the leaf surface.

461 citations


Journal ArticleDOI
TL;DR: Reductions in photosynthetic capacity as root growth was progressively restricted suggest sink-limited feedback inhibition as a possible mechanism for regulating net photosynthesis of plants grown in elevated CO(2).
Abstract: Interactive effects of root restriction and atmospheric CO2 enrichment on plant growth, photosynthetic capacity, and carbohydrate partitioning were studied in cotton seedlings (Gossypium hirsutum L.) grown for 28 days in three atmospheric CO2 partial pressures (270, 350, and 650 microbars) and two pot sizes (0.38 and 1.75 liters). Some plants were transplanted from small pots into large pots after 20 days. Reduction of root biomass resulting from growth in small pots was accompanied by decreased shoot biomass and leaf area. When root growth was less restricted, plants exposed to higher CO2 partial pressures produced more shoot and root biomass than plants exposed to lower levels of CO2. In small pots, whole plant biomass and leaf area of plants grown in 270 and 350 microbars of CO2 were not significantly different. Plants grown in small pots in 650 microbars of CO2 produced greater total biomass than plants grown in 350 microbars, but the dry weight gain was found to be primarily an accumulation of leaf starch. Reduced photosynthetic capacity of plants grown at elevated levels of CO2 was clearly associated with inadequate rooting volume. Reductions in net photosynthesis were not associated with decreased stomatal conductance. Reduced carboxylation efficiency in response to CO2 enrichment occurred only when root growth was restricted suggesting that ribulose-1,5-bisphosphate carboxylase/oxygenase activity may be responsive to plant source-sink balance rather than to CO2 concentration as a single factor. When root-restricted plants were transplanted into large pots, carboxylation efficiency and ribulose-1,5-bisphosphate regeneration capacity increased indicating that acclimation of photosynthesis was reversible. Reductions in photosynthetic capacity as root growth was progressively restricted suggest sink-limited feedback inhibition as a possible mechanism for regulating net photosynthesis of plants grown in elevated CO2.

440 citations


Journal ArticleDOI
TL;DR: Microfluorometric analysis of the nuclear DNA contents of the somatic tissues of Arabidopsis thaliana has revealed extensive endoreduplication, resulting in tissues that comprise mixtures of polyploid cells.
Abstract: Microfluorometric analysis of the nuclear DNA contents of the somatic tissues of Arabidopsis thaliana has revealed extensive endoreduplication, resulting in tissues that comprise mixtures of polyploid cells. Endoreduplication was found in all tissues except those of the inflorescences and was developmentally regulated according to the age of the tissues and their position within the plant.

436 citations


Journal ArticleDOI
TL;DR: One mechanism of Al-tolerance in snapbeans appears to be the exudation of citric acid into the rhizosphere, induced either by toxic levels of Al or by low P due to the precipitation of insoluble Al phosphates.
Abstract: One proposed mechanism of aluminum (Al) tolerance in plants is the release of an Al-chelating compound into the rhizosphere. In this experiment, two cultivars of snapbeans (Phaseolus vulgaris L. “Romano” and “Dade”) that differ in Al tolerance were grown hydroponically with and without Al under aseptic conditions. After growth in nutrient solutions for 8 days, aliphatic and phenolic organic acids were analyzed in the culture solutions with an ion chromatograph and a high pressure liquid chromatograph. The tolerant snapbean, “Dade”, when exposed to Al, exuded citric acid into the rhizosphere in a concentration that was 70 times as great as that of “Dade” grown without Al, and 10 times as great as that of “Romano” grown with or without Al. The sensitive cultivar, “Romano”, exuded only slightly more citric acid into the growing medium under Al-stress, compared to nonstressed conditions. Citric acid is known to chelate Al strongly and to reverse its phytotoxic effects. Also, citric acid has been shown previously to enhance the availability of phosphorus (P) from insoluble Al phosphates. Thus, one mechanism of Al-tolerance in snapbeans appears to be the exudation of citric acid into the rhizosphere, induced either by toxic levels of Al or by low P due to the precipitation of insoluble Al phosphates. Our experiment was not able to distinguish between these two factors; however, tolerance to both primary and secondary Al-stress injuries are important for plants growing in Al-toxic soils.

