scispace - formally typeset
Search or ask a question

Showing papers in "Planta Medica in 2021"


Journal ArticleDOI
TL;DR: The fate of rosmarinic acid inside the human body is presented, explained through pharmacokinetic steps and to briefly present the health benefits of RA.
Abstract: Rosmarinic acid is a phenolic compound commonly found in the Lamiaceae (Labiateae) plant species. It is considered responsible for a wide spectrum of biological and pharmacological activities of plants containing this compound. The aim of the current review is to present the fate of rosmarinic acid inside the human body, explained through pharmacokinetic steps and to briefly present the health benefits of RA. Pharmacokinetics was at first studied in animal models, but several studies were conducted in humans as well. This compound can be applied topically, pulmonary, intranasally, and via intravenous infusion. However, peroral application is the main route of entry into the human body. Presumably, it is mainly metabolized by the gut microflora, providing simple, more easily absorbed phenolic units. Inside the body, the rosmarinic acid molecule undergoes structural changes, as well as conjugation reactions. Renal excretion represents the main path of elimination. Previously conducted studies reported no serious adverse effects of herbal remedies containing RA, as well as their positive effects on human health. In addition to in vitro studies, clinical investigations suggested its benefits in dermatological, allergic, and osteoarthritic disorders, as well as for improving cognitive performance and in metabolic syndrome treatment. Future studies should investigate the kinetics during long-term application in patients who would have potential benefits from RA usage. Pharmaceutical formulations designed to prevent the fast metabolism of RA and allow its penetration into other compartments of the human body are also interesting topics for future research.

57 citations


Journal ArticleDOI
TL;DR: In this paper, a review of the applicability of fingerprints for quality control of herbal medicines is presented, highlighting the most used approaches, as well as demonstrating their usefulness, while also providing directions for a compound-oriented approach and a rational marker selection.
Abstract: Herbal medicines are important options for the treatment of several illnesses. Although their therapeutic applicability has been demonstrated throughout history, several concerns about their safety and efficacy are raised regularly. Quality control of articles of botanical origin, including plant materials, plant extracts, and herbal medicines, remains a challenge. Traditionally, qualitative (e.g., identification and chromatographic profile) and quantitative (e.g., content analyses) markers are applied for this purpose. The compound-oriented approach may stand alone in some cases (e.g., atropine in Atropa belladonna). However, for most plant materials, plant extracts, and herbal medicines, it is not possible to assure quality based only on the content or presence/absence of one (sometimes randomly selected) compound. In this sense, pattern-oriented approaches have been extensively studied, introducing the use of multivariate data analysis on chromatographic/spectroscopic fingerprints. The use of genetic methods for plant material/plant extract authentication has also been proposed. In this study, traditional approaches are reviewed, although the focus is on the applicability of fingerprints for quality control, highlighting the most used approaches, as well as demonstrating their usefulness. The literature review shows that a pattern-oriented approach may be successfully applied to the quality assessment of articles of botanical origin, while also providing directions for a compound-oriented approach and a rational marker selection. These observations indicate that it may be worth considering to include fingerprints and their data analysis in the regulatory framework for herbal medicines concerning quality control since this is the foundation of the holistic view that these complex products demand.

19 citations


Journal ArticleDOI
TL;DR: In traditional medicine, since ancient times, species of Teucrium species have been widely implemented for their biological properties, including antimicrobial, anti-inflammatory, antispasmodic, insecticidal,Anti-malaria, etc.
Abstract: The genus Teucrium is a large and polymorphic genus of the Lamiaceae family distributed in mild climate zones, particularly in the Mediterranean basin and Central Asia. Studies of nonvolatile constituents of Teucrium species showed that they are a rich source of neo-clerodane diterpenoids, considered as chemotaxonomic markers of the genus. In addition to the nonvolatile metabolites, there has been a large interest in the essential oils of this genus. In this review, a complete survey of the chemical composition and biological properties of the essential oils isolated from Teucrium taxa is provided. In traditional medicine, since ancient times, species of this genus have been widely implemented for their biological properties, including antimicrobial, anti-inflammatory, antispasmodic, insecticidal, anti-malaria, etc. Therefore, a complete review of all of the traditional uses of Teucrium taxa are also reported.

19 citations


Journal ArticleDOI
TL;DR: Artemisia annua (annual mugwort) is a species that has long been used in traditional Asian medicine, mainly Chinese and Hindu as mentioned in this paper, and it has become a subject of particular interest due to the 2015 Nobel Prize awarded for detecting the sesquiterpene lactone artemisinin in it and proving its antimalarial activities.
Abstract: Artemisia annua (annual mugwort) is a species that has long been used in traditional Asian medicine, mainly Chinese and Hindu. The species is widespread and known as a medicinal plant not only in Asia but also in Europe, in both Americas, and Australia. The species has become a subject of particular interest due to the 2015 Nobel Prize awarded for detecting the sesquiterpene lactone artemisinin in it and proving its antimalarial activities. The raw materials obtained from this species are Artemisiae annuae folium and Artemisiae annuae herba. The leaves are a raw material in the Chinese Pharmacopoeia and Vietnamese Pharmacopoeia. Both raw materials are in the International Pharmacopoeia published by the WHO. The main components of these raw materials are mainly specific sesquiterpene lactones, essential oil, flavonoids, coumarins, and phenolic acids. In traditional Asian medicine, the species is used, for example, in the treatment of jaundice and bacterial dysentery, as an antipyretic agent in malaria and tuberculosis, in the treatment of wounds and haemorrhoids, and in viral, bacterial, and autoimmune diseases. Professional pharmacological studies conducted today have confirmed its known traditional applications and explain previously unknown mechanisms of its biological action and have also found evidence of new directions of biological activity, including, among others, anti-inflammatory, analgesic, antioxidant, antitumour, and nephroprotective activities. The species is of growing importance in the cosmetics industry.

