scispace - formally typeset
Search or ask a question

Showing papers in "Planta in 1988"


Journal ArticleDOI
01 Mar 1988-Planta
TL;DR: The development of a radioimmunoassay for ABA using the antibody, which had a high selectivity for the free acid of (S)-cis, trans-ABA, and could be assayed reliably in the RIA over a range of 100 to 4000 pg ABA per assay vial, is described.
Abstract: A monoclonal antibody produced to abscisic acid (ABA) has been characterised and the development of a radioimmunoassay (RIA) for ABA using the antibody is described. The antibody had a high selectivity for the free acid of (S)-cis, trans-ABA. Using the antibody, ABA could be assayed reliably in the RIA over a range from 100 to 4000 pg (0.4 to 15 pmol) ABA per assay vial. As methanol and acetone affected ABA-antibody binding, water was used to extract ABA from leaves. Water was as effective as aqueous methanol and acetone in extracting the ABA present. Crude aqueous extracts of wheat, maize and lupin leaves could be analysed without serious interference from other immunoreactive material. This was shown by measuring the distribution of immunoreactivity in crude extracts separated by thin-layer chromatography (TLC) and high-performance liquid chromatography (HPLC), or by comparing the assay with physicochemical methods of analysis. Analysis of crude extracts by RIA and either, after TLC purification, by gas chromatography using an electron-capture detector or, after HPLC purification, by combined gas chromatography-mass spectrometry (GC-MS) gave very similar ABA concentrations in the initial leaf samples. However, RIA analysis of crude aqueous extracts of pea seeds resulted in considerable overestimation of the amount of ABA present. Determinations of ABA content by GC-MS and RIA were similar after pea seed extracts had been purified by HPLC. Although the RIA could not be used to analyse ABA in crude extracts of pea seeds, it is likely that crude extracts of leaves of several other species may be assayed successfully.

450 citations


Journal ArticleDOI
01 Sep 1988-Planta
TL;DR: It appears that the organization of pectic substances is a major control element in defining the sieving properties of the wall.
Abstract: The non-invasive technique of fluorescence redistribution after photobleaching was employed on soybean (Glycine max (L.) Merr.) root cells grown in suspension culture to examine macromolecular transport across plant cell walls. Using both fluorescently derivatized dextrans and proteins of graded size, a functional range of diameters for putative trans-wall channels was determined to be 6.6-8.6 nm. A mild treatment with pectinase apparently enlarged the channels, without adversely affecting cell viability, enabling significantly larger molecules to pass through the wall. Treatment of the cells with cellulysin or protease did not have this enlargement effect. It appears that the organization of pectic substances is a major control element in defining the sieving properties of the wall.

329 citations


Journal ArticleDOI
01 Jun 1988-Planta
TL;DR: It is suggested that the decline in the concentration of auxin in the achenes as strawberry fruit mature modulates the rate of fruit ripening.
Abstract: Anthocyanin accumulation is one measure of ripening in the strawberry (Fragaria ananassa Duch), a non-climacteric fruit Neither aminoethoxyvinylglycine, an inhibitor of 1-aminocyclopropane carboxylic acid synthase, nor inhibitors of ethylene action (silver, norbornadiene) affected anthocyanin accumulation in ripening fruit When the achenes were removed from one half of an unripe fruit there was an accelerated accumulation of anthocyanin and induction of phenylalanine ammonia lyase on the de-achened portion of the ripening fruit These effects of achene removal could be prevented by the application of the synthetic auxins 1-naphthaleneacetic acid or 2,4-dichlorophenoxyacetic acid to the de-achened surface The introduction of 1-naphthalene acetic acid into intact unripe strawberry fruit through the peduncle delayed their subsequent ripening, as measured by the accumulation of anthocyanin, loss of chlorophyll and decrease in firmness These findings suggest that the decline in the concentration of auxin in the achenes as strawberry fruit mature modulates the rate of fruit ripening

258 citations


Journal ArticleDOI
01 May 1988-Planta
TL;DR: It was shown that alterations of kinetic properties would strongly modify the activity of SPS in vivo, and it was proposed that SPS can exist in kinetically distinct forms in vitro, and that the distribution between these forms can be rapidly altered.
Abstract: It has been investigated whether diurnal rhythms of sucrose-phosphate synthase (SPS) are involved in controlling the rate of photosynthetic sucrose synthesis. Extracts were prepared from spinach (Spinacia oleracea L.) and barley (Hordeum vulgare L.) leaves and assayed for enzyme activity. The activity of SPS increased in parallel with a rising rate of photosynthesis, and was increased by feeding mannose and decreased by supplying inorganic phosphate. In leaf material where sucrose had accumulated during the photoperiod or when sucrose was supplied exogenously, SPS activity decreased. During a diurnal rhythm, SPS activity increased after illumination, declined gradually during the light period, decreased further after darkening and then recovered gradually during the night. These changes did not involve an alteration of the maximal activity, but were caused by changes in the kinetic properties, revealed as a change in sensitivity to inhibition by inorganic phosphate. In experiments which modelled the response of SPS to changing metabolite concentrations, it was shown that these alterations of kinetic properties would strongly modify the activity of SPS in vivo. It is proposed that SPS can exist in kinetically distinct forms in vivo, and that the distribution between these forms can be rapidly altered. As the rate of photosynthesis increases there is an activation of SPS, which may be directly or indirectly linked to changes in the availability of Pi. This activation can be modified by factors related to the accumulation of sucrose. Under normal conditions there is a balance between these factors, and the leaf contains a mixture of the different forms of SPS.