431 citations


Journal ArticleDOI
TL;DR: The results suggest that the mutant is deficient in activity of a protein required to load phosphate into the xylem, suggesting that the phosphate deficiency is caused by a single nuclear recessive mutation at a locus designated pho1.
Abstract: A mutant of Arabidopsis thaliana deficient in the accumulation of inorganic phosphate has been isolated by screening directly for plants with altered quantities of total leaf phosphate. The mutant plants accumulate approximately 5% as much inorganic phosphate, and 24 to 44% as much total phosphate, as wild-type plants in aerial portions of the plant. Growth of the mutant is reduced, relative to wild type, and it exhibits other symptoms normally associated with phosphate deficiency. The phosphate deficiency is caused by a single nuclear recessive mutation at a locus designated pho1. The rate of phosphate uptake into the roots was similar between mutant and wild-type plants over a wide range of external phosphate concentrations. In contrast, when plants were grown in media containing 200 micromolar phosphate or less, phosphate transfer to the shoots of the mutant was reduced to 3 to 10% of the wild-type levels. The defect in phosphate transfer to the shoots could be overcome by providing higher levels of phosphate. Transfer of sulfate to the shoots was essentially normal in the mutant, indicating that the pho1 lesion was not a general defect in anion transport. Movement of phosphate through the xylem of the shoots was not impaired. The results suggest that the mutant is deficient in activity of a protein required to load phosphate into the xylem.

415 citations


Journal ArticleDOI
TL;DR: After cold treatment of seedlings of winter wheat, levels of hydrogen peroxide in the leaves were measured and the elevated level was found to be equivalent to 1.5 micromoles per gram fresh weight tissues of leaves.
Abstract: After cold treatment of seedlings of winter wheat (Triticum aestivum L.), levels of hydrogen peroxide in the leaves were measured. The concentration of hydrogen peroxide increased to about three times the control level within a few minutes, and returned to the normal level in 15 to 20 minutes. The elevated level of hydrogen peroxide was found to be equivalent to 1.5 micromoles per gram fresh weight tissues of leaves.

407 citations


Journal ArticleDOI
TL;DR: In this paper, a functionally active cDNA clone (pCOMT1) encoding alfalfa (Medicago sativa L.) COMT was isolated by immunoscreening a λZAPII cDNA expression library with anti-(aspen COMT) antibodies.
Abstract: S -Adenosyl-l-methionine:caffeic acid 3- O -methyltransferase (COMT, EC 2.1.1.6) catalyzes the conversion of caffeic acid to ferulic acid, a key step in the biosynthesis of lignin monomers. We have isolated a functionally active cDNA clone (pCOMT1) encoding alfalfa ( Medicago sativa L.) COMT by immunoscreening a λZAPII cDNA expression library with anti-(aspen COMT) antibodies. The derived amino acid sequence of pCOMT1 is 86% identical to that of COMT from aspen. Southern blot analysis indicates that COMT in alfalfa is encoded by at least two genes. Addition of an elicitor preparation from bakers9 yeast to alfalfa cell suspension cultures resulted in a rapid accumulation of COMT transcripts, which reached a maximum level around 19 hours postelicitation. Northern blot analysis of total RNA from different organs of alfalfa plants at various developmental stages showed that COMT transcripts are most abundant in roots and stems. Transcripts encoding ATP: i-methionine- S -adenosyl transferase (AdoMet synthetase, EC 2.5.1.6), the enzyme responsible for the synthesis of the methyl donor for the COMT reaction, were coinduced with COMT transcripts in elicitor-treated cells and exhibited a similar pattern of expression to that of COMT in different organs of alfalfa plants at various stages of development.

384 citations


Journal ArticleDOI
TL;DR: A model of stable isotope fractionation processes, originally developed by H. Craig and L. Gordon for evaporation of water from the ocean, can be applied to leaf transpiration to test the factors influencing the stable isotopic composition of leaf water under controlled environment conditions.
Abstract: In this paper we describe how a model of stable isotope fractionation processes, originally developed by H. Craig and L. I. Gordon ([1965] in E Tongiorgi, ed, Proceedings of a Conference on Stable Isotopes in Oceanographic Studies and Paleotemperature, Spoleto, Italy, pp 9-130) for evaporation of water from the ocean, can be applied to leaf transpiration. The original model was modified to account for turbulent conditions in the leaf boundary layer. Experiments were conducted to test the factors influencing the stable isotopic composition of leaf water under controlled environment conditions. At steady state, the observed leaf water isotopic composition was enriched above that of stem water with the extent of the enrichment dependent on the leaf-air vapor pressure difference (VPD) and the isotopic composition of atmospheric water vapor (AWV). The higher the VPD, the larger was the observed heavy isotope content of leaf water. At a constant VPD, leaf water was relatively depleted in heavy isotopes when exposed to AWV with a low heavy isotope composition, and leaf water was relatively enriched in heavy isotopes when exposed to AWV with a large heavy isotope composition. However, the observed heavy isotope composition of leaf water was always less than that predicted by the model. The extent of the discrepancy between the modeled and observed leaf water isotopic composition was a strong linear function of the leaf transpiration rate.