17 citations


Journal ArticleDOI
TL;DR: In this article, the authors provide an update regarding medicinal plants from the year 2000 to the present to examine the therapeutic potential of these antidepressant-like plants in order to contribute to the development of new therapeutic methods to alleviate the tremendous burden that depression causes worldwide.
Abstract: Medicinal plants and their extracts are natural remedies with enormous potential for treating various diseases, including depression and anxiety. In the case of depression, hundreds of plants have traditionally been used in folk medicine for generations. Different plant extracts and natural products have been analyzed as potential antidepressant agents with validated models to test for antidepressant-like effects in animals, although other complementary studies have also been employed. Most of these studies focus on the possible mediators implicated in these potential effects, with dopamine, serotonin, and noradrenaline being the principal neurotransmitters implicated, both through interference with receptors and with their metabolism by monoamino oxidases, as well as through neuro-endocrine and neuroprotective effects. There are approximately 650 reports of antidepressant-like medicinal plants in PubMed; 155 of them have been compiled in this review, with a relevant group yielding positive results. Saffron and turmeric are the most relevant species studied in both preclinical and clinical studies; St. Johnʼs wort or kava have also been tested extensively. To the best of our knowledge, no review to date has provided a comprehensive understanding of the biomolecular mechanisms of action of these herbs or of whether their potential effects could have real benefits. The purpose of this narrative review is to provide an update regarding medicinal plants from the year 2000 to the present to examine the therapeutic potential of these antidepressant-like plants in order to contribute to the development of new therapeutic methods to alleviate the tremendous burden that depression causes worldwide.

16 citations


Journal ArticleDOI
TL;DR: It is demonstrated that the self-microemulsifying formulation containing quercetin and resveratrol could successfully enhance the oral bioavailability of the combination of quercetus in rats without interfering with their biological activities.
Abstract: Both quercetin and resveratrol are promising plant-derived compounds with various well-described biological activities; however, they are categorized as having low aqueous solubility and labile natural compounds. The purpose of the present study was to propose a drug delivery system to enhance the oral bioavailability of combined quercetin and resveratrol. The suitable self-microemulsifying formulation containing quercetin together with resveratrol comprised 100 mg Capryol 90, 700 mg Cremophor EL, 200 mg Labrasol, 20 mg quercetin, and 20 mg resveratrol, which gave a particle size of 16.91 ± 0.08 nm and was stable under both intermediate and accelerated storage conditions for 12 months. The percentages of release for quercetin and resveratrol in the self-microemulsifying formulation were 75.88 ± 1.44 and 86.32 ± 2.32%, respectively, at 30 min. In rats, an in vivo pharmacokinetics study revealed that the area under the curve of the self-microemulsifying formulation containing quercetin and resveratrol increased approximately ninefold for quercetin and threefold for resveratrol compared with the unformulated compounds. Moreover, the self-microemulsifying formulation containing quercetin and resveratrol slightly enhanced the in vitro antioxidant and cytotoxic effects on AGS, Caco-2, and HT-29 cells. These findings demonstrate that the self-microemulsifying formulation containing quercetin and resveratrol could successfully enhance the oral bioavailability of the combination of quercetin and resveratrol without interfering with their biological activities. These results provide valuable information for more in-depth research into the utilization of combined quercetin and resveratrol.

14 citations


Journal ArticleDOI
TL;DR: In this paper, the potential antiviral and virucidal activities of essential oils and essential oil compounds together with their mechanism of action as well as in silico studies involving viral and host cell-specific target molecules that are indispensable for virus cell adsorption, penetration, and replication.
Abstract: Essential oils and isolated essential oil compounds are known to exert various pharmacological effects, such as antibacterial, antifungal, antiviral, anti-inflammatory, anti-immunomodulatory, antioxidant, and wound healing effects. Based on selected articles, this review deals with the potential antiviral and virucidal activities of essential oils and essential oil compounds together with their mechanism of action as well as in silico studies involving viral and host cell-specific target molecules that are indispensable for virus cell adsorption, penetration, and replication. The reported in vitro and in vivo studies highlight the baseline data about the latest findings of essential oils and essential oil compounds antiviral and virucidal effects on enveloped and non-enveloped viruses, taking into account available biochemical and molecular biological tests. The results of many in vitro studies revealed that several essential oils and essential oil compounds from different medicinal and aromatic plants are potent antiviral and virucidal agents that inhibit viral progeny by blocking different steps of the viral infection/replication cycle of DNA and RNA viruses in various host cell lines. Studies in mice infected with viruses causing respiratory diseases showed that different essential oils and essential oil compounds were able to prolong the life of infected animals, reduce virus titers in brain and lung tissues, and significantly inhibit the synthesis of proinflammatory cytokines and chemokines. In addition, some in vitro studies on hydrophilic nano-delivery systems encapsulating essential oils/essential oil compounds exhibited a promising way to improve the chemical stability and enhance the water solubility, bioavailabilty, and antiviral efficacy of essential oils and essential oil compounds.

13 citations


Journal ArticleDOI
TL;DR: In this paper, an overview of the potential biological interest of lichen depsidones is provided, including an overview on the most commonly used depside secondary metabolites, such as fumarprotocetraric acid, lobaric acid and norstictic acid.
Abstract: Depsidones are some of the most abundant secondary metabolites produced by lichens. These compounds have aroused great pharmacological interest due to their activities as antioxidants, antimicrobial, and cytotoxic agents. Hence, this paper aims to provide up-to-date knowledge including an overview of the potential biological interest of lichen depsidones. So far, the most studied depsidones are fumarprotocetraric acid, lobaric acid, norstictic acid, physodic acid, salazinic acid, and stictic acid. Their pharmacological activities have been mainly investigated in in vitro studies and, to a lesser extent, in in vivo studies. No clinical trials have been performed yet. Depsidones are promising cytotoxic agents that act against different cell lines of animal and human origin. Moreover, these compounds have shown antimicrobial activity against both Gram-positive and Gram-negative bacteria and fungi, mainly Candida spp. Furthermore, depsidones have antioxidant properties as revealed in oxidative stress in vitro and in vivo models. Future research should be focused on further investigating the mechanism of action of depsidones and in evaluating new potential actions as well as other depsidones that have not been studied yet from a pharmacological perspective. Likewise, more in vivo studies are prerequisite, and clinical trials for the most promising depsidones are encouraged.

13 citations


Journal ArticleDOI
TL;DR: Two groups of social insects have been prioritized in the studies, fungus-farming ants and stingless bees, leading to the identification of natural products involved in defensive and nutritional symbioses, and promising sources of biologically active small molecules are suggested.
Abstract: Small molecules frequently mediate symbiotic interactions between microorganisms and their hosts. Brazil harbors the highest diversity of insects in the world; however, just recently, efforts have been directed to deciphering the chemical signals involved in the symbioses of microorganisms and social insects. The current scenario of natural products research guided by chemical ecology is discussed in this review. Two groups of social insects have been prioritized in the studies, fungus-farming ants and stingless bees, leading to the identification of natural products involved in defensive and nutritional symbioses. Some of the compounds also present potential pharmaceutical applications as antimicrobials, and this is likely related to their ecological roles. Microbial symbioses in termites and wasps are suggested promising sources of biologically active small molecules. Aspects related to public policies for insect biodiversity preservation are also highlighted.

12 citations


Journal ArticleDOI
TL;DR: In this article, the authors summarized the current evidence on the effects of phytocannabinoids at the cutaneous level through the collection of in vitro, in vivo, and clinical studies published on PubMed, Scopus, Embase, and Web of Science until October 2020.
Abstract: The use of Cannabis sativa is currently recognized to ease certain types of chronic pain, reduce chemotherapy-induced nausea, and improve anxiety. Nevertheless, few studies highlighted the therapeutic potential of C. sativa extracts and related phytocannabinoids for a variety of widespread skin disorders including acne, atopic dermatitis, psoriasis, pruritus, and pain. This review summarized the current evidence on the effects of phytocannabinoids at the cutaneous level through the collection of in vitro, in vivo, and clinical studies published on PubMed, Scopus, Embase, and Web of Science until October 2020. Phytocannabinoids have demonstrated potential anti-inflammatory, antioxidant, anti-aging, and anti-acne properties by various mechanisms involving either CB1/2-dependent and independent pathways. Not only classical immune cells, but also several skin-specific actors, such as keratinocytes, fibroblasts, melanocytes, and sebocytes, may represent a target for phytocannabinoids. Cannabidiol, the most investigated compound, revealed photoprotective, antioxidant, and anti-inflammatory mechanisms at the cutaneous level, while the possible impact on cell differentiation, especially in the case of psoriasis, would require further investigation. Animal models and pilot clinical studies supported the application of cannabidiol in inflammatory-based skin diseases. Also, one of the most promising applications of non-psychotropic phytocannabinoids is the treatment of seborrheic disorders, especially acne. In conclusion, the incomplete knowledge of the role of the endocannabinoid system in skin disorders emerged as an important limit for pharmacological investigations. Moreover, the limited studies conducted on C. sativa extracts suggested a higher potency than single phytocannabinoids, thus stimulating new research on phytocannabinoid interaction.

12 citations


Journal ArticleDOI
TL;DR: Several active principles are indicated as responsible for the diuretic effects of the plants studied, with emphasis on phenolic compounds as flavonoids, phenolic acids, and xanthones, which should encourage more detailed preclinical, clinical, and phytochemical investigations on Brazilian plants in the future.
Abstract: Medicinal plants are used in traditional medicine to treat a wide range of ailments. The knowledge of them is handed down from generation to generation and is described in several pharmacopoeia and in the general literature. The immense biodiversity of the Brazilian flora, covering about 25% of all plant species worldwide, makes Brazil a huge potential source of medicinal plants. Indeed, many of these plant species are already used in the Brazilian ethnopharmacology for their probable effect to induce diuresis, to reduce fluid retention, and to treat cardiovascular and renal disorders. This review article describes and discusses the main native Brazilian medicinal plants (including some of their isolated compounds) used as diuretics. It also gives a comprehensive analysis of the most relevant scientific studies presented to date, as well as addressing a special topic with future prospects for plant species that have not yet been scientifically studied. In brief, several plants can be indicated for more detailed study, with a view to obtain scientific subsidies for a new and effective diuretic medicine in the future. These include Bauhinia forficata, Leandra dasytricha, and Tropaeolum majus. Other species have reputed medicinal properties but lack experimental assays to demonstrate their pharmacological effects (e.g., Mikania hirsutissima, Phyllanthus niruri, and Tagetes minuta). Several active principles are indicated as responsible for the diuretic effects of the plants studied, with emphasis on phenolic compounds as flavonoids, phenolic acids, and xanthones. These results should encourage more detailed preclinical, clinical, and phytochemical investigations on Brazilian plants in the future.

Journal ArticleDOI
TL;DR: The therapeutic potential of Compositae for the development of anti-inflammatory drugs is confirmed and the need to develop competencies and reduce technological bottlenecks to promote research and innovation in biodiversity products is reinforced.
Abstract: Compositae is the largest family of flowering plants, with more than 1600 genera and 22 000 species. It has many economic uses in foods, cosmetics, and pharmaceutics. The literature reports its numerous medicinal benefits and recognized anti-inflammatory activity. Thus, this study evaluated the technological trends of anti-inflammatory activity of Compositae, based on the survey of scientific databases, articles, and patents, as well as the website of the Brazilian National Health Regulatory Agency (ANVISA), which is responsible for registering and controlling of healthcare and cosmetic products in the Brazil. The survey was conducted between 2008 and 2018, in the databases Science Direct, Lilacs, PubMed, and Web of Science (main collection), as well as the SciELO Citation Index. The patent survey was carried out on the basis of the Derwent Innovations Index, an important source for worldwide patent consultation, which covers 20 y of registered patents. Despite the numerous studies involving species of the Compositae family in different models of anti-inflammatory activity, there are few records of patents or products on the market from these species for that purpose. Some species have a traditional use and are present even in the Phytotherapic Summary of the Brazilian Pharmacopeia. This review confirms the therapeutic potential of Compositae for the development of anti-inflammatory drugs and reinforces the need to develop competencies and reduce technological bottlenecks to promote research and innovation in biodiversity products.

Journal ArticleDOI
TL;DR: In this article, a comprehensive review of the use of herbs for treating anxiety and insomnia in clinical trials is presented, focusing mainly on PubMed, Scopus, and the Cochrane Library databases from 2010 to 2020.
Abstract: Sleep disorders are common among the general population and can generate health problems such as insomnia and anxiety. In addition to standard drugs and psychological interventions, there are different complementary plant-based therapies used to treat insomnia and anxiety. This review aimed to find and examine the most recent research on the use of herbal medicines for treating anxiety and insomnia as compiled from clinical trials, as well as to assess the safety and efficacy of these medicines and to elucidate their possible mechanisms of action. The process entailed a search of PubMed, Scopus, and the Cochrane Library databases from 2010 to 2020. The search terms included “sleep disorder”, “insomnia”, “sedative”, “hypnotic”, “anxiety”, “anxiolytic”, and “clinical trial”, combined with the search terms “herbs” and “medicinal plants”, in addition to individual herbal medicines by both their common and scientific names. This updated review, which focuses mainly on clinical trials, includes research on 23 medicinal plants and their combinations. Essential oils and their associations have also been reviewed. The efficacy of medicinal plants depends on treatment duration, types of study subjects, administration route, and treatment method. More clinical trials with an adequate, standardized design are necessary, as are more preclinical studies to continue studying the mechanisms of action. As a result of our work, we can conclude that the 3 plants with the most potential are valerian, passionflower, and ashwagandha, with the combination of valerian with hops and passionflower giving the best results in the clinical tests.

Journal ArticleDOI
TL;DR: In this paper, the authors provide a thorough overview of the state of scientific knowledge in the field of natural products from plant origin (e.g., extracts and pure compounds) as inhibitors of advanced glycation endproduct formation.
Abstract: Protein glycation, a post-translational modification found in biological systems, is often associated with a core defect in glucose metabolism. In particular, advanced glycation endproducts are complex heterogeneous sugar-derived protein modifications implicated in the progression of pathological conditions such as atherosclerosis, diabetic complications, skin diseases, rheumatism, hypertension, and neurodegenerative diseases. Undoubtedly, there is the need to expand the knowledge about antiglycation agents that can offer a therapeutic approach in preventing and treating health issues of high social and economic importance. Although various compounds have been under consideration, little data from clinical trials are available, and there is a lack of approved and registered antiglycation agents. Next to the search for novel synthetic advanced glycation endproduct inhibitors, more and more the efforts of scientists are focusing on researching antiglycation compounds from natural origin. The main purpose of this review is to provide a thorough overview of the state of scientific knowledge in the field of natural products from plant origin (e.g., extracts and pure compounds) as inhibitors of advanced glycation endproduct formation in the period between 1990 and 2019. Moreover, the objectives of the summary also include basic chemistry of AGEs formation and classification, pathophysiological significance of AGEs, mechanisms for inhibiting AGEs formation, and examples of several synthetic anti-AGEs drugs.

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the inhibitory effects and mechanisms of the Mulberry bark constituents on E. coli β-glucuronidase (EcGUS), the most abundant βgluronidases produced by intestinal bacteria.
Abstract: Intestinal bacterial β-glucuronidases, the key enzymes responsible for the hydrolysis of various glucuronides into free aglycone, have been recognized as key targets for treating various intestinal diseases. This study aimed to investigate the inhibitory effects and mechanisms of the Mulberry bark constituents on E. coli β-glucuronidase (EcGUS), the most abundant β-glucuronidases produced by intestinal bacteria. The results showed that the flavonoids isolated from Mulberry bark could strongly inhibit E. coli β-glucuronidase, with IC50 values ranging from 1.12 µM to 10.63 µM, which were more potent than D-glucaric acid-1,4-lactone. Furthermore, the mode of inhibition of 5 flavonoids with strong E. coli β-glucuronidase inhibitory activity (IC50 ≤ 5 µM) was carefully investigated by a set of kinetic assays and in silico analyses. The results demonstrated that these flavonoids were noncompetitive inhibitors against E. coli β-glucuronidase-catalyzed 4-nitrophenyl β-D-glucuronide hydrolysis, with Ki values of 0.97 µM, 2.71 µM, 3.74 µM, 3.35 µM, and 4.03 µM for morin (1), sanggenon C (2), kuwanon G (3), sanggenol A (4), and kuwanon C (5), respectively. Additionally, molecular docking simulations showed that all identified flavonoid-type E. coli β-glucuronidase inhibitors could be well-docked into E. coli β-glucuronidase at nonsubstrate binding sites, which were highly consistent with these agentsʼ noncompetitive inhibition mode. Collectively, our findings demonstrated that the flavonoids in Mulberry bark displayed strong E. coli β-glucuronidase inhibition activity, suggesting that Mulberry bark might be a promising dietary supplement for ameliorating β-glucuronidase-mediated intestinal toxicity.

Journal ArticleDOI
TL;DR: In this article, a review summarizes recent in vitro and in vivo evidence for the pharmacological potential of pentacyclic triterpenoids in the prevention and treatment of retinal diseases.
Abstract: Retinal diseases are a leading cause of impaired vision and blindness but some lack effective treatments. New therapies are required urgently to better manage retinal diseases. Natural pentacyclic triterpenoids and their derivatives have a wide range of activities, including antioxidative, anti-inflammatory, cytoprotective, neuroprotective, and antiangiogenic properties. Pentacyclic triterpenoids have great potential in preventing and/or treating retinal pathologies. The pharmacological effects of pentacyclic triterpenoids are often mediated through the modulation of signalling pathways, including nuclear factor erythroid-2 related factor 2, high-mobility group box protein 1, 11β-hydroxysteroid dehydrogenase type 1, and Src homology region 2 domain-containing phosphatase-1. This review summarizes recent in vitro and in vivo evidence for the pharmacological potential of pentacyclic triterpenoids in the prevention and treatment of retinal diseases. The present literature supports the further development of pentacyclic triterpenoids. Future research should now attempt to improve the efficacy and pharmacokinetic behaviour of the agents, possibly by the use of medicinal chemistry and targeted drug delivery strategies.

Journal ArticleDOI
TL;DR: This study is the first to report a promising cytotoxic effect of erianthridin, which provides preclinical evidence for further research and development of this compound.
Abstract: Due to the high mortality of lung cancer, natural derivative compounds have been promoted as versatile sources for anticancer drug discovery. Erianthridin, a phenanthrene compound isolated from Dendrobium formosum, exhibits intriguing apoptosis-inducing effects in non-small cell lung cancer cells. Apoptotic nuclei staining assays showed that apoptotic cells with DNA fragmentation and apoptotic bodies were apparent, and an increase in annexin V-FITC-positive cells were found in cells treated with erianthridin. The apoptosis protein markers for cleaved caspase-3 and cleaved poly-ADP-ribose polymerase were significantly upregulated in response to erianthridin. A mechanistic investigation revealed that erianthridin was able to attenuate extracellular signal-regulated kinase activity and thereby mediate apoptosis through the modulation of Bcl-2 family protein levels. U0126, an extracellular signal-regulated kinase inhibitor, augmented the apoptosis-inducing effect of erianthridin; in contrast, overexpression of exogenous extracellular signal-regulated kinase substantially abrogated erianthridin activity. Furthermore, an in vitro 3D tumorigenesis assay showed that erianthridin was able to potentially suppress lung cancer cell proliferation. This study is the first to report a promising cytotoxic effect of erianthridin, which provides preclinical evidence for further research and development of this compound.

Journal ArticleDOI
TL;DR: In this article, two next-generation sequencing approaches were used: (1) genome skimming and (2) PCR amplicon (metabarcoding) to authenticate botanical dietary supplements.
Abstract: The use of DNA-based methods to authenticate botanical dietary supplements has been vigorously debated for a variety of reasons. More comparisons of DNA-based and chemical methods are needed, and concordant evaluation of orthogonal approaches on the same products will provide data to better understand the strengths and weaknesses of both approaches. The overall application of DNA-based methods is already firmly integrated into a wide array of continually modernizing stand alone and complementary authentication protocols. Recently, the use of full-length chloroplast genome sequences provided enhanced discriminatory capacity for closely related species of Echinacea compared to traditional DNA barcoding approaches (matK and rbcL). Here, two next-generation sequencing approaches were used: (1) genome skimming and (2) PCR amplicon (metabarcoding). The two genetic approaches were then combined with HPLC-UV to evaluate 20 commercially available dietary supplements of Echinacea representing “finished” products. The trade-offs involved in different DNA approaches were discussed, with a focus on how DNA methods support existing, accepted chemical methods. In most of the products (19/20), HPLC-UV suggested the presence of Echinacea spp. While metabarcoding was not useful with this genus and instead only resolved 7 products to the family level, genome skimming was able to resolve to species (9) or genus (1) with the 10/20 products where it was successful. Additional ingredients that HPLC-UV was unable to identify were also found in four products along with the relative sequence proportion of the constituents. Additionally, genome skimming was able to identify one product that was a different Echinacea species entirely.

Journal ArticleDOI
TL;DR: One isolated triterpenic ester mixture in equilibrium showed an attractive promising antitrypanosomal activity with low cytotoxicity compared to the corresponding acid, and further bioavailability and PK studies are needed along with mode of action investigations to further assess the potential of this molecule.
Abstract: Leaves of Vitellaria paradoxa, also called “Shea butter tree”, are used in traditional medicine to treat various symptoms including malaria fever, dysentery, or skin infections. Composition of the dichloromethane extract of V. paradoxa leaves possessing antiparasitic activities was investigated. Five pentacyclic triterpenic acids together with 6 ester derivatives were isolated and identified by standards comparison, MS and 1H-NMR analysis. Corosolic, maslinic, and tormentic coumaroyl esters and their corresponding triterpenic acids were isolated from this plant for the first time. The antiparasitic activities of the 11 isolated compounds were evaluated in vitro on Plasmodium falciparum, Trypanosoma brucei brucei, and Leishmania mexicana mexicana and their selectivity determined by cytotoxicity evaluation on WI38 cells. None of the isolated compounds showed good antiplasmodial activity. The antitrypanosomal activity of individual compounds was in general higher than their antileishmanial one. One isolated triterpenic ester mixture in equilibrium, 3-O-p-E/Z-coumaroyltormentic acids, showed an attractive promising antitrypanosomal activity (IC50 = 0.7 µM) with low cytotoxicity (IC50= 44.5 µM) compared to the corresponding acid. Acute toxicity test on this ester did not show any toxicity at the maximal cumulative dose of 100 mg/kg intraperitoneally on mice. In vivo efficacy evaluation of this compound, at 50 mg/kg by intraperitoneal route on a T. b. brucei-infected mice model, showed a significant parasitemia reduction on day 4 post-infection together with 33.3% survival improvement. Further bioavailability and PK studies are needed along with mode of action investigations to further assess the potential of this molecule.

Journal ArticleDOI
TL;DR: The 2nd International Workshop of Pyrrolizidine Alkaloids (WOWA 2020) as discussed by the authors was held in September 2020 in Kaiserslautern, Germany.
Abstract: This paper reports on the major contributions and results of the 2nd International Workshop of Pyrrolizidine Alkaloids held in September 2020 in Kaiserslautern, Germany. Pyrrolizidine alkaloids are among the most relevant plant toxins contaminating food, feed, and medicinal products of plant origin. Hundreds of PA congeners with widespread occurrence are known, and thousands of plants are assumed to contain PAs. Due to certain PAsʼ pronounced liver toxicity and carcinogenicity, their occurrence in food, feed, and phytomedicines has raised serious human health concerns. This is particularly true for herbal teas, certain food supplements, honey, and certain phytomedicinal drugs. Due to the limited availability of animal data, broader use of in vitro data appears warranted to improve the risk assessment of a large number of relevant, 1,2-unsaturated PAs. This is true, for example, for the derivation of both toxicokinetic and toxicodynamic data. These efforts aim to understand better the modes of action, uptake, metabolism, elimination, toxicity, and genotoxicity of PAs to enable a detailed dose-response analysis and ultimately quantify differing toxic potencies between relevant PAs. Accordingly, risk-limiting measures comprising production, marketing, and regulation of food, feed, and medicinal products are discussed.

Journal ArticleDOI
TL;DR: The toxicity of plants containing certain pyrrolizidine alkaloids has long been recognized in grazing animals and humans as mentioned in this paper, leading to regulatory action on herbal medicinal products with pyrrin-izidine-alkaloid-containing plants more than 30 years ago.
Abstract: The toxicity of plants containing certain pyrrolizidine alkaloids has long been recognized in grazing animals and humans. Genotoxicity and carcinogenicity data from in vitro and in vivo (animal) studies were published over the last few decades for some of the 1,2-unsaturated pyrrolizidine alkaloids, leading to regulatory action on herbal medicinal products with pyrrolizidine alkaloid-containing plants more than 30 years ago. In recent years, it has become evident that in addition to herbal medicinal products containing pyrrolizidine alkaloid-containing plants, these products may also contain pyrrolizidine alkaloids without actually including pyrrolizidine alkaloid-containing plants. This is explained by contamination by accessory herbs (weeds). The national competent authorities of the European member states and the European Medicines Agency, in this case, the Committee on Herbal Medicinal Products, reacted to these findings by setting limits for all herbal medicinal products. This review article will briefly discuss the data leading to the establishment of thresholds and the regulatory developments and consequences, as well as the current discussions and research in this area.

Journal ArticleDOI
TL;DR: The leaves of Dracaena steudneri yielded 6 new flavonoids which were evaluated for their anti-inflammatory potential through measurement of the levels of cytokines IL-1β, IL-2, GM-CSF, and TNF-α in the supernatant of human peripheral blood mononuclear cells stimulated by lipopolysaccharide.
Abstract: The leaves of Dracaena steudneri yielded 6 new flavonoids-3,5,7-trihydroxy-6-methyl-3',4'-methylenedioxyflavone (1: ), 5,7-dihydroxy-3-methoxy-6-methyl-3',4'-methylenedioxyflavone (2: ), 3,5,7-trihydroxy-6-methoxy-3',4'-methylenedioxyflavone (3: ), (2S,3S)-3,7-dihydroxy-6-methoxy-3',4'-methylenedioxyflavanone (4: ), 4',5,7-trihydroxy-3,3',8-trimethoxy-6-methylflavone (5: ), (2R) 7-hydroxy-2',8-dimethoxyflavanone (6: )-together with 13 known congeners. Their structures were established using spectroscopic and spectrometric methods including NMR, CD, and HRMSn measurements. The compounds were evaluated for their anti-inflammatory potential through measurement of the levels of cytokines IL-1β, IL-2, GM-CSF, and TNF-α in the supernatant of human peripheral blood mononuclear cells stimulated by lipopolysaccharide. Flavones derivatives 1: -4: with a C-3'/4' methylenedioxy substituent led to a substantial increase in the production of IL-1β and GM-CSF out of 4 pro-inflammatory cytokines relative to LPS control. Quercetin derivatives 5, 11,: and 13: with a hydroxyl group at C-4' inhibited the production of IL-2, GM-CSF, and TNF-α. The presence of a C-2/C-3 double bond in 14: was pivotal to the significantly stronger (0.4 to 27.5% of LPS control) inhibitory effect compared to its dihydro derivative 8: (36.2 to 262.7% of LPS control) against all tested cytokines. It is important to note that the inhibitory activity of 14: was substantially higher than that of the standard drug used, ibuprofen.

Journal ArticleDOI
TL;DR: MixONat as mentioned in this paper is a software that processes 13C and distortionless enhancement by polarization transfer (DEPT)-135 and -90 data, allowing carbon multiplicity (i.e., CH3, CH2, CH, and C) filtering as a critical step.
Abstract: The growing use of herbal medicines worldwide requires ensuring their quality, safety, and efficiency to consumers and patients. Quality controls of vegetal extracts are usually undertaken according to pharmacopeial monographs. Analyses may range from simple chemical experiments to more sophisticated but more accurate methods. Nowadays, metabolomic analyses allow a fast characterization of complex mixtures. In the field, besides mass spectrometry (MS), nuclear magnetic resonance spectroscopy (NMR) has gained importance in the direct identification of natural products in complex herbal extracts. For a decade, automated dereplication processes based on 13C-NMR have been emerging to efficiently identify known major compounds in mixtures. Though less sensitive than MS, 13C-NMR has the advantage of being appropriate to discriminate stereoisomers. Since NMR spectrometers nowadays provide useful datasets in a reasonable time frame, we have recently made available MixONat, a software that processes 13C as well as distortionless enhancement by polarization transfer (DEPT)-135 and -90 data, allowing carbon multiplicity (i.e., CH3, CH2, CH, and C) filtering as a critical step. MixONat requires experimental or predicted chemical shifts (δ C) databases and displays interactive results that can be refined based on the userʼs phytochemical knowledge. The present article provides step-by-step instructions to use MixONat starting from database creation with freely available and/or marketed δ C datasets. Then, for training purposes, the reader is led through a 30 – 60 min procedure consisting of the 13C-NMR based dereplication of a peppermint essential oil.

Journal ArticleDOI
TL;DR: In this article, six different alkaloids were detected in T. cordata and T. platyphyllos flowers, including tiliines A and B, and tilacetines B and C-10 alkyl chain.
Abstract: Lime flowers, traditionally used for medical purposes for the treatment of symptoms of the common cold and mental stress, consist of the dried inflorescences including the floral bracts of Tilia cordata, Tilia platyphyllos, Tilia × vulgaris, or mixtures thereof. During phytochemical investigations, 6 different alkaloids – not described until now – were detected in T. cordata and T. platyphyllos flowers. They have been isolated and characterized as alkaloids with a dihydro-pyrrole and a piperidine substructure, respectively. Compounds 1a and 1b (tiliines A and B) are characterized as 2 diastereomers containing a 2-methyl-3,4-dihydro-2H-pyrrol-3-ol, connected via a C-10 alkyl chain to a O-glucosylated hydroquinone moiety. Compounds 2a and 2b (tiliamines A and B) are diastereomers of a 2-methyl-substituted piperidin-3-ol, coupled via a C-9 alkyl chain again to an O-glucosylated hydroquinone moiety. Compounds 3a and 3b (tilacetines A and B) are 3-O-acetylated derivatives of tiliamines. Quantification of the 6 alkaloids by HPLC-ESI-qTOF analysis indicated the presence of all alkaloids in T. cordata flowers and T. platyphyllos flowers, bracts, and leaves, with tiliines A and B and tilacetines A and B being the major compounds. Acetone/water turned out be the best extraction solvent for the alkaloids, but ethanol and ethanol/water mixtures also can be used for effective extraction. Furthermore, the alkaloids are found in hot water extracts, which are typically used in the traditional medicine.

Journal ArticleDOI
TL;DR: In this paper, the authors evaluated the antifungal potential of M.bella loaded on the microemulsion against Candida sp for minimum inhibitory concentration, using the microdilution technique.
Abstract: Myrcia bella is a medicinal plant used for the treatment of diabetes, hemorrhages, and hypertension in Brazilian folk medicine. Considering that plant extracts are attractive sources of new drugs, the aim of the present study was to verify the influence of incorporating 70% hydroalcoholic of M. bella leaves in nanostructured lipid systems on the mutagenic and antifungal activities of the extract. In this work, we evaluated the antifungal potential of M. bella loaded on the microemulsion against Candida sp for minimum inhibitory concentration, using the microdilution technique. The system was composed of polyoxyethylene 20 cetyl ether and soybean phosphatidylcholine (10%), grape seed oil, cholesterol (10%: proportion 5/1), and purified water (80%). To investigate the mutagenic activity, the Ames test was used with the Salmonella Typhimurium tester strains. M. bella, either incorporated or free, showed an important antifungal effect against all tested strains. Moreover, the incorporation surprisingly inhibited the mutagenicity presented by the extract. The present study attests the antimicrobial properties of M. bella extract, contributing to the search for new natural products with biological activities and suggesting caution in its use for medicinal purposes. In addition, the results emphasize the importance of the use of nanotechnology associated with natural products as a strategy for the control of infections caused mainly by the genus Candida sp.

Journal ArticleDOI
TL;DR: In this paper, structural insights into the proanthocyanidins present in Ginkgo extract EGb 761 and a quantitative method for their determination using HPLC are shown.
Abstract: The Ginkgo extract EGb 761® manufactured with leaves of Ginkgo biloba has been continuously produced over decades at a large scale and is used as a clinically proven remedy for, among other things, the improvement of age-associated cognitive impairment and quality of life in patients with mild dementia. It belongs to the class of extracts addressed as quantified extracts according to the European Pharmacopeia. Accordingly, several compounds (e.g., flavone glycosides and terpene trilactones) are acknowledged to contribute to its clinical efficacy. Covering only about 30% of the mass balance, these characterized compounds are accompanied by a larger fraction of additional compounds, which might also contribute to the clinical efficacy and safety of the extract. As part of our systematic research to fully characterize the constituents of Ginkgo extract EGb 761, we focus on the structural class of proanthocyanidins in the present study. Structural insights into the proanthocyanidins present in EGb 761 and a quantitative method for their determination using HPLC are shown. The proanthocyanidins were found to be of oligomeric to polymeric structure, which yield delphinidin and cyanidin as main building blocks after acidic hydrolysis. A validated HPLC method for quantification of the anthocyanidins was developed in which delphinidin and cyanidin were detected after hydrolysis of the proanthocyanidins. The content of proanthocyanidins in Ginkgo extract EGb 761 was found to be approximately 7%.

Journal ArticleDOI
TL;DR: In this paper, four new chlorinated cyclopentene derivatives, rhytidhyesters A and D (1, 2, 3, 4), were isolated from Rhytidhysteron sp. BZM-9, an endophytic fungus from Leptospermum brachyandrum.
Abstract: Four new chlorinated cyclopentene derivatives, rhytidhyesters A – D (1 – 4), were isolated from Rhytidhysteron sp. BZM-9, an endophytic fungus from Leptospermum brachyandrum. The planar structures of compounds 1 – 4 were mainly elucidated by 1D, 2D NMR, and HRESIMS data. Their absolute configurations were established by X-ray crystallographic analysis, quantum chemical 13C NMR, and electronic circular dichroism calculations. Compounds 1 and 2 are a pair of epimers. Moreover, all the isolated compounds were evaluated for cytotoxic activities against 3 human colon cancer cell lines (SW620, HT29, SW480) and antimicrobial activity against Staphylococcus aureus. All compounds exhibited weak to moderate antiproliferative activities with IC50 values ranging from 15.4 to 37.7 µM but were inactive against S. aureus.

Journal ArticleDOI
TL;DR: In this article, a Code of Practice for the management of potential contamination of medicinal plant materials with pyrrolizidine alkaloids caused by weeds has been proposed by the Herbal Medicinal Products Committee.
Abstract: Against the background of potential contamination of medicinal plant materials with pyrrolizidine alkaloids caused by weeds, suppliers of herbal drugs and manufacturers of herbal medicinal products have taken action by establishing a Code of Practice by monitoring potential contamination and by collection of data. In August 2020, the Herbal Medicinal Products Committee, in its new draft public statement, proposed a daily intake of 1.0 µg of pyrrolizidine alkaloids per day for adults in general, also including contaminations of herbal medicinal products. Over the past years, the results of data collections showed a remarkable reduction of the pyrrolizidine alkaloid burden in herbal drugs and herbal extracts. Meanwhile, a stable situation has been achieved for herbal drugs, while further improvement can be observed for herbal extracts. The results indicate that the implemented measures have been efficient and contribute to a continuous and sustainable reduction of pyrrolizidine alkaloid contamination. A permanent limit of 1.0 µg of pyrrolizidine alkaloids per day is considered appropriate to guarantee sufficient availability of batches used for the production of herbal medicinal products. The new Ph.Eur. general chapter 2.8.26 describes, as an example, an analytical procedure suitable for the determination of target pyrrolizidine alkaloids.

Journal ArticleDOI
TL;DR: In this article, the authors evaluated the safety of extracts from St. John's wort, California poppy, valerian, lavender, and hops in terms of cytotoxicity, induction of apoptosis, genotoxicity and effects on metabolic properties and differentiation.
Abstract: Pregnancy is a critical period for medical care, during which the well-being of woman and fetus must be considered. This is particularly relevant in managing non-psychotic mental disorders since treatment with central nervous system-active drugs and untreated NMDs may have negative effects. Some well-known herbal preparations (phytopharmaceuticals), including St. Johnʼs wort, California poppy, valerian, lavender, and hops, possess antidepressant, sedative, anxiolytic, or antidepressant properties and could be used to treat mental diseases such as depression, restlessness, and anxiety in pregnancy. Our goal was to assess their safety in vitro, focusing on cytotoxicity, induction of apoptosis, genotoxicity, and effects on metabolic properties and differentiation in cells widely used as a placental cell model (BeWo b30 placenta choriocarcinoma cells). The lavender essential oil was inconspicuous in all experiments and showed no detrimental effects. At low-to-high concentrations, no extract markedly affected the chosen safety parameters. At an artificially high concentration of 100 µg/mL, extracts from St. Johnʼs wort, California poppy, valerian, and hops had minimal cytotoxic effects. None of the extracts resulted in genotoxic effects or altered glucose consumption or lactate production, nor did they induce or inhibit BeWo b30 cell differentiation. This study suggests that all tested preparations from St. Johnʼs wort, California poppy, valerian, lavender, and hops, in concentrations up to 30 µg/mL, do not possess any cytotoxic or genotoxic potential and do not compromise placental cell viability, metabolic activity, and differentiation. Empirical and clinical studies during pregnancy are needed to support these in vitro data.

Journal ArticleDOI
TL;DR: In this article, H. tuberculatum essential oils, hydrosols, the pure compounds R-(+)-limonene, S-(−)-limonsene, and 1-octanol were screened for their cytotoxicity on HEp-2 cells after 24, 48, and 72 hours, and then tested for their activity against Coxsackievirus B3 and B4 at three different moments: addition of the plant compounds before, after, or together with virus inoculation.
Abstract: Haplophyllum tuberculatum is a plant commonly used in folk medicine to treat several diseases including vomiting, nausea, infections, rheumatism, and gastric pains. In the current study, H. tuberculatum essential oils, hydrosols, the pure compounds R-(+)-limonene, S-(−)-limonene, and 1-octanol, as well as their combinations R-(+)-limonene/1-octanol and S-(−)-limonene/1-octanol, were screened for their cytotoxicity on HEp-2 cells after 24, 48, and 72 h, and then tested for their activity against Coxsackievirus B3 and B4 (CV-B3 and CV-B4) at 3 different moments: addition of the plant compounds before, after, or together with virus inoculation. Results showed that the samples were more cytotoxic after 72 h than after 24 h or 48 h cell contact. However, the combinations R-(+)-limonene/1-octanol and S-(−)-limonene/1-octanol showed less effect on HEp-2 cells than pure R-(+)-limonene and S-(−)-limonene after 24 h, 48 h, and 72 h. 1-octanol exhibited the highest concentration causing 50% cytotoxicity (CC50) on HEp-2 cells after 24 h (CC50 = 93 µg/mL) and 48 h (CC50 = 83 µg/mL). The antiviral assays showed that the tested samples exhibited potent inhibition of CV-B. IC50 values ranged from 0.66 µg/mL to 28.4 µg/mL. In addition, CV-B3 was more sensitive than CV-B4. Both CV-B strains are more inhibited when cells were pretreated with the plant compounds. The hydrosols have no effect, neither on HEp-2 cells nor on the virus. 1-octanol, S-(−), and R-(+)-limonene/1-octanol had important selectivity indexes over time. Although essential oils had potent antiviral activity, they can be considered for application in the pretreatment of cells. However, 1-octanol and the combinations are within the safety limits, and thus, they can be used as an active natural antiviral agent for CV-B3 and CV-B4 inhibition.