258 citations


Journal ArticleDOI
01 Dec 1988-Planta
TL;DR: It is concluded that this onset of regulatory processes through the phytohormone IAA is indicative of calcium and protons mediating early auxin action in maize coleoptiles and the double-barrelled ion-sensitive microelectrode is an invaluable tool for investigating in-vivo hormone action in plant tissues.
Abstract: In epidermal cells of maize (Zea mays L.) coleoptiles, cytosolic pH (pHc), cytosolic free calcium, membrane potential and changes thereof were monitored continuously and simultaneously (pHc/,ψm, Ca2+/ψm) using double-barrelled ion-sensitive microelectrodes. In the resting cells the cytosolic pH was 7.3–7.5 and the concentration of free calcium was 119±24 nM. One-micromolar indole-3-acetic acid (IAA), added to the external medium at pH 6.0 triggered oscillations inψm, pHc and free calcium with a period of 20 to 30 min. Acidification of the cytosolic pH increased the cytosolic free calcium. Theψm oscillations are attributed to changes in activity of the H+-extrusion pump at the plasmalemma, triggered off by ΔpH and controlled by pH regulation (pH oscillation). The origin of the pHc and Ca2+ changes remains unclear, but is possibly caused by auxin-receptor-induced lipid breakdown and subsequent second-messenger formation. It is suggested that the observed cytosolic pH and Ca2+ changes are intrinsically interrelated, and it is concluded that this onset of regulatory processes through the phytohormone IAA is indicative of calcium and protons mediating early auxin action in maize coleoptiles. It is further concluded that the double-barrelled ion-sensitive microelectrode is an invaluable tool for investigating in-vivo hormone action in plant tissues.

239 citations


Journal ArticleDOI
01 Apr 1988-Planta
TL;DR: The results indicate that the difference in the kinetic parameters of RuBP carboxylase between the two species was offset by the differences in RuBP-carboxyase content and conductance for a given leaf-nitrogen content.
Abstract: The kinetic parameters of ribulose-1,5-bisphosphate (RuBP) carboxylase/oxygenase (EC 4.1.1.39) in wheat (Triticum aestivum L.) and rice (Oryza sativa L.) were determined by rapidly assaying the leaf extracts. The respective K m and V max values for carboxylase and oxygenase activities were significantly higher for wheat than for rice. In particular, the differences in the V max values between the two species were greater. When the net activity of CO2 exchange was calculated at the physiological CO2-O2 concentration from these kinetic parameters, it was 22% greater in wheat than in rice. This difference in the in-vitro RuBP-carboxylase/oxygenase activity between the two species reflected a difference in the CO2-assimilation rate per unit of RuBP-carboxylase protein. However, there was no apparent difference in the CO2-assimilation rate for a given leaf-nitrogen content between the two species. When the RuBP-carboxylase/oxygenase activity was estimated at the intercellular CO2 pressure from the enzyme content and kinetic parameters, these estimated enzyme activities in wheat and rice were similar to each other for the same rate of CO2 assimilation. These results indicate that the difference in the kinetic parameters of RuBP carboxylase between the two species was offset by the differences in RuBP-carboxylase content and conductance for a given leaf-nitrogen content.

217 citations


Journal ArticleDOI
01 Nov 1988-Planta
TL;DR: Embryogenic suspension cultures of domesticated carrot are characterized by the presence of proembryogenic masses, from which somatic embryos develop under conditions of low cell density in the absence of phytohormones, and hybridization of an embryoregulated complementary-DNA sequence showed that the corresponding gene is expressed in Somatic embryos and PEMs but not in non- Embryogenic cells.
Abstract: Embryogenic suspension cultures of domesticated carrot (Daucus carota L.) are characterized by the presence of proembryogenic masses (PEMs) from which somatic embryos develop under conditions of low cell density in the absence of phytohormones. A culture system, referred to as starting cultures, was developed that allowed analysis of the emergence of PEMs in newly initiated hypocotyl-derived suspension cultures. Embryogenic potential, reflected by the number of FEMs present, slowly increased in starting cultures over a period of six weeks. Addition of excreted, high-molecular-weight, heat-labile cell factors from an established embryogenic culture considerably accelerated the acquisition of embryogenic potential in starting cultures. Analysis of [35S]methionine-labeled proteins excreted into the medium revealed distinct changes concomitant with the acquisition of embryogenic potential in these cultures. Analysis of the pattern of gene expression by in-vitro translation of total cellular mRNA from starting cultures with different embryogenic potential and subsequent separation of the [35S]methionine-labeled products by two-dimensional polyacrylamide gel electrophoresis demonstrated a small number of abundant in-vitro-translation products to be present in somatic embryos and in embryogenic cells but absent in nonembryogenic cells. Several other in-vitro-translation products were present in explants, non-embryogenic and embryogenic cells but were absent in somatic embryos. Hybridization of an embryoregulated complementary-DNA sequence, Dc3, to RNA extracted from starting cultures showed that the corresponding gene is expressed in somatic embryos and PEMs but not in non-embryogenic cells.