Journal ArticleDOI
TL;DR: Lignin deposition in wounded pith tissue from control plants closely followed the induction of peroxidase activity, however, wound-induced lignification occurred 24 to 48 hours sooner in plants overexpressing the anionic per oxidase.
Abstract: Tobacco (Nicotiana tabacum) plants transformed with a chimeric tobacco anionic peroxidase gene have previously been shown to synthesize high levels of peroxidase in all tissues throughout the plant. One of several distinguishable phenotypes of transformed plants is the rapid browning of pith tissue upon wounding. Pith tissue from plants expressing high levels of peroxidase browned within 24 hours of wounding, while tissue from control plants did not brown as late as 7 days after wounding. A correlation between peroxidase activity and wound-induced browning was observed, whereas no relationship between polyphenol oxidase activity and browning was found. The purified tobacco anionic peroxidase was subjected to kinetic analysis with substrates which resemble the precursors of lignin or polyphenolic acid. The purified enzyme was found to readily polymerize phenolic acids in the presence of H2O2 via a modified ping-pong mechanism. The percentage of lignin and lignin-related polymers in cell walls was nearly twofold greater in pith tissue isolated from peroxidase-overproducer plants compared to control plants. Lignin deposition in wounded pith tissue from control plants closely followed the induction of peroxidase activity. However, wound-induced lignification occurred 24 to 48 hours sooner in plants overexpressing the anionic peroxidase. This suggests that the availability of peroxidase rather than substrate may delay polyphenol deposition in wounded tissue.

Journal ArticleDOI
TL;DR: Differences in nitrogen partitioning between chloroplasts and mitochondria were reflected in differences in the rates of photosynthesis and dark respiration in wheat leaves measured with an open gas-exchange system.
Abstract: Nitrogen partitioning among proteins in chloroplasts and mitochondria was examined in pea (Pisum sativum L.) and wheat (Triticum aestivum L.) grown hydroponically with different nitrogen concentrations. In pea leaves, chloroplast nitrogen accounted for 75 to 80% of total leaf nitrogen. We routinely found that 8% of total ribulose-1,5-bisphosphate carboxylase/oxygenase adhered to thylakoids during preparation and could be removed with Triton X-100. With this precaution, the ratio of stroma nitrogen increased from 53 to 61% of total leaf nitrogen in response to the nitrogen supply, but thylakoid nitrogen remained almost constant around 20% of total. The changes in the activities of the stromal enzymes and electron transport in response to the nitrogen supply reflected the nitrogen partitioning into stroma and thylakoids. On the other hand, nitrogen partitioning into mitochondria was appreciably smaller than that in chloroplasts, and the ratio of nitrogen allocated to mitochondria decreased with increasing leaf-nitrogen content, ranging from 7 to 4% of total leaf nitrogen. The ratio of mitochondrial respiratory enzyme activities to leaf-nitrogen content also decreased with increasing leaf-nitrogen content. These differences in nitrogen partitioning between chloroplasts and mitochondria were reflected in differences in the rates of photosynthesis and dark respiration in wheat leaves measured with an open gas-exchange system. The response of photosynthesis to nitrogen supply was much greater than that of dark respiration, and the CO2 compensation point decreased with increasing leaf-nitrogen content.

Journal ArticleDOI
TL;DR: Alfalfa plants were subjected to 0.15 m sodium chloride stress for 2 weeks, total organic acid concentration in nodules and roots were depressed by more than 40%, whereas lactate concentration increased by 11, 27, and 94% in cytosol, roots, and bacteroids, respectively.
Abstract: Ethanol-soluble organic acid, carbohydrate, and amino acid constituents of alfalfa (Medicago sativa) roots and nodules (cytosol and bacteroids) have been identified by gas-liquid chromatography and high performance liquid chromatography. Among organic acids, citrate was the predominant compound in roots and cytosol, with malonate present in the highest concentration in bacteroids. These two organic acids together with malate and succinate accounted for more than 85% of the organic acid pool in nodules and for 97% in roots. The major carbohydrates in roots, nodule cytosol, and bacteroids were (descending order of concentration): sucrose, pinitol, glucose, and ononitol. Maltose and trehalose appeared to be present in very low concentrations. Asparagine, glutamate, alanine, γ-aminobutyrate, and proline were the major amino acids in cytosol and bacteroids. In addition to these solutes, serine and glutamine were well represented in roots. When alfalfa plants were subjected to 0.15 m sodium chloride stress for 2 weeks, total organic acid concentration in nodules and roots were depressed by more than 40%, whereas lactate concentration increased by 11, 27, and 94% in cytosol, roots, and bacteroids, respectively. In bacteroids, lactate became the most abundant organic acid and might contribute partly to the osmotic adjustment. On the other hand, salt stress induced a large increase in the amino acid and carbohydrate pools. Within the amino acids, proline showed the largest increase, 11.3-, 12.8-, and 8.0-fold in roots, cytosol, and bacteroids, respectively. Its accumulation reflected an osmoregulatory mechanism not only in roots but also in nodule tissue. In parallel, asparagine concentration was greatly enhanced; this amide remained the major nitrogen solute and, in bacteroids, played a significant role in osmoregulation. On the contrary, the salt treatment had a very limited effect on the concentration of other amino acids. Among carbohydrates, pinitol concentration was increased significantly, especially in cytosol and bacteroids (5.4- and 3.4-fold, respectively), in which this cyclitol accounted for more than 35% of the total carbohydrate pool; pinitol might contribute to the tolerance to salt stress. However, trehalose concentration remained low in both nodules and roots; its role in osmoregulation appeared unlikely in alfalfa.

Journal ArticleDOI
TL;DR: Polyamine metabolism was examined in tobacco exposed to a single ozone treatment and then postcultivated in pollutant-free air and monocaffeoyl-putrescine, an effective scavenger for oxyradicals, was detected in the apo-plastic fluid of the leaves of cv Bel B and increased upon exposure to ozone.
Abstract: Polyamine metabolism was examined in tobacco (Nicotiana tabacum L.) exposed to a single ozone treatment (5 or 7 hours) and then postcultivated in pollutant-free air. The levels of free and conjugated putrescine were rapidly increased in the ozone-tolerant cultivar Bel B and remained high for 3 days. This accumulation was preceded by a transient rise of l-arginine decar-boxylase (ADC, EC 4.1.1.19) activity. The ozone-sensitive cultivar Bel W3 showed a rapid production of ethylene and high levels of 1-aminocyclopropane-1-carboxylic acid after 1 to 2 hours of exposure. Induction of putrescine levels and ADC activity was weak in this cultivar and was observed when necrotic lesions developed. Leaf injury occurred in both lines when the molar ratio of putrescine to 1-aminocyclopropane-1-carboxylic acid or ethylene fell short of a certain threshold value. Monocaffeoyl-putrescine, an effective scavenger for oxyradicals, was detected in the apo-plastic fluid of the leaves of cv Bel B and increased upon exposure to ozone. This extracellular localization could allow scavenging of ozone-derived oxyradicals at the first site of their generation. Induction of either polyamine or ethylene pathways may represent a control mechanism for inhibition or promotion of lesion formation and thereby contribute to the disposition of plants for ozone tolerance.

Journal ArticleDOI
TL;DR: The green-fruited Lycopersicon hirsutum Humb.
Abstract: The green-fruited Lycopersicon hirsutum Humb. and Bonpl. accumulated sucrose to concentrations of about 118 micromoles per gram fresh weight during the final stages of development. In comparison, Lycopersicon esculentum Mill. cultivars contained less than 15 micromoles per gram fresh weight of sucrose at the ripe stage. Glucose and fructose levels remained relatively constant throughout development in L. hirsutum at 22 to 50 micromoles per gram fresh weight each. Starch content was low even at early stages of development, and declined further with development. Soluble acid invertase (EC 3.2. 1.26) activity declined concomitant with the rise in sucrose content. Acid invertase activity, which was solubilized in 1 molar NaCl (presumably cell-wall bound), remained constant throughout development (about 3 micromoles of reducing sugars (per gram fresh weight) per hour. Sucrose phosphate synthase (EC 2.4.1.14) activity was present at about 5 micromoles of sucrose (per gram fresh weight) per hour even at early stages of development, and increased sharply to about 40 micromoles of sucrose (per gram fresh weight) per hour at the final stages of development studied, parallel to the rise in sucrose content. In comparison, sucrose phosphate synthase activity in L. esculentum remained low throughout development. The possible roles of the sucrose metabolizing enzymes in determining sucrose accumulation are discussed.

Journal ArticleDOI
TL;DR: Analysis of seed exudates suggests that this is a continuous, but saturable event; in the dark, isoflavone levels in the root tips are greatly reduced, while those in the cotyledons are higher.
Abstract: The distribution of flavonoids, isoflavonoids, and their conjugates in developing soybean (Glycine max L.) seedling organs and in root and seed exudates has been examined. Conjugates of the isoflavones daidzein and genistein are major metabolites in all embryonic organs within the dry seed and in seedling roots, hypocotyl, and cotyledon tissues at all times after germination. Primary leaf tissues undergo a programmed shift from isoflavonoid to flavonoid metabolism 3 days after germination and become largely predominated by glycosides of the flavonols kampferol, quercetin, and isorhamnetin by 5 days. Cotyledons contain relatively constant and very high levels of conjugates of both daidzein and genistein. Hypocotyl tissues contain a third unidentified compound, P19.3, also present in multiple conjugated forms. Conjugates of daidzein, genistein, and P19.3 are at their highest levels in the hypocotyl hook and fall off progressively down the hypocotyl. These isoflavones also undergo a programmed and dramatic decrease between 2 and 4 days in the hypocotyl hook. All root sections are predominated by daidzein and its conjugates, particularly in the root tip, where they reach the highest levels in the seedling. Light has a pronounced effect on the distribution of the isoflavones; in the dark, isoflavone levels in the root tips are greatly reduced, while those in the cotyledons are higher. Finally, the conjugates of daidzein and genistein and several unidentified aromatic metabolites are selectively excreted into root and seed exudates. Analysis of seed exudates suggests that this is a continuous, but saturable event.

Journal ArticleDOI
Helen A. Stafford1
TL;DR: Flavonoid evolution was preceded by that of the phenylpropanoid and malonyl-coenzyme A pathways, but evolved prior to the lignin pathway.
Abstract: Flavonoid evolution in land plants is discussed from an enzymic point of view, based on the present day distribution of the major subgroups of flavonoids in bryophytes, lower and higher vascular plants. The importance of varied functions in the origin of pathways with a series of sequential steps leading to end-products is considered; it is argued that the initial function is that of an internal regulatory agent, rather than as a filter against ultraviolet irradiation. The basic synthases, hydroxylases, and reductases of flavonoid pathways are presumed to have evolved from enzymes of primary metabolism. A speculative scheme is presented of flavonoid evolution within a primitive group of algae derived from a Charophycean rather than a Chlorophycean line, as a land environment was invaded. Flavonoid evolution was preceded by that of the phenylpropanoid and malonyl-coenzyme A pathways, but evolved prior to the lignin pathway.

Journal ArticleDOI
TL;DR: In leaves of spinach plants grown in ambient CO(2) the subcellular contents of adenylates, pyridine nucleotides, 3-phosphoglycerate, dihydroxyacetone phosphate, malate, glutamate, 2-oxoglutarate, and aspartate were assayed in the light and in the dark by nonaqueous fractionation technique to gain an insight into the regulatory processes.
Abstract: In leaves of spinach plants (Spinacia oleracea L.) grown in ambient CO2 the subcellular contents of adenylates, pyridine nucleotides, 3-phosphoglycerate, dihydroxyacetone phosphate, malate, glutamate, 2-oxoglutarate, and aspartate were assayed in the light and in the dark by nonaqueous fractionation technique. From the concentrations of NADP and NADPH determined in the chloroplast fraction of illuminated leaves the stromal NADPH to NADP ratio is calculated to be 0.5. For the cytosol a NADH to NAD ratio of 10−3 is calculated from the assay of the concentrations of NAD, malate, glutamate, aspartate, and 2-oxoglutarate on the assumption that the reactions catalyzed by the cytosolic glutamate oxaloacetate transaminase and malate dehydrogenase are not far away from equilibrium. For the transfer of redox equivalents from the chloroplastic NADPH to the cytosolic NAD two metabolite shuttles are operating across the inner envelope membrane: the triosephosphate-3-phosphoglycerate shuttle and the malate-oxaloacetate shuttle. Although both shuttles would have the capacity to level the redox state of the stromal and cytosolic compartment, this apparently does not occur. To gain an insight into the regulatory processes we calculated the free energy of the enzymic reactions and of the translocation steps involved. From the results it is concluded that the triosephosphate-3-phosphoglycerate shuttle is mainly controlled by the chloroplastic reaction of 3-phosphoglycerate reduction and of the cytosolic reaction of triosephosphate oxidation. The malate-oxaloacetate shuttle is found to be regulated by the chloroplastic NADP-malate dehydrogenase and also by the translocating step across the envelope membrane.

Journal ArticleDOI
TL;DR: In vivo nuclear magnetic resonance spectroscopy, in vitro gas chromatography-mass spectrometry, and automated (15)N/(13)C mass spectromaetry have been used to demonstrate that glutamate dehydrogenase is active in the oxidation of glutamate, but not in the reductive amination of 2-oxogiutarate.
Abstract: In vivo nuclear magnetic resonance spectroscopy, in vitro gas chromatography-mass spectrometry, and automated 15N/13C mass spectrometry have been used to demonstrate that glutamate dehydrogenase is active in the oxidation of glutamate, but not in the reductive amination of 2-oxogiutarate. In cell suspension cultures of carrot (Daucus carota L. cv Chantenay), primary assimilation of ammonium occurs via the glutamate synthase pathway. Glutamate dehydrogenase is derepressed in carbonlimited cells and in such cells the function of glutamate dehydrogenase appears to be the oxidation of glutamate, thus ensuring sufficient carbon skeletons for effective functioning of the tricarboxylic acid cycle. This catabolic role for glutamate dehydrogenase implies an important regulatory function in carbon and nitrogen metabolism.

Journal ArticleDOI
TL;DR: The use of Agrobacterium to transfer a gene into corn, the regeneration of plants, and detection of the transferred genes in the F(1) progeny establish successful gene transfer and sexual inheritance of the genes.
Abstract: Agrobacterium tumefaciens is established as a vector for gene transfer in many dicotyledonous plants but is not accepted as a vector in monocotyledonous plants, especially in the important Gramineae. The use of Agrobacterium to transfer genes into monocot species could simplify the transformation and improvement of important crop plants. In this report we describe the use of Agrobacterium to transfer a gene into corn, the regeneration of plants, and detection of the transferred genes in the F(1) progeny. Shoot apices of Zea mays L. variety Funk's G90 were cocultivated with A. tumefaciens EHA 1, which harbored the plasmid pGUS3 containing genes for kanamycin resistance (NPT II) and beta-glucuronidase (GUS). Plants developed from these explants within 4 to 6 weeks. Fluorometric GUS assays of leaves and immature seeds from the plants exhibited low GUS activity. Both NOS and GUS gene fragments were amplified by polymerase chain reaction in the DNA isolated from the F(1) generations of one of the original transformed plants. Southern analysis showed both GUS and NPT probes hybridized to DNA in several of the F(1) progeny, demonstrating the incorporation of GUS and NPT II genes into high molecular weight DNA. These data establish successful gene transfer and sexual inheritance of the genes.

Journal ArticleDOI
TL;DR: It is concluded that tolerant embryo cellsProbably contain sugar glasses at storage temperatures and water contents, but intolerant embryo cells probably do not.
Abstract: The formation of intracellular glass may help protect embryos from damage due to desiccation Soluble sugars similar to those found in desiccation tolerant embryos were studied with differential scanning calorimetry Those sugars from desiccation tolerant embryos can form glasses at ambient temperatures, whereas those from embryos that do not tolerate desiccation only form glasses at subzero temperatures It is concluded that tolerant embryo cells probably contain sugar glasses at storage temperatures and water contents, but intolerant embryo cells probably do not

Journal ArticleDOI
TL;DR: Observations suggest that GS1 in senescing leaf blades is responsible for the synthesis of glutamine, which is then transferred to the growing tissues in rice plants.
Abstract: Changes in the levels of cytosolic glutamine synthetase (GS1) and chloroplastic glutamine synthetase (GS2) polypeptides and of corresponding mRNAs were determined in leaves of hydroponically grown rice (Oryza sativa) plants during natural senescence. The plants were grown in the greenhouse for 105 days at which time the thirteenth leaf was fully expanded. This was counted as zero time for senescence of the twelfth leaf. The twelfth leaf blade on the main stem was analyzed over a time period of −7 days (98 days after germination) to +42 days (147 days after germination). Total GS activity declined to less than a quarter of its initial level during the senescence for 35 days and this decline was mainly caused by a decrease in the amount of GS2 polypeptide. Immunoblotting analyses showed that contents of other chloroplastic enzymes, such as ribulose-1,5-bisphosphate carboxylase/oxygenase and Fd-glutamate synthase, declined in parallel with GS2. In contrast, the GS1 polypeptide remained constant throughout the senescence period. Translatable mRNA for GS1 increased about fourfold during the senescence for 35 days. During senescence, there was a marked decrease in content of glutamate (to about one-sixth of the zero time value); glutamate is the major form of free amino acid in rice leaves. Glutamine, the major transported amino acid, increased about threefold compared to the early phase of the harvest in the senescing rice leaf blades. These observations suggest that GS1 in senescing leaf blades is responsible for the synthesis of glutamine, which is then transferred to the growing tissues in rice plants.

Journal ArticleDOI
TL;DR: Arabidopsis photolyase was markedly temperature-sensitive, both in vitro and in vivo (half-life at 30 degrees C, 30 to 45 minutes); the wavelength dependency of the photoreactivation cross-section showed a broad peak at 375 to 400 nm, and is thus similar to that for maize pollen; it overlaps bacterial and yeastphotolyase action spectra.
Abstract: Removal of cyclobutane pyrimidine dimers (CBPDs) in vivo from the DNA of UV-irradiated eight-leaf seedlings of Arabidopsis thaliana was rapid in the presence of visible light (half-life about 1 hour); removal of CBPDs in the dark, presumably via excision repair, was an order of magnitude slower. Extracts of plants contained significant photolyase in vitro, as assayed by restoration of transforming activity to UV-irradiated Escherichia coli plasmids; activity was maximal from four-leaf to 12-leaf stages. UV-B treatment of seedlings for 6 hours increased photolyase specific activity in extracts twofold. Arabidopsis photolyase was markedly temperature-sensitive, both in vitro (half-life at 30°C about 12 minutes) and in vivo (half-life at 30°C, 30 to 45 minutes). The wavelength dependency of the photoreactivation cross-section showed a broad peak at 375 to 400 nm, and is thus similar to that for maize pollen; it overlaps bacterial and yeast photolyase action spectra.

Journal ArticleDOI
TL;DR: The phloem loading results in a preferential extraction of sucrose from the source cells, and the sieve tube concentration of Sucrose is found to be one order of magnitude higher than in the cytosol.
Abstract: Amino acid and sucrose contents were analyzed in the chloroplastic, cytosolic, and vacuolar compartments and in the phloem sap of illuminated spinach leaves (Spinacia oleracea L.). The determination of subcellular metabolite distribution was carried out by nonaqueous fractionation of frozen and lyophilized leaf material using a novel three-compartment calculation method. The phloem sap was collected by aphid stylets which had been severed by a laser beam. Subcellular analysis revealed that the amino acids found in leaves are located mainly in the chloroplast stroma and in the cytosol, the sum of their concentrations amounting to 151 and 121 millimolar, respectively, whereas the amino acid concentrations in the vacuole are one order of magnitude lower. The amino acid concentrations in the phloem sap are found to be not very different from the cytosolic concentrations, whereas the sieve tube concentration of sucrose is found to be one order of magnitude higher than in the cytosol. It is concluded that the phloem loading results in a preferential extraction of sucrose from the source cells.

Journal ArticleDOI
TL;DR: It is speculated that a gene either encoding tomato fruit acid invertase or one required for its expression, plays an important role in determining sucrose accumulation.
Abstract: Fruit of domesticated tomato (Lycopersicon esculentum) accumulate primarily glucose and fructose, whereas some wild tomato species, including Lycopersicon chmielewskii, accumulate sucrose. Genetic analysis of progeny resulting from a cross between L. chmielewskii and L. esculentum indicated that the sucrose-accumulating trait could be stably transferred and that the trait was controlled by the action of one or two recessive genes. Biochemical analysis of progeny resulting from this cross indicated that the sucrose-accumulating trait was associated with greatly reduced levels of acid invertase, but normal levels of sucrose synthase. Invertase from hexose-accumulating fruit was purified and could be resolved into three isoforms by chromatofocusing, each with isoelectric points between 5.1 and 5.5. The invertase isoforms showed identical polypeptide profiles on sodium dodecyl sulfate polyacrylamide gel electrophoresis, consisting of a primary 52 kilodalton polypeptide and two lower molecular mass polypeptides that appear to be degradation products of the 52 kilodalton polypeptide. The three invertase isoforms were indistinguishable based on pH, temperature, and substrate concentration dependence. Immunological detection of invertase indicated that the low level of invertase in sucrose-accumulating fruit was due to low levels of invertase protein rather than the presence of an invertase inhibitor. Based on comparison of genetic and biochemical data we speculate that a gene either encoding tomato fruit acid invertase or one required for its expression, plays an important role in determining sucrose accumulation.

Journal ArticleDOI
TL;DR: Results support the view that zeaxanthin increases SV(N) above the constitutive level in a concentration-dependent manner and that zexanthin-dependent SV(n) occurs in the pigment bed and possible constitutive F(o) quenching is suggested.
Abstract: Artificially mediated linear (methylviologen) and cyclic (phenazine methosulfate) electron transport induced zeaxanthin-dependent and independent (constitutive) nonphotochemical quenching in osmotically shocked chloroplasts of pea (Pisum sativum L. cv Oregon). Nonphotochemical quenching was quantitated as Stern-Volmer quenching (SVN) calculated as (Fm/F′m)-1 where Fm is the fluorescence intensity with all PSII reaction centers closed in a nonenergized, dark-adapted state and F′m is the fluorescence intensity with all PSII reaction centers closed in an energized state. Reversal of quenching by nigericin and electron-transport inhibitors showed that both quenching types were energy-dependent SVN. Under light-induced saturating ΔpH, constitutive-SVN reached steady-state in about 1 minute whereas zeaxanthin-SVN continued to develop for several minutes in parallel with the slow kinetics of violaxanthin deepoxidation. SVN above the constitutive level and relative zeaxanthin concentration showed high linear correlations at steady-state and during induction. Furthermore, Fo quenching, also treated as Stern-Volmer quenching (SVO) and calculated as (Fo/F′o)-1, showed high correlation with zeaxanthin and consequently with SVN (Fo and F′o are fluorescence intensities with all PSII reaction centers in nonenergized and energized states, respectively). These results support the view that zeaxanthin increases SVN above the constitutive level in a concentration-dependent manner and that zeaxanthin-dependent SVN occurs in the pigment bed. Preforming zeaxanthin increased the rate and extent of SVN, indicating that slow events other than the amount of zeaxanthin also affect final zeaxanthin-SVN expression. The redox state of the primary electron acceptor of photosystem II did not appear to determine SVN. Antimycin, when added while chloroplasts were in a dark-adapted or nonenergized state, inhibited both zeaxanthin-SVN and constitutive-SVN induced by linear and cyclic electron transport. These similarities, including possible constitutive Fo quenching, suggest that zeaxanthin-dependent and constitutive SVN are mechanistically related.

Journal ArticleDOI
TL;DR: It is concluded that in the natural state glutathione reductase is present in tobacco at levels above those required for maximal operation of the ascorbate-glutathione pathway.
Abstract: Tobacco (Nicotiana tabacum var Samsun) was transformed using the bacterial gor gene coding for the enzyme glutathione reductase. Transgenic plants were selected by their kanamycin resistence and expression of the bacterial gor gene. After separation by isoelectric focusing techniques, leaf extracts from transgenic plants having both native and bacterial glutathione reductase activity gave, in addition to the six bands of the native enzyme, two further closely running isoenzymes. These additional bands originating from the expression of the bacterial gor gene were nonchloroplastic. Leaves from transgenic plants had two- to 10-fold higher glutathione reductase activity than non-transgenic controls. The amount of extractable glutathione reductase activity obtained in transgenic plants was dependent on leaf age and the conditions to which leaves were exposed. Both light and exposure to methylviologen increased leaf glutathione reductase activity. Elevated levels of cytosolic glutathione reductase activity in transgenic plants had no effect on the amount or reduction state of the reduced glutathione/oxidized glutathione pool under optimal conditions or oxidative conditions induced by methylviologen. The glutathione pool was unaltered despite the oxidation-dependent loss of CO2 assimilation and oxidation of enzymes involved in photosynthesis. However, the reduction state of the ascorbate pool was greater in transgenic plants relative to nontransgenic controls following illumination of methylviologen-treated leaf discs. Therefore, we conclude that in the natural state glutathione reductase is present in tobacco at levels above those required for maximal operation of the ascorbate-glutathione pathway.

Journal ArticleDOI
TL;DR: The results indicate that the lack of dihydroflavonol reductase activity limits the accumulation of anthocyanin in mature phase tissue.
Abstract: Juvenile phase English ivy (Hedera helix L) plants accumulate anthocyanin pigment in the hypodermis of stems and petioles, whereas genetically identical plants of the mature phase do not The objective of this work was to assess which enzyme(s) might limit anthocyanin accumulation in mature phase ivy Leaf discs of both juvenile and mature phase ivy accumulated comparable levels of the flavonols kaempferol and quercetin, whereas only juvenile phase discs accumulated anthocyanin The accumulation of quercetin, but lack of accumulation of leucocyanidin or anthocyanin in mature phase discs, suggested that mature discs lacked dihydroflavonol reductase activity There was no detectable dihydroflavonol reductase activity in mature phase discs, whereas there was an induction of activity in juvenile phase discs in response to sucrose, or photosynthetically fixed carbon, and light as a photomorphogenic signal Phenylalanine ammonia-lyase, an enzyme early in the anthocyanin biosynthetic pathway, was induced above its basal level by sucrose and light in discs of both phases of ivy, with greater activity in mature phase discs Phenylpropanoids, a class of compounds that are precursors to flavonoids, accumulated in leaf discs of both phases, with greater levels in mature phase discs These results indicate that the lack of dihydroflavonol reductase activity limits the accumulation of anthocyanin in mature phase tissue

Journal ArticleDOI
TL;DR: In this paper, the expression of the CHS-A::GUS gene was found to be correlated with the accumulation of exogenously supplied sugars, in particular sucrose.
Abstract: Transgenic Arabidopsis thaliana plants were constructed by introduction of a fusion of the gene for β-glucuronidase (GUS) to the CHS-A gene, which is one of the two genes for chalcone synthase that are actively expressed in the floral organs of petunia. The expression of the fusion gene CHS-A::GUS was low in transgenic Arabidopsis plantlets, but it was enhanced when plantlets or detached leaves were transferred to a medium that contained 0.3 molar sucrose, glucose, or fructose. No enhancement was observed when plantlets were transferred to a medium that contained 0.3 molar mannitol. Measurements of cellular levels of sugars revealed a tight linkage between the level of expression of the CHS-A::GUS gene and the level of accumulation of exogenously supplied sugars, in particular sucrose. The parallelism between the organ-specific accumulation of sugar and the organ-specific expression of the CHS-A::GUS gene was also observed in petunia and A. thaliana plants grown under normal conditions in soil. The consensus sequences for sugar responses, such as boxes II and III in members of the family of sporamin genes from the sweet potato, were found in the promoter region of the CHS-A gene that was used for fusion to the GUS gene. It is suggested that the expression of the CHS-A gene is regulated by sugars, as is the expression of other sugar-responsive genes, such as the genes for sporamin. A putative common mechanism for the control of expression of “sugar-related” genes, including the CHS-A gene, is discussed.