scispace - formally typeset
Search or ask a question

Showing papers in "Plasma Physics and Controlled Fusion in 2014"


Journal ArticleDOI
TL;DR: In this paper, a qualitative analysis of dissipative structures in planar low-temperature dc gas-discharge devices with a high ohmic barrier is presented, and it is demonstrated that for these systems a deep qualitative understanding can be obtained from the point of view of synergetics.
Abstract: The understanding of self-organized patterns in spatially extended nonlinear dissipative systems is one of the most challenging subjects in modern natural sciences. Such patterns are also referred to as dissipative structures. We review this phenomenon in planar low temperature dc gas-discharge devices with a high ohmic barrier. It is demonstrated that for these systems a deep qualitative understanding of dissipative structures can be obtained from the point of view of synergetics. At the same time, a major contribution can be made to the general understanding of dissipative structures. The discharge spaces of the experimentally investigated systems, to good approximation, have translational and rotational symmetry by contraction. Nevertheless, a given system may exhibit stable current density distributions and related patterns that break these symmetries. Among the experimentally observed fundamental patterns one finds homogeneous isotropic states, fronts, periodic patterns, labyrinth structures, rotating spirals, target patterns and localized filaments. In addition, structures are observed that have the former as elementary building blocks. Finally, defect structures as well as irregular patterns are common phenomena. Such structures have been detected in numerous other driven nonlinear dissipative systems, as there are ac gas-discharge devices, semiconductors, chemical solutions, electrical networks and biological systems. Therefore, from the experimental observations it is concluded that the patterns in planar low temperature dc gas-discharge devices exhibit universal behavior. From the theoretical point of view, dissipative structures of the aforementioned kind are also referred to as attractors. The possible sets of attractors are an important characteristic of the system. The number and/or qualitative nature of attractors may change when changing parameters. The related bifurcation behavior is a central issue of the synergetic approach chosen in the present article. A short review of possible theoretical approaches reveals that a theoretical description of the experimentally observed patterns is far from being satisfactory. Bearing this in mind, a qualitative model of the reaction-diffusion type is considered. Surprisingly enough, this model allows for a qualitative description of almost all fundamental patterns that have been observed experimentally. Also, so far the predictive power of this model is unmatched.

142 citations


Journal ArticleDOI
TL;DR: In this article, the authors review the physical principles and some experimental considerations for a future proton-driven plasma wakefield accelerator and demonstrate the power of proton driven wakefield acceleration.
Abstract: New acceleration technology is mandatory for the future elucidation of fundamental particles and their interactions. A promising approach is to exploit the properties of plasmas. Past research has focused on creating large-amplitude plasma waves by injecting an intense laser pulse or an electron bunch into the plasma. However, the maximum energy gain of electrons accelerated in a single plasma stage is limited by the energy of the driver. Proton bunches are the most promising drivers of wakefields to accelerate electrons to the TeV energy scale in a single stage. An experimental program at CERN—the AWAKE experiment—has been launched to study in detail the important physical processes and to demonstrate the power of proton-driven plasma wakefield acceleration. Here we review the physical principles and some experimental considerations for a future proton-driven plasma wakefield accelerator.

104 citations


Journal ArticleDOI
TL;DR: In this paper, it was shown that such poloidally uneven distribution of impurity ions can enhance or reduce their neoclassical transport by one to two orders of magnitude, or even reverse the direction of the neoclassically impurity convection, depending on the level of poloidal asymmetry of the impurity density distribution and on the ratio of the logarithmic ion temperature gradient to the lognormal density gradient.
Abstract: Heavy impurity ions in tokamaks are not always evenly distributed over flux surfaces. For instance, toroidal plasma rotation can give rise to a centrifugal force large enough to push impurities to the outboard side of the torus, or ion-cyclotron resonance heating of minority ions can cause inboard impurity localization. It is shown that such poloidally uneven distribution of the impurity ions can enhance or reduce their neoclassical transport by one to two orders of magnitude, or even reverse the direction of the neoclassical impurity convection, depending on the level of poloidal asymmetry of the impurity density distribution and on the ratio of the logarithmic ion temperature gradient to the logarithmic density gradient.

90 citations


Journal ArticleDOI
TL;DR: In this article, the authors review the prospects of laser wakefield accelerators as next generation light sources for applications such as X-ray phase contrast imaging, x-ray absorption spectroscopy, and nuclear resonance fluorescence.
Abstract: In this article we review the prospects of laser wakefield accelerators as next generation light sources for applications. This work arose as a result of discussions held at the 2013 Laser Plasma Accelerators Workshop. X-ray phase contrast imaging, x-ray absorption spectroscopy, and nuclear resonance fluorescence are highlighted as potential applications for laser–plasma based light sources. We discuss ongoing and future efforts to improve the properties of radiation from plasma betatron emission and Compton scattering using laser wakefield accelerators for these specific applications.

85 citations


Journal ArticleDOI
TL;DR: The Li-BES is an appropriate tool to study transport phenomena in the scrape off layer (SOL) over a wide range of plasma parameters due to its robustness and routine usage.
Abstract: The lithium beam emission spectroscopy (Li-BES) is a powerful diagnostic to resolve the plasma edge density with high temporal and spatial resolution. The recent upgrades of the Li-BES at ASDEX Upgrade and the resulting gain in photon flux allow the plasma edge density to be determined with an advanced level of accuracy. Furthermore, electron density fluctuations are measured using Li-BES. The Li-BES capabilities and limitations to measure electron density profiles as well as density fluctuations are presented. It is well suited to characterize electron density turbulence in the scrape off layer (SOL) with decreasing sensitivity towards the plasma core. This is demonstrated by simulations as well as by comparisons with other diagnostics. The Li-BES is an appropriate tool to study transport phenomena in the SOL over a wide range of plasma parameters due to its robustness and routine usage.

78 citations


Journal ArticleDOI
TL;DR: The proposed model is based on the analysis of the fast ion response to TAE modes through the ORBIT code, but it can be generalized to higher frequency modes (e.g. compressional and global Alfven eigenmodes) and to other numerical codes or theories.
Abstract: Fast ion transport models currently implemented in the tokamak transport code TRANSP (Hawryluk 1980 Physics of Plasmas Close to Thermonuclear Conditions (Brussels: CEC)) are not capturing important aspects of the physics associated with resonant transport caused by instabilities such as toroidal Alfven eigenmodes (TAEs). This work describes the implementation of a fast ion transport model consistent with the basic mechanisms of resonant mode–particle interaction. The model is formulated in terms of a probability distribution function for the particle's steps in phase space, which is consistent with the Monte Carlo approach used in TRANSP. The proposed model is based on the analysis of the fast ion response to TAE modes through the ORBIT code (White and Chance 1984 Phys. Fluids 27 2455), but it can be generalized to higher frequency modes (e.g. compressional and global Alfven eigenmodes) and to other numerical codes or theories.

73 citations


Journal ArticleDOI
TL;DR: Comparisons to the fully explicit Pic code OSIRIS show the capability of the quasi-static PIC code to consistently simulate problems in beam-driven plasma acceleration while reducing the required number of core hours by orders of magnitude.
Abstract: We introduce the Highly efficient Plasma Accelerator Emulation (HiPACE) code. It is a relativistic, electromagnetic, three-dimensional and fully parallelized particle-in-cell (PIC) code and uses the quasi-static approximation to efficiently simulate a variety of beam-driven plasma-wakefield acceleration scenarios. HiPACE exploits the disparity of time scales in the interaction of highly relativistic particle beams with plasma to decouple beam and plasma evolution. This enables time steps which are many times greater than those used in full PIC codes. Comparisons to the fully explicit PIC code OSIRIS show the capability of the quasi-static PIC code to consistently simulate problems in beam-driven plasma acceleration while reducing the required number of core hours by orders of magnitude. This work outlines the physical basis, describes the numerical implementation and assesses the parallel performance of the code which in combination lead to high computational efficiency.

71 citations


Journal ArticleDOI
TL;DR: The physical models implemented in the recently developed dust dynamics code MIGRAINe are described in this paper, where a major update of the treatment of secondary electron emission, stemming from models adapted to typical scrape-off layer temperatures, is reported.
Abstract: The physical models implemented in the recently developed dust dynamics code MIGRAINe are described. A major update of the treatment of secondary electron emission, stemming from models adapted to typical scrape-off layer temperatures, is reported. Sputtering and plasma species backscattering are introduced from fits of available experimental data and their relative importance to dust charging and heating is assessed in fusion-relevant scenarios. Moreover, the description of collisions between dust particles and plasma-facing components, based on the approximation of elastic-perfectly plastic adhesive spheres, has been upgraded to take into account the effects of particle size and temperature.

69 citations


Journal ArticleDOI
TL;DR: In this paper, gas-puff imaging technique is used to investigate the detection rate as well as the blob size and velocity scaling in the scrape-off layer of the tokamak ASDEX Upgrade with a fast camera.
Abstract: Blob properties are studied in the scrape-off layer of the tokamak ASDEX Upgrade with a fast camera. The gas-puff imaging technique is used to investigate the detection rate as well as the blob size and velocity scaling. The experiments were performed in L- and H-mode phases of the same discharges to study the change in blob properties after the L-H transition. In both regimes the detection rate is of the order of a few thousand blobs per second, which is compatible with the picture of blob generation by edge micro instabilities. The blob size increases in H-mode, while the radial velocity decreases slightly. The changes are, however, not indicating a drastic change in the blob dynamics in both phases. The experimentally found blob properties were compared to predictions from a novel blob model including effects due to a finite ion temperature, which should be more appropriate for the conditions in the SOL of fusion plasmas.

66 citations


Journal ArticleDOI
TL;DR: The geodesic acoustic mode (GAM) as discussed by the authors is a coherently oscillating zonal flow that may regulate turbulence in toroidal plasmas, and the complete poloidal and toroidal structure of the magnetic component of the turbulence-driven GAM was mapped in the TCV tokamak.
Abstract: The geodesic acoustic mode (GAM) is a coherently oscillating zonal flow that may regulate turbulence in toroidal plasmas. Uniquely, the complete poloidal and toroidal structure of the magnetic component of the turbulence-driven GAM has been mapped in the TCV tokamak. Radially localized measurements of the fluctuating density, ECE radiative temperature and poloidal flow show that the GAM is a fully coherent, radially propagating wave. These observations are consistent with electrostatic, gyrokinetic simulations.

64 citations


Journal ArticleDOI
TL;DR: In this article, the existence of magnetic flux ropes within coronal mass ejections (CMEs) has been investigated and the results validate many of the expectations of the CME initiation theories.
Abstract: Coronal mass ejections (CMEs) are ejections of magnetized plasma from the solar corona. They are the most spectacular examples of explosive energy release on the Sun. Their magnetic structure is of particular importance because it determines their effects on the terrestrial magnetosphere. Here, I present recent observational evidence for the existence of magnetic flux ropes within CMEs. The observations detect the formation of the flux rope in the low corona, reveal its sometimes extremely fast evolution and follow it into interplanetary space. The results validate many of the expectations of the CME initiation theories. We can now construct a coherent picture of the eruption of helical fields from the solar corona but some of the details remain obscure.

Journal ArticleDOI
TL;DR: In this article, the authors derived expressions for FIDA weight functions accounting for the Doppler shift, Stark splitting, and the charge-exchange reaction and electron transition probabilities, and derived simple analytic expressions for their boundaries that separate the triangular observable regions in (v||, v⊥)-space from the unobservable regions.
Abstract: The velocity-space observation regions and sensitivities in fast-ion Dα (FIDA) spectroscopy measurements are often described by so-called weight functions. Here we derive expressions for FIDA weight functions accounting for the Doppler shift, Stark splitting, and the charge-exchange reaction and electron transition probabilities. Our approach yields an efficient way to calculate correctly scaled FIDA weight functions and implies simple analytic expressions for their boundaries that separate the triangular observable regions in (v||, v⊥)-space from the unobservable regions. These boundaries are determined by the Doppler shift and Stark splitting and could until now only be found by numeric simulation.

Journal ArticleDOI
TL;DR: In this article, Monte Carlo simulations of W redeposition with the inclusion of these effects are described and the results of these simulations are applicable to a wide range of plasma conditions at the target plates that can be encountered in various magnetic confinement fusion devices.
Abstract: Recent modeling of controlled edge-localized modes (ELMs) in ITER with tungsten (W) divertor target plates by the SOLPS code package predicted high electron temperatures (>100 eV) and densities (>1 × 1021 m−3) at the outer target. Under certain scenarios W sputtered during ELMs can penetrate into the core in quantities large enough to cause deterioration of the discharge performance, as was shown by coupled SOLPS5.0/STRAHL/ASTRA runs. The net sputtering yield, however, was expected to be dramatically reduced by the ‘prompt redeposition’ during the first Larmor gyration of W1+ (Fussman et al 1995 Proc. 15th Int. Conf. on Plasma Physics and Controlled Nuclear Fusion Research (Vienna: IAEA) vol 2, p 143). Under high ne/Te conditions at the target during ITER ELMs, prompt redeposition would reduce W sputtering by factor p−2 ∼ 104 (with p ≡ τionωgyro ∼ 0.01). However, this relation does not include the effects of multiple ionizations of sputtered W atoms and the electric field in the magnetic pre-sheath (MPS, or ‘Chodura sheath’) and Debye sheath (DS). Monte Carlo simulations of W redeposition with the inclusion of these effects are described in the paper. It is shown that for p ≪ 1, the inclusion of multiple W ionizations and the electric field in the MPS and DS changes the physics of W redeposition from geometrical effects of circular gyro-orbits hitting the target surface, to mainly energy considerations; the key effect is the electric potential barrier for ions trying to escape into the main plasma. The overwhelming majority of ions are drawn back to the target by a strong attracting electric field. It is also shown that the possibility of a W self-sputtering avalanche by ions circulating in the MPS can be ruled out due to the smallness of the sputtered W neutral energies, which means that they do not penetrate very far into the MPS before ionizing; thus the W ions do not gain a large kinetic energy as they are accelerated back to the surface by the MPS/DS electric field; this leads to modest self-sputtering yields. The results of these simulations are applicable to a wide range of plasma conditions at the target plates that can be encountered in various magnetic confinement fusion devices.

Journal ArticleDOI
TL;DR: In this article, the role of the transverse electric field of the laser plays in the acceleration of electrons in a laser wakefield accelerator operating in the quasi-blowout regime through particle-in-cell code simulations.
Abstract: We have investigated the role that the transverse electric field of the laser plays in the acceleration of electrons in a laser wakefield accelerator operating in the quasi-blowout regime through particle-in-cell code simulations. In order to ensure that longitudinal compression and/or transverse focusing of the laser pulse is not needed before the wake can self-trap the plasma electrons, we have employed the ionization injection technique. Furthermore, the plasma density is varied such that at the lowest densities, the laser pulse occupies only a fraction of the first wavelength of the wake oscillation (the accelerating bucket), whereas at the highest density, the same duration laser pulse fills the entire first bucket. Although the trapped electrons execute betatron oscillations due to the ion column in all cases, at the lowest plasma density they do not interact with the laser field and the energy gain is all due to the longitudinal wakefield. However, as the density is increased, there can be a significant contribution to the maximum energy due to direct laser acceleration (DLA) of those electrons that undergo betatron motion in the plane of the polarization of the laser pulse. Eventually, DLA can be the dominant energy gain mechanism over acceleration due to the longitudinal field at the highest densities.

Journal ArticleDOI
TL;DR: In this paper, a simulation of the 13 May 2005 CME event in which they follow the propagation of a flux rope from the solar corona to beyond Earth orbit is presented.
Abstract: Coronal mass ejections (CMEs) are a dramatic manifestation of solar activity that release vast amounts of plasma into the heliosphere, and have many effects on the interplanetary medium and on planetary atmospheres, and are the major driver of space weather. CMEs occur with the formation and expulsion of large-scale magnetic flux ropes from the solar corona, which are routinely observed in interplanetary space. Simulating and predicting the structure and dynamics of these interplanetary CME magnetic fields are essential to the progress of heliospheric science and space weather prediction. We discuss the simulation of the 13 May 2005 CME event in which we follow the propagation of a flux rope from the solar corona to beyond Earth orbit. In simulating this event, we find that the magnetic flux rope reconnects with the interplanetary magnetic field, to evolve to an open configuration and later reconnects to reform a twisted structure sunward of the original rope. Observations of the 13 May 2005 CME magnetic field near Earth suggest that such a rearrangement of magnetic flux by reconnection may have occurred.

Journal ArticleDOI
TL;DR: In this article, the authors investigate hybrid kinetic-magnetohydrodynamic (MHD) models, where a hot plasma interacts with a fluid bulk (governed by MHD).
Abstract: This paper investigates hybrid kinetic-magnetohydrodynamic (MHD) models, where a hot plasma (governed by a kinetic theory) interacts with a fluid bulk (governed by MHD). Different nonlinear coupling schemes are reviewed, including the pressure-coupling scheme (PCS) used in modern hybrid simulations. This latter scheme suffers from being non-Hamiltonian and is unable to exactly conserve total energy. Upon adopting the Vlasov description for the hot component, the non-Hamiltonian PCS and a Hamiltonian variant are compared. Special emphasis is given to the linear stability of Alfven waves, for which it is shown that a spurious instability appears at high frequency in the non-Hamiltonian version. This instability is removed in the Hamiltonian version.

Journal ArticleDOI
TL;DR: In this article, the transition from low to high-confinement tokamak confinement was studied using gas-puff-imaging, with a focus on the interaction between the edge drift-turbulence and the local shear flow.
Abstract: Transitions of tokamak confinement regimes from low- to high-confinement are studied on Alcator C-Mod (Hutchinson et al 1994 Phys. Plasmas 1 1511) tokamak using gas-puff-imaging, with a focus on the interaction between the edge drift-turbulence and the local shear flow. Results show that the nonlinear turbulent kinetic energy transfer rate into the shear flow becomes comparable to the estimated value of the drift turbulence growth rate at the time the turbulent kinetic energy starts to drop, leading to a net energy transfer that is comparable to the observed turbulence losses. A corresponding growth is observed in the shear flow kinetic energy. The above behavior is demonstrated across a series of experiments. Thus both the drive of the edge zonal flow and the initial reduction of turbulence fluctuation power are shown to be consistent with a lossless kinetic energy conversion mechanism, which consequently mediates the transition into H-mode. The edge pressure gradient is then observed to build on a slower (1 ms) timescale, locking in the H-mode state. These results unambiguously establish the time sequence of the transition as: first the peaking of the normalized Reynolds power, then the collapse of the turbulence, and finally the rise of the diamagnetic electric field shear as the L–H transition occurs.

Journal ArticleDOI
TL;DR: In this article, the experimental feasibility of the laser-driven ion acceleration concept with multi-layered, foam-based targets has been investigated, and the results of two-dimensional particle-in-cell simulations, supporting the interpretation of the experimental results, and directions to exploit the concept also at ultrahigh intensities, are presented.
Abstract: The experimental feasibility of the laser-driven ion acceleration concept with multi-layered, foam-based targets has been investigated. Targets with the required features have been produced and characterized, exploiting the potential of the pulsed laser deposition technique. In the intensity range 1016–1017 W cm−2, they allow us to obtain maximum proton energies 2–3 times higher compared to bare solid targets, able to reach and surpass the MeV range with both low and ultrahigh contrast pulses. The results of two-dimensional particle-in-cell simulations, supporting the interpretation of the experimental results, and directions to exploit the concept also at ultrahigh intensities, are presented.

Journal ArticleDOI
TL;DR: In this paper, Liu et al. analyzed the plasma response to dominantly n = 2 non-axisymmetric magnetic perturbations on the DIII-D tokamak and showed the potential to control 3D field interactions by varying the poloidal spectrum of the radial magnetic field.
Abstract: An extensive examination of the plasma response to dominantly n = 2 non-axisymmetric magnetic perturbations (MPs) on the DIII-D tokamak shows the potential to control 3D field interactions by varying the poloidal spectrum of the radial magnetic field. The plasma response is calculated as a function of the applied magnetic field structure and plasma parameters, using the linear magnetohydrodynamic code MARS-F (Liu et al 2000 Phys. Plasmas 7 3681). The ideal, single fluid plasma response is decomposed into two main components: a local pitch-resonant response occurring at rational magnetic flux surfaces, and a global kink response. The efficiency with which the field couples to the total plasma response is determined by the safety factor and the structure of the applied field. In many cases, control of the applied field has a more significant effect than control of plasma parameters, which is of particular interest since it can be modified at will throughout a shot to achieve a desired effect. The presence of toroidal harmonics, other than the dominant n = 2 component, is examined revealing a significant n = 4 component in the perturbations applied by the DIII-D MP coils; however, modeling shows the plasma responses to n = 4 perturbations are substantially smaller than the dominant n = 2 responses in most situations.

Journal ArticleDOI
TL;DR: In this article, a systematic investigation of the ultrashort pulse laser driven acceleration of protons from thin targets of finite size, so-called reduced mass targets (RMTs), is presented.
Abstract: This paper reports on a systematic investigation of the ultrashort pulse laser driven acceleration of protons from thin targets of finite size, so-called reduced mass targets (RMTs). Reproducible series of targets, manufactured with lithographic techniques, and varying in size, thickness, and mounting geometry, were irradiated with ultrashort (30 fs) laser pulses of intensities of about 8 × 1020 W cm−2. A robust maximum energy enhancement of almost a factor of two was found when comparing gold RMTs to reference irradiations of plain gold foils of the same thickness. Furthermore, a change of the thickness of these targets has less influence on the measured maximum proton energy when compared to standard foils, which, based on detailed particle-in-cell simulations, can be explained by the influence of the RMT geometry on the electron sheath. The performance gain was, however, restricted to lateral target sizes of greater than 50 µm, which can be attributed to edge and mounting structure influences.

Journal ArticleDOI
TL;DR: In this article, a semi-empirical approach is proposed for the description of the secondary electron emission yield, which can serve as a reliable input for future quantitative investigations of the effect of secondary electron emissions on various aspects of scrape-off-layer physics.
Abstract: The description of secondary electron emission, as presented by plasma-material interaction fusion compendia, is demonstrated to be outdated both in its theoretical and experimental aspects. As a consequence, the recommended treatment leads to a strong overestimation of the secondary electron emission yields for tokamak relevant materials. Reliable experimental data-sets, in fusion energy ranges, are identified after a detailed review of a recently updated electron-solid interaction database and previously published experimental results. A novel semi-empirical approach is proposed for the description of the secondary electron emission yield. Application of the approach for a large number of solids reveals an unprecedented agreement with experimental data. The present results can serve as a reliable input for future quantitative investigations of the effect of secondary electron emission on various aspects of scrape-off-layer physics.

Journal ArticleDOI
TL;DR: In this article, the electron transport barrier remains in its final shape before a type-I edge localized mode (ELM) crash in ASDEX Upgrade, and ELM precursors appear as electron temperature fluctuations.
Abstract: When the electron transport barrier remains in its final shape before a type-I edge localized mode (ELM) crash in ASDEX Upgrade, ELM precursors appear as electron temperature fluctuations. In order to relate these precursors to an instability, spatial scales, parity and the cross-phase between electron temperature and radial velocity fluctuations are evaluated by means of velocimetry of measured 2D electron temperature fluctuations. A comprehensive comparison with properties of different instabilities points to microtearing modes. Bispectral analysis indicates a nonlinear coupling of these precursors to a ballooning-type mode prior to the ELM onset.

Journal ArticleDOI
TL;DR: In this paper, an analysis of fast-ion Dα data from the DIII-D tokamak showed that Alfven eigenmode activity degrades fastion confinement in many high βN, high qmin, steady-state scenario discharges.
Abstract: Analysis of neutron and fast-ion Dα data from the DIII-D tokamak shows that Alfven eigenmode activity degrades fast-ion confinement in many high βN, high qmin, steady-state scenario discharges. (βN is the normalized plasma pressure and qmin is the minimum value of the plasma safety factor.) Fast-ion diagnostics that are sensitive to the co-passing population exhibit the largest reduction relative to classical predictions. The increased fast-ion transport in discharges with strong AE activity accounts for the previously observed reduction in global confinement with increasing qmin; however, not all high qmin discharges show appreciable degradation. Two relatively simple empirical quantities provide convenient monitors of these effects: (1) an 'AE amplitude' signal based on interferometer measurements and (2) the ratio of the neutron rate to a zero-dimensional classical prediction.

Journal ArticleDOI
TL;DR: In this article, the occurrence of rogue waves (freak waves) associated with electrostatic wavepacket propagation in a quantum electron-positron-ion plasma is investigated from first principles.
Abstract: The occurrence of rogue waves (freak waves) associated with electrostatic wavepacket propagation in a quantum electron–positron–ion plasma is investigated from first principles. Electrons and positrons follow a Fermi–Dirac distribution, while the ions are subject to a quantum (Fermi) pressure. A fluid model is proposed and analyzed via a multiscale technique. The evolution of the wave envelope is shown to be described by a nonlinear Schrodinger equation (NLSE). Criteria for modulational instability are obtained in terms of the intrinsic plasma parameters. Analytical solutions of the NLSE in the form of envelope solitons (of the bright or dark type) and localized breathers are reviewed. The characteristics of exact solutions in the form of the Peregrine soliton, the Akhmediev breather and the Kuznetsov–Ma breather are proposed as candidate functions for rogue waves (freak waves) within the model. The characteristics of the latter and their dependence on relevant parameters (positron concentration and temperature) are investigated.

Journal ArticleDOI
TL;DR: In this paper, the authors used M3D-C1 calculations of the perturbed kinetic profiles and fields to model the acceleration of the fast-ion loss signal with respect to the internal coil (I-coil) currents.
Abstract: Energy and pitch angle resolved measurements of escaping neutral beam ions (E ≈ 80 keV) have been made during DIII-D L-mode discharges with applied, slowly rotating, n = 2 magnetic perturbations. Data from separate scintillator detectors (FILDs) near and well below the plasma midplane show fast-ion losses correlated with the internal coil (I-coil) fields. The dominant fast-ion loss signals are observed to decay within one poloidal transit time after beam turn-off indicating they are primarily prompt loss orbits. Also, during application of the rotating I-coil fields, outboard midplane edge density and bremsstrahlung emission profiles exhibit a radial displacement of up to δR ≈ 1 cm. Beam deposition and full orbit modeling of these losses using M3D-C1 calculations of the perturbed kinetic profiles and fields reproduce many features of the measured losses. In particular, the predicted phase of the modulated loss signal with respect to the I-coil currents is in close agreement with FILD measurements as is the relative amplitudes of the modulated losses for the co and counter-current beam used in the experiment. These simulations show modifications to the beam ion birth profile and subsequent prompt loss due to changes in the edge density; however, the dominant factor causing modulation of the losses to the fast-ion loss detectors is the perturbed magnetic field (δB/B ≈ 10−3 in the plasma). Calculations indicate total prompt loss to the DIII-D wall can increase with application of the n = 2 perturbation by up to 7% for co-current injected beams and 3% for counter-current injected beams depending on phase of the perturbation relative to the injected beam.

Journal ArticleDOI
TL;DR: In this article, an extensive experimental survey of plasma potentials induced by ion cyclotron range-of-frequency (ICRF) heating was carried out in the scrape-off layer (SOL) plasmas on the Alcator C-Mod tokamak.
Abstract: An extensive experimental survey of plasma potentials induced by ion cyclotron range-of frequency (ICRF) heating was carried out in the scrape-off layer (SOL) plasmas on the Alcator C-Mod tokamak. Enhanced plasma potentials >100?V are observed at locations where local magnetic fields map to active ICRF antennas. In these cases, the enhanced potential appears only when a local plasma density threshold is surpassed?a threshold that is quantitatively consistent with slow wave (SW) RF rectification theory. However, in many cases large potential enhancements are found in locations that do not map along magnetic field lines to active antennas without obstruction, i.e. locations that are inaccessible to SWs launched by the active antennas. Enhanced potentials in these ?unmapped? locations are correlated with local plasma parameters, ICRF electromagnetic fields associated with the fast wave (FW) and SW, launched wave spectra, and the boundary surface geometry. It is found that enhanced plasma potentials in unmapped locations correlate with the FW field strength. These observations are qualitatively consistent with a model that accounts for the conversion of FWs to SWs at conducting surfaces oriented at an oblique angle with respect to the magnetic field, with the SW leading to sheath rectification. In addition, enhanced plasma potentials are found far into the shadow of passive limiter structures. These are correlated with the magnitude of the local FW field strength, yet the effect does not follow any present model. Overall, ICRF-induced plasma potentials may appear in regions far removed from the active antennas, yet due to the complex response of the SOL potentials at a variety of boundary surfaces, it remains unclear what part of the plasma-facing wall should be targeted to mitigate ICRF-induced impurities. The results also suggest that operating active ICRF antennas in a high single pass absorption regime is crucial in minimizing the effects of the FW fields on plasma?material interactions.

Journal ArticleDOI
S. Potzel1, R. Dux1, H. W. Müller1, A. Scarabosio1, M. Wischmeier1 
TL;DR: In this article, a new diagnostic capable of determining the electron density in the divertor volume of ASDEX upgrade (AUG) is presented based on the spectroscopic measurement of the Stark broadening of the Balmer lines.
Abstract: In this article we present the development of a new diagnostic capable of determining the electron density in the divertor volume of ASDEX Upgrade (AUG). It is based on the spectroscopic measurement of the Stark broadening of the Balmer lines. In this work two approaches of calculating the Stark broadening, i.e. the unified theory and the model microfield method, are compared. It will be shown that both approaches yield similar results in the case of Balmer lines with high upper principal quantum numbers n. In addition, for typical AUG parameters the influence of the Zeeman splitting on the high n Balmer lines is found to be negligible. Moreover, an assumption for the Doppler broadening of Tn = 5 eV, which is the maximum Frank–Condon dissociation energy of recycled neutrals, is sufficient. The initial electron density measurements performed using this method are found to be consistent with both Langmuir probe and pressure gauge data.

Journal ArticleDOI
TL;DR: In this paper, the nonlinear stability of current-driven ion-acoustic waves in collisionless electron-ion plasmas is analyzed and the phase-space turbulence, which includes many structures, is shown to be much more efficient than an ensemble of waves or an isolated hole for driving subcritically particle redistribution, turbulent heating and anomalous resistivity.
Abstract: The nonlinear stability of current-driven ion-acoustic waves in collisionless electron–ion plasmas is analyzed. Seminal simulations from the 1980s are revisited. Accurate numerical treatment shows that subcritical instabilities do not grow from an ensemble of waves, except very close to marginal stability and for large initial amplitudes. Further from marginal stability, one isolated phase-space structure can drive subcritical instabilities by stirring the phase-space in its wake. Phase-space turbulence, which includes many structures, is much more efficient than an ensemble of waves or an isolated hole for driving subcritically particle redistribution, turbulent heating and anomalous resistivity. Phase-space jets are observed in subcritical simulations.

Journal ArticleDOI
TL;DR: In this article, an extension to GS2, a local δf gyrokinetic code that self-consistently calculates momentum transport, was proposed to permit up-down asymmetric configurations.
Abstract: Recent work has demonstrated that breaking the up–down symmetry of tokamak flux surfaces removes a constraint that limits intrinsic momentum transport, and hence toroidal rotation, to be small. We show, through MHD analysis, that ellipticity is most effective at introducing up–down asymmetry throughout the plasma. We detail an extension to GS2, a local δf gyrokinetic code that self-consistently calculates momentum transport, to permit up–down asymmetric configurations. Tokamaks with tilted elliptical poloidal cross-sections were simulated to determine nonlinear momentum transport. The results, which are consistent with the experiment in magnitude, suggest that a toroidal velocity gradient, (∂uζi/∂ρ)/vthi, of 5% of the temperature gradient, (∂Ti/∂ρ)/Ti, is sustainable. Here vthi is the ion thermal speed, uζi is the ion toroidal mean flow, ρ is the minor radial coordinate normalized to the tokamak minor radius, and Ti is the ion temperature. Though other known core intrinsic momentum transport mechanisms scale poorly to larger machines, these results indicate that up–down asymmetry may be a feasible method to generate the current experimentally measured rotation levels in reactor-sized devices.

Journal ArticleDOI
TL;DR: In this article, the authors reported the first observation consistent with a magnetic reconnection generated magnetic island at a solar wind current sheet that was observed on 10 June 2012 by the two ARTEMIS satellites and the upstream WIND satellite.
Abstract: We report the first observation consistent with a magnetic reconnection generated magnetic island at a solar wind current sheet that was observed on 10 June 2012 by the two ARTEMIS satellites and the upstream WIND satellite. The evidence consists of a core magnetic field within the island which is formed by enhanced Hall magnetic fields across a solar wind reconnection exhaust. The core field at ARTEMIS displays a local dip coincident with a peak plasma density enhancement and a locally slower exhaust speed which differentiates it from a regular solar wind exhaust crossing. Further indirect evidence of magnetic island formation is presented in the form of a tripolar Hall magnetic field, which is supported by an observed electron velocity shear, and plasma density depletion regions which are in general agreement with multiple reconnection X-line signatures at the same current sheet on the basis of predicted signatures of magnetic islands as generated by a kinetic reconnection simulation for solar wind-like conditions. The combined ARTEMIS