214 citations


Journal ArticleDOI
01 Dec 1988-Planta
TL;DR: It was found that during cell expansion both RG-I and XG are present within Golgi cisternae and vesicles, thus confirming that the Golgi apparatus is the main site of synthesis of the non-cellulosic cell-wall polysaccharides.
Abstract: We have localized two cell-wall-matrix polysaccharides, the main pectic polysaccharide, rhamnogalacturonan I (RG-I), and the hemicellulose, xyloglucan (XG), in root-tip and leaf tissues of red clover (Trifolium pratense L.) using immunoelectron microscopy. Our micrographs show that in both leaf and root tissues RG-I is restricted to the middle lamella, with 80–90% of the label associated with the expanded regions of the middle lamella at the corner junctions between cells. Xyloglucan, however, is nearly exclusively located in the cellulose-microfibril-containing region of the cell wall. Thus, these cell-wall-matrix polysaccharides are present in distinct and complementary regions of the cell wall. Our results further show that during cell expansion both RG-I and XG are present within Golgi cisternae and vesicles, thus confirming that the Golgi apparatus is the main site of synthesis of the non-cellulosic cell-wall polysaccharides. No label is seen over the endoplasmic reticulum, indicating that synthesis of these complex polysaccharides is restricted to the Golgi. The distribution of RG-I and XG in root-tip cells undergoing cell division was also examined, and it was found that while XG is present in the Golgi stacks and cell plate during cytokinesis, RG-I is virtually absent from the forming cell plate.

187 citations


Journal ArticleDOI
01 Dec 1988-Planta
TL;DR: It is concluded that in tomato seeds the weakening of endosperms prior to radicle protrusion is mediated by a GA-induced enzymatic degradation of the mannan-rich cell walls.
Abstract: The weakening of the mechanical restraint of the endosperm layer in tomato (Lycopersicon esculentum Mill.) seeds, a prerequisite for germination, has been studied with the use of seeds of the gibberellin (GA)-deficientgib-1 mutant. Incubation ofgib-1 endosperms, including part of the testa, in 10 μM GA4+7, resulted within 12 h in the release of fructose, glucose, galactose and mannose into the incubation medium. Only small amounts of sugars diffused out of thegib-1 endosperms during incubation in water. Chemical hydrolysis of endosperm cell walls ofgib-1 seeds showed that they are mainly composed of mannose, and smaller quantities of glucose and galactose. Treatment with GA4+7 induced in the endosperms the production of endo-β-mannanase activity that was not detectable during incubation in water, and also increased the activities of mannohydrolase and α-galactosidase as compared with the water controls. No cellulase activity was found. It is concluded that in tomato seeds the weakening of endosperms prior to radicle protrusion is mediated by a GA-induced enzymatic degradation of the mannan-rich cell walls.

187 citations


Journal ArticleDOI
01 Dec 1988-Planta
TL;DR: Results demonstrate that kinase-mediated phosphorylation of the H+-ATPase is a plausible mechanism for regulating activity and indicate that changes in the cytoplasmic [Ca2+] and pH are potentially important elements in modulating the kin enzyme-mediatedosphorylation.
Abstract: When plasma-membrane vesicles isolated from oat (Avena sativa L.) root cells were incubated with [γ-32P]ATP, the H+-ATPase was found to be phosphorylated at serine and threonine residues. Phosphotyrosine was not detected. Endogenous ATPase kinase activity was also observed in plasma-membrane vesicles isolated from potato (Solanum tuberosum L.) root cells as well as from yeast (Saccharomyces cerevisiae). Identity of the phosphorylated oat root Mr=100 000 polypeptide as the ATPase was confirmed using conventional glycerol density-gradient centrifugation to purify the native enzyme and by a new procedure for purifying the denatured polypeptide using reversephase high-performance liquid chromatography. Kinase-mediated phosphorylation of the oat root plasma-membrane H+-ATPase was stimulated by the addition of low concentrations of Ca2+ and by a decrease in pH, from 7.2 to 6.2. These results demonstrate that kinase-mediated phosphorylation of the H+-ATPase is a plausible mechanism for regulating activity. They further indicate that changes in the cytoplasmic [Ca2+] and pH are potentially important elements in modulating the kinase-mediated phosphorylation.

182 citations


Journal ArticleDOI
01 Mar 1988-Planta
TL;DR: It is suggested that N stress reduces growth by several mechanisms operating on different time scales: increased leaf ABA content causing reduced cell-wall extensibility and leaf elongation and a more gradual decline in photosynthesis caused by ABA-induced stomatal closure and by a decrease in leaf organic N.
Abstract: Barley (Hordeum vulgare L.) and tomato Lycopersicon esculentum Mill.) were grown hydroponically and examined 2, 5, and 10 d after being deprived of nitrogen (N) supply. Leaf elongation rate declined in both species in response to N stress before there was any reduction in rate of dryweight accumulation. Changes in water transport to the shoot could not explain reduced leaf elongation in tomato because leaf water content and water potential were unaffected by N stress at the time leaf elongation began to decline. Tomato maintained its shoot water status in N-stressed plants, despite reduced water absorption per gram root, because the decline in root hydraulic conductance with N stress was matched by a decline in stomatal conductance. In barley the decline in leaf elongation coincided with a small (8%) decline in water content per unit area of young leaves; this decline occurred because root hydraulic conductance was reduced more strongly by N stress than was stomatal conductance. Nitrogen stress caused a rapid decline in tissue NO 3 - pools and in NO 3 - flux to the xylem, particularly in tomato which had smaller tissue NO 3 - reserves. Even in barley, tissue NO 3 - reserves were too small and were mobilized too slowly (60% in 2 d) to support maximal growth for more than a few hours. Organic N mobilized from old leaves provided an additional N source to support continued growth of N-stressed plants. Abscisic acid (ABA) levels increased in leaves of both species within 2 d in response to N stress. Addition of ABA to roots caused an increase in volume of xylem exudate but had no effect upon NO 3 - flux to the xylem. After leaf-elongation rate had been reduced by N stress, photosynthesis declined in both barley and tomato. This decline was associated with increased leaf ABA content, reduced stomatal conductance and a decrease in organic N content. We suggest that N stress reduces growth by several mechanisms operating on different time scales: (1) increased leaf ABA content causing reduced cell-wall extensibility and leaf elongation and (2) a more gradual decline in photosynthesis caused by ABA-induced stomatal closure and by a decrease in leaf organic N.

Journal ArticleDOI
01 Nov 1988-Planta
TL;DR: It is concluded that regulation of cytoplasmic pH and free Ca2+ are interrelated and double-barrelled microelectrodes are useful tools for investigations of intracellular ion activities in plant cells.
Abstract: In cells of Zea mays (root hairs, coleoptiles) and Riccia fluitans (rhizoids, thalli) intracellular Ca(2+) and pH have been measured with double-barrelled microelectrodes. Free Ca(2+) activities of 109-187 nM (Riccia rhizoids), 94-160 nM (Riccia thalli), 145-231 nM (Zea root hairs), 84-143 nM (Zea coleoptiles) were found, and therefore identified as cytoplasmic. In a few cases (Riccia rhizoids), free Ca(2+) was in the lower millimolar range (2.3±0.8 mM). A change in external Ca(2+) from 0.1 to 10 mM caused an initial and short transient increase in cytoplasmic free Ca(2+) which finally levelled off at about 0.2 pCa unit below the control, whereas in the presence of cyanide the Ca(2+) activity returned to the control level. It is suggested that this behaviour is indicative of active cellular Ca(2+) regulation, and since it is energy-dependent, may involve a Ca(2+)-ATPase. Acidification of the cytoplasmic pH and alkalinization of the vacuolar pH lead to a simultaneous increase in cytoplasmic free Ca(2+), while alkalinization of pHc decreased the Ca(2+) activity. Since this is true for such remote organisms as Riccia and Zea, it may be concluded that regulation of cytoplasmic pH and free Ca(2+) are interrelated. It is further concluded that double-barrelled microelectrodes are useful tools for investigations of intracellular ion activities in plant cells.

Journal ArticleDOI
01 Aug 1988-Planta
TL;DR: The difference in activity of starch-branching enzyme between embryos of round and wrinkled peas is likely to be due to the absence from embryos of wrinkling peas of one of the isoforms occurring in embryos ofround peas.
Abstract: In order to determine whether round-and wrinkled-seeded peas (Pisum sativum L.) differ in the activity and properties of starch-branching enzyme (1,4-α-D-glucan, 1,4-α-D-glucan-6-glycosyl transferase; EC 2.4.1.18) in their developing embryos, essentially isogenic lines of peas, differing only at the r (rugosus) locus that confers the round (RR, Rr) or wrinkled (rr) phenotype, were studied. Activity of the enzyme rises rapidly from an early stage of development in embryos of round peas, but only at later stages in embryos of wrinkled peas. The purified enzyme from mature embryos of round peas can be resolved into two isoforms that differ in molecular weight and in their ability to branch amylose. The purified enzyme from mature embryos of wrinkled peas is a single protein with the same molecular weight and branching properties as one of the isoforms from embryos of round peas. The difference in activity of starch-branching enzyme between embryos of round and wrinkled peas is likely to be due to the absence from embryos of wrinkled peas of one of the isoforms occurring in embryos of round peas.

Journal ArticleDOI
01 Oct 1988-Planta
TL;DR: The HPLC-immunoassay analyses showed that nodules and non-nodulated roots of Phaseolus vulgaris L. contained similar spectra of GAs to R. phaseoli culture media, indicating that Rhizobium does not make a major contribution to the GA content of the infected tissue.
Abstract: Similar ranges of gibberellins (GAs) were detected by high-performance liquid chromatography (HPLC)-immunoassay procedures in ten cultures of wild-type and mutant strains of Rhizobium phaseoli. The major GAs excreted into the culture medium were GA1 and GA4. These identifications were confirmed by combined gas chromatographymass spectrometry. The HPLC-immunoassays also detected smaller amounts of GA9- as well as GA20-like compounds, the latter being present in some but not all cultures. In addition to GAs, all strains excreted indole-3-acetic acid (IAA) but there was no obvious relationship between the amounts of GA and IAA that accumulated. The Rhizobium strains studied included nod − and fix − mutants, making it unlikely that the IAA- and GA-biosynthesis genes are closely linked to the genes for nodulation and nitrogen fixation. The HPLC-immunoassay analyses showed also that nodules and non-nodulated roots of Phaseolus vulgaris L. contained similar spectra of GAs to R. phaseoli culture media. The GA pools in roots and nodules were of similar size, indicating that Rhizobium does not make a major contribution to the GA content of the infected tissue.

Journal ArticleDOI
01 Jul 1988-Planta
TL;DR: These observations established two major features of meristem activity: 1) at the time of germination the developmental fate of any cell or group of cells was not fixed, and 2) atThe time of Germination cells at the same location in a meristsem could produce greatly different amounts of tissue in the adult plant.
Abstract: A fate map for the shoot apical meristem of Zea mays L. at the time of germination was constructed by examining somatic sectors (clones) induced by γ-rays. The shoot apical meristem produced stem, leaves, and reproductive structures above leaf 6 after germination and the analysis here concerns their formation. On 160 adult plants which had produced 17 or 18 leaves, 277 anthocyanin-deficient sectors were scored for size and position. Sectors found on the ear shoot or in the tassel most often extended into the vegetative part of the plant. Sectors ranged from one to six internodes in length and some sectors of more than one internode were observed at all positions on the plant. Single-internode sectors predominated in the basal internodes (7,8,9) while longer sectors were common in the middle and upper internodes. The apparent number of cells which gave rise to a particular internode was variable and sectors were not restricted to the lineage unit: a leaf, the internode below it, and the axillary bud and prophyll at the base of the internode. These observations established two major features of meristem activity: 1) at the time of germination the developmental fate of any cell or group of cells was not fixed, and 2) at the time of germination cells at the same location in a meristem could produce greatly different amounts of tissue in the adult plant. Consequently, the developmental fate of specific cells in the germinating meristem could only be assigned in a general way.

Journal ArticleDOI
01 Jun 1988-Planta
TL;DR: One role for changes in the activation state of RuBPCase is to regulate the pool sizes of photosynthetic intermediates, as indicated by the result of short-term, in-vivo response to elevated CO2 of ribulose-1,5-bisphosphate carboxylase.
Abstract: The short-term, in-vivo response to elevated CO2 of ribulose-1,5-bisphosphate carboxylase (RuBPCase, EC 4.1.1.39) activity, and the pool sizes of ribulose 1,5-bisphosphate, 3-phosphoglyceric acid, triose phosphates, fructose 1,6-bisphosphate, glucose 6-phosphate and fructose 6-phosphate in bean were studied. Increasing CO2 from an ambient partial pressure of 360–1600 μbar induced a substantial deactivation of RuBPCase at both saturating and subsaturating photon flux densities. Activation of RuBPCase declined for 30 min following the CO2 increase. However, the rate of photosynthesis re-equilibrated within 6 min of the switch to high CO2, indicating that RuBPCase activity did not limit photosynthesis at high CO2. Following a return to low CO2, RuBPCase activation increased to control levels within 10 min. The photosynthetic rate fell immediately after the return to low CO2, and then increased in parallel with the increase in RuBPCase activation to the initial rate observed prior to the CO2 increase. This indicated that RuBPCase activity limited photosynthesis while RuBPCase activation increased. Metabolite pools were temporarily affected during the first 10 min after either a CO2 increase or decrease. However, they returned to their original level as the change in the activation state of RuBPCase neared completion. This result indicates that one role for changes in the activation state of RuBPCase is to regulate the pool sizes of photosynthetic intermediates.

Journal ArticleDOI
01 Oct 1988-Planta
TL;DR: Confinement of glycine decarboxylase to the bundle-sheath cells is likely to improve the potential for recapture ofPhotorespired CO2 via the Calvin cycle and could account for the low rate of photorespiration in all C3−C4 intermediate species.
Abstract: Immunogold labelling has been used to determine the cellular distribution of glycine decarboxylase in leaves of C3, C3−C4 intermediate and C4 species in the genera Moricandia, Panicum, Flaveria and Mollugo. In the C3 species Moricandia foleyi and Panicum laxum, glycine decarboxylase was present in the mitochondria of both mesophyll and bundle-sheath cells. However, in all the C3−C4 intermediate (M. arvensis var. garamatum, M. nitens, M. sinaica, M. spinosa, M. suffruticosa, P. milioides, Flaveria floridana, F. linearis, Mollugo verticillata) and C4 (P. prionitis, F. trinervia) species studied glycine decarboxylase was present in the mitochondria of only the bundle-sheath cells. The bundle-sheath cells of all the C3−C4 intermediate species have on their centripetal faces numerous mitochondria which are larger in profile area than those in mesophyll cells and are in close association with chloroplasts and peroxisomes. Confinement of glycine decarboxylase to the bundle-sheath cells is likely to improve the potential for recapture of photorespired CO2 via the Calvin cycle and could account for the low rate of photorespiration in all C3−C4 intermediate species.

Journal ArticleDOI
01 Apr 1988-Planta
TL;DR: The view that the high mechanosensitivity of the sensory hair results from its anatomy and not from a specialized perception mechanism is stressed, it is proposed that trap closure is triggered by a rise in the cytoplasmic concentration of Ca2+ or a Ca2-activated regulatory complex, which must exceed a threshold concentration.
Abstract: The intention of this investigation was to acquire more concise information about the nature of the action potential of Dionaea muscipula Ellis and the different types of cells generating and conducting it. It is shown by microelectrode measurements that, besides the sensory cells, all the major tissues of the trap lobes are excitable, firing action potentials with pronounced after-hyperpolarizations. The action potentials are strictly dependent on Ca2+. Their peak depolarizations are shifted 25–27 mV in a positive direction after a tenfold increase in external Ca2+ concentration. Perfusions with 1 mM ethylene glycol-bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid (EGTA) or 1 mM LaCl3 completely inhibit excitability. Magnesium ions only slightly affect the peak depolarizations but considerably prolong action potentials. Sodium azide and 2,4-dinitrophenol also abolish excitation, probably by reducing the intracellular ATP concentration. Furthermore, it is tested whether the sensory cells can be distinguished from the other cells of the trap by their electrical behaviour. The resting potentials of sensory cells (-161±7 mV) and mesophyll cells (-155±8 mV) are of the same magnitude. Changes in external ion concentrations affect resting and action potentials in both cell types in a similar way. Additional freeze-fracture studies of both cell types reveal similar numbers and distributions of intramembrane particles on the fracture faces of the plasma membrane, which is most likely the mechanosensor. These findings stress the view that the high mechanosensitivity of the sensory hair results from its anatomy and not from a specialized perception mechanism. It is proposed that trap closure is triggered by a rise in the cytoplasmic concentration of Ca2+ or a Ca2+-activated regulatory complex, which must exceed a threshold concentration. Since the Ca2+ influx during a single action potential does not suffice to reach this threshold, at least two stimulations of the trap are necessary to elicit movement.

Journal ArticleDOI
01 Oct 1988-Planta
TL;DR: Abscisic acid (ABA) applied in vitro for 5 d to 12-DAP embryos induces desiccation tolerance and represses a subset of polypeptides preferentially associated with 16- DAP embryos.
Abstract: We have investigated events which take place in the developing barley (Hordeum vulgare L.) embryo during its acquisition of desiccation tolerance. Excised embryos are capable of precocious germination as early as 8 d after pollination (DAP). At this age, however, they are not capable of resisting a desiccation treatment which induces a loss of 96-98% of their initial water content. At 16 DAP the embryos germinate despite the drastic drying treatment. The pattern of in-vivo and in-vitro proteins synthesized by the developing embryos from 12 DAP (desiccation-intolerant) and 16 DAP (desiccation-tolerant) were compared. A set of 25-30 proteins was identified which is denovo synthesized or enhanced during the developmental period leading to desiccation tolerance. Abscisic acid (ABA; 100 μM) applied in vitro for 5 d to 12-DAP embryos induces desiccation tolerance and represses a subset of polypeptides preferentially associated with 16-DAP embryos. During in vitro culture of barley embryos ABA stimulates the appearance of a set of proteins and prevents the precocious germination allowing embryogenesis to continue in vitro. It also suppresses a set of germination-related proteins which appear 4 h after the incubation of the dissected embryo on a germination medium without ABA. Almost all mRNAs remain functional for translation when isolated embryos are dried at the desiccation-intolerant and tolerant stages of embryo development.

Journal ArticleDOI
01 May 1988-Planta
TL;DR: A method for the sampling of volatiles emitted by individual flowers allowed the examination of diurnal changes in quantity and quality of fragrance, resulting in the rhythmical change of fragrance quality.
Abstract: A method for the sampling of volatiles emitted by individual flowers is described. Sampling over periods of 3 h allowed the examination of diurnal changes in quantity and quality of fragrance. In the species studied, Odontoglossum constrictum Lindl., Citrus medica L., Hoya carnosa R. Br., and Stephanotis floribunda Brongs., the fragrance was characterized by a few major components accompanied by a larger number of minor components. Flowers of all species produced volatiles in a rhythmical, diurnal fashion. Whereas in detached flowers of O. constrictum and C. medica rhythmicity could be observed for up to four cycles, flowers of H. carnosa showed this phenomenon only when attached to the plant. Maxima of emission were observed during the day in C. medica and O. constrictum whereas in H. carnosa it occurred during the night. In S. floribunda a conspicuous asynchronism of the emission of different volatiles was observed, resulting in the rhythmical change of fragrance quality.

Journal ArticleDOI
01 Sep 1988-Planta
TL;DR: Low-O2 decreased precocious germination of immature embryos, decreased callus growth, and improved development and viability of the resultant embryoids, which resulted in significantly fewer of the embryoids produced on ABA-containing medium germinated.
Abstract: The effects of O2, growth-regulators and desiccation on callus growth and somatic embryo (embryoid) development were investigated in cultures of immature embryos of two lines of Triticum aestivum L. Callus and embryoid formation were induced on media that contained N(6)-furfurylamin-opurine (kinetin) and either 2,4-dichlorophenoxyacetic acid or 3,6-dichloro-o-anisic acid, either with or without abscisic acid (ABA). Cultures containing differentiated embryoids were then exposed to high concentrations of both ABA and indole-3-acetic acid, after which samples were desiccated to approx. 10% tissue moisture. Incubating cultures in 3.2 mmol·l(-1) O2 (approx. 9%, low-O2) increased embryoid formation sixfold in one wheat line and nearly threefold in another. In the former line low-O2 caused the formation of mostly embryogenic callus. Low-O2 also decreased precocious germination of immature embryos, decreased callus growth, and improved development and viability of the resultant embryoids. Including 1.9 μmol·l(-1) ABA in the callus-induction medium reduced germination of immature embryos and reduced the incidence of embryoids with visible abnormalities. Despite the improved morphology, significantly fewer of the embryoids produced on ABA-containing medium germinated. Desiccation significantly enhanced germination of these embryoids as well as those produced on ABA-free medium.

Journal ArticleDOI
01 Apr 1988-Planta
TL;DR: The systemic induction of expression of the gene for proteinase inhibitor II after wounding different parts of potato (Solanum tuberosum L.) plants was analysed at the RNA level and no influence was observed for the expression of genes encoding the small subunit of ribulose-1,5-bisphosphate carboxylase and the tuber storage protein patatin.
Abstract: The systemic induction of expression of the gene for proteinase inhibitor II after wounding different parts of potato (Solanum tuberosum L.) plants was analysed at the RNA level. Wounding of either leaves or tubers led to an induction of expression of this gene in non-wounded upper and lower leaves as well as in the upper stem segment, whereas no expression was observed in nonwounded roots or in the lower stem segment. The signal mediating the systemic induction in nonwounded tissue must therefore be able to move both acropetally and basipetally. The systemic wound response is specific for the expression of the proteinase-inhibitor-II gene as no influence was observed for the expression of genes encoding the small subunit of ribulose-1,5-bisphosphate carboxylase and the tuber storage protein patatin which were examined in parallel with the proteinase-inhibitor-II gene.

Journal ArticleDOI
01 Dec 1988-Planta
TL;DR: The main period of galactolipid loss is characterized by RQ values as low as 0.63, indicating that long-chain fatty acids produced from thylakoidal acyl-lipids may be utilized for gluconeogenesis involving corresponding glyoxisomal metabolic pathways.
Abstract: The activities of two key enzymes of the glyoxylic-acid cycle, isocitrate lyase and malate synthase, can barely be detected in mature, presenescent primary leaves of barley (Hordeum vulgare L.) but are apparently induced in senescent leaf tissue. Upon incubation of leaf segments in permanent darkness, the activities appear and increase dramatically up to the sixth day and thereafter decline. The glyoxylic-acid cycle may thus be functional during foliar senescence. The main period of galactolipid loss is characterized by RQ values as low as 0.63, indicating that long-chain fatty acids produced from thylakoidal acyl-lipids may be utilized for gluconeogenesis involving corresponding glyoxisomal metabolic pathways. Foliar senescence may be characterized by a peroxisomeglyoxysome transition analogous to the glyoxisome-peroxisome transition in greening cotyledons of fat-storing seeds.

Journal ArticleDOI
01 Feb 1988-Planta
TL;DR: Three lines of evidence indicate a connection between high spermidine levels and floral initiation in thin-layer tissue cultures of Wisconsin-38 tobacco (Nicotiana tabacum L.).
Abstract: Three lines of evidence indicate a connection between high spermidine levels and floral initiation in thin-layer tissue cultures of Wisconsin-38 tobacco (Nicotiana tabacum L.). (1) Spermidine levels are much higher in floral buds than in vegetative buds. (2) Inhibition of spermidine synthesis by cyclohexylamine prevents the rise in spermidine titer, inhibits floral initiation and promotes the formation of vegetative buds instead. (3) Application of exogenous spermidine causes floral initiation in cultures which would otherwise form vegetative buds.

Journal ArticleDOI
01 Dec 1988-Planta
TL;DR: Examination of the effect of abrupt changes in temperature upon the rate of photosynthetic carbon assimilation in leaves of barley showed that as the temperature was decreased photosynthesis was saturated at progressively lower CO2 partial pressures and that the transition between the CO2-limited and ribulose-1,5-bisphosphate-regeneration-limited rate became more abrupt.
Abstract: The aim of this work was to examine the effect of abrupt changes in temperature in the range 5 to 30°C upon the rate of photosynthetic carbon assimilation in leaves of barley (Hordeum vulgare L.). Measurement of the CO2-assimilation rate in relation to the intercellular partial pressure of CO2 at different temperatures and O2 concentrations and at saturating irradiance showed that as the temperature was decreased photosynthesis was saturated at progressively lower CO2 partial pressures and that the transition between the CO2-limited and ribulose-1,5-bisphosphate-regeneration-limited rate became more abrupt. Feeding of orthophosphate to leaves resulted in an increased rate of CO2 assimilation at lower temperatures at around ambient or higher CO2 partial pressures both in 20% O2 and in 2% O2 and it removed the abruptness in the transition between the CO2-limited and ribulose-1,5-bisphosphate-regeneration-limited rates. Phosphate feeding tended to inhibit carbon assimilation at higher temperatures. The response of carbon assimilation to temperature was altered by feeding orthophosphate, by changing the concentrations of CO2 or of O2 or by leaving plants in the dark at 4°C for several hours. Similarly, the response of carbon assimilation to phosphate feeding or to changes in 2% O2 was altered by leaving the plants in the dark at 4°C. The mechanism of limitation of photosynthesis by an abrupt lowering of temperature is discussed in the light of the results.

Journal ArticleDOI
01 May 1988-Planta
TL;DR: The stability of [3H]zeatin riboside supplied to freshly excised tobacco pith explants was found to be inversely related to α-naphthaleneacetic acid concentration in the incubation medium, and the auxin effect on cytokinin metabolism appears to be mediated, at least in part, through cytokinIn oxidase.
Abstract: The stability of [3H]zeatin riboside supplied to freshly excised tobacco pith explants was found to be inversely related to α-naphthaleneacetic acid concentration in the incubation medium. At higher concentrations of α-naphthaleneacetic acid greater breakdown of [3H]zeatin riboside was indicated by higher levels of degradative metabolites (adenine, adenosine and adenosine nucleotides) formed. This auxin effect on cytokinin metabolism appears to be mediated, at least in part, through cytokinin oxidase. The results of in-vitro assays carried out with partially purified enzyme from corn kernels substantiale this conclusion. These findings are discussed in relation to recent observations of auxin and cytokinin levels in crown-gall tumours with altered morphology.

Journal ArticleDOI
01 Feb 1988-Planta
TL;DR: Plant and bacterial antigens contributing to nodule development and symbiosis in pea (Pisum sativum L.) roots were identified after isolation of a set of monoclonal antibody (McAb)-producing hybridoma lines to diversify the range of McAb specificities.
Abstract: Plant and bacterial antigens contributing to nodule development and symbiosis in pea (Pisum sativum L.) roots were identified after isolation of a set of monoclonal antibody (McAb)-producing hybridoma lines. Rats were immunised with the peribacteriod material released by mild osmotic shock treatment from membrane-enclosed bacteroids of Rhizobium leguminosarum bv. viceae. In order to diversify the range of McAb specificities, this material was either used as immunogen directly (method 1), or after immunodepletion of a set of glycoprotein and lipopolysaccharide antigens (method 2), or after deglycosylation (method 3). After fusion and screening of cloned hybridoma lines, these three immunisation methods gave respectively 4, 2 and 1 classes of McAb with unique antigen specificities. Ultrastructural immunogold localisation studies showed four different antigens to be present on peribacteriod and plasma membranes (identified by MAC 64, 202, 206 or 209); in addition, a glycoprotein of plant origin but present in the infection-thread matrix was identified by MAC 204. Although none of the epitopes recognised by these McAb was nodule-specific, several were found to be more abundant in extracts of nodule tissue than in uninfected roots (MAC 64, 202, 204, 206). Two McAb reacted with new bacterial antigens: MAC 203 identified a bacterial antigen expressed upon infection but not in free-living cultures of Rhizobium, and MAC 115 identified a bacterial polypeptide (55 kdaltons) that was present in both free-living and bacteroid forms. There were also some McAb of broader specificity that react with antigens present in both plant and bacterial cytoplasms.

Journal ArticleDOI
01 Mar 1988-Planta
TL;DR: Assays of glycollate oxidase, glyoxylate aminotransferases, and glycine decarboxylase indicate that the capacity for flux through the photorespiratory cycle is similar in both Moricandia arvensis and Moric andia moricandioides.
Abstract: Photorespiratory metabolism of the C3-C4 intermediate species Moricandia arvensis (L.) DC has been compared with that of the C3 species, Moricandia moricandioides (Boiss.) Heywood. Assays of glycollate oxidase (EC 1.1.3.1), glyoxylate aminotransferases (EC 2.6.1.4, EC 2.6.1.45) and hydroxypyruvate reductase (EC 1.1.1.29) indicate that the capacity for flux through the photorespiratory cycle is similar in both species. Immunogold labelling with monospecific antibodies was used to investigate the cellular locations of ribulose 1,5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39), glycollate oxidase, and glycine decarboxylase (EC 2.1.2.10) in leaves of the two species. Ribulose 1,5-bisphosphate carboxylase/oxygenase was confined to the stroma of chloroplasts and glycollate oxidase to the peroxisomes of all photosynthetic cells in leaves of both species. However, whereas glycine decarboxylase was present in the mitochondria of all photosynthetic cells in M. moricandioides, it was only found in the mitochondria of bundle-sheath cells in M. arvensis. We suggest that localized decarboxylation of glycine in the leaves of M. arvensis will lead to improved recapture of photorespired CO2 and hence a lower rate of photorespiration.

Journal ArticleDOI
01 Sep 1988-Planta
TL;DR: Low-temperature scanning electron microscopy was used to examine transverse fracture faces through cereal leaf pieces subjected to frost, indicating that collapse of the cell wall, as well as the enclosed protoplast, was driven by dehydration.
Abstract: Low-temperature scanning electron microscopy was used to examine transverse fracture faces through cereal leaf pieces subjected to frost. Specimens were studied before and after sublimation of the ice. The position of extracellular ice in the leaf was inferred from the difference between the specimen before and after sublimation and from ridges and points which occurred in the extracellular ice during sublimation. Steps in the fracture surface indicated that the fracture plane passed through the extracellular ice crystals as well as through cells and also helped identify extracellular ice. The cells in controls were turgid and extracellular ice was absent. Leaf pieces from hardened rye were excised and frost-stressed to-3.3°,-21° and-72°C, cooling at 2–12°·h-1. Cell collapse and extracellular ice were evident at-3.3°C and increased considerably by-21° C. At-21° and-72°C the leaf pieces were mainly filled with extracellular ice and there were few remaining gas spaces. The epidermal and mesophyll cells were laterally flattened, perpendicular to their attachment to adjacent cells, and phloem and vascular sheath cells were more irregularly deformed. Leaf pieces from tender barley were cooled at 2°C·min-1 to-20° C; they were then mainly filled with extracellular ice, and the cells were highly collapsed as in the rye. In rye leaves frozen to-3.6° C before excision, ice crystals occurred in peri-vascular, sub-epidermal and intervening mesophyll spaces. In rye leaf pieces frozen to-3.3° C after excision or to-3.6° C before excision, mesophyll cells were partly collapsed even when not covered by ice, indicating that collapse of the cell wall, as well as the enclosed protoplast, was driven by dehydration. No gas or ice-filled spaces were found between wall and the enclosed protoplast. It is suggested that this can be explained without invoking chemical bonding between cell wall and plasma membrane: when the wall pores are filled by water, the pore size would reduce vapour pressure so making penetration of the wall by ice or gas less likely.

Journal ArticleDOI
01 Jul 1988-Planta
TL;DR: It is suggested that the slender mutation allows competent tissues to express fully, or over-express, appropriate GA-induced processes independent of GA, and that shoot elongation, and hydrolytic-enzyme secretion in aleurone layers, share a common regulatory element.
Abstract: In barley (Hordeum vulgare L. cv. Herta), slender (sln1) is a single-locus recessive mutation which causes a plant to appear as if it had been grown in sturating concentrations of gibberellin (GA). We have investigated two of the GA-mediated processes in slender barley, shoot elongation and the induction of hydrolytic enzymes in aleurone layers. Shoot elongation is severely retarded in normal (wild-type) barley if the biosynthesis of GA is blocked by an inhibitor, ancymidol (α-cyclopropyl-α-(p-methoxyphenyl)-5-pyrimidinemethanol). However, the slender mutant continues to elongate in the presence of ancymidol. In isolated normal aleurone layers, the synthesis and secretion of α-amylase (EC 3.2.1.1), protease (EC 3.4) and nuclease (EC 3.1.30.2) are induced by exogenously applied GA3. However, in the aleurone layers of the slender mutant these enzymes are produced even in the absence of GA but their synthesis is still susceptible to inhibition by abscisic acid. Bioassays of half-seeds of the slender mutant and their normal siblings show no detectable differences in endogenous levels of GA-like substances. We suggest that the slender mutation allows competent tissues to express fully, or over-express, appropriate GA-induced processes independent of GA. We also conclude that shoot elongation, and hydrolytic-enzyme secretion in aleurone layers, share a common regulatory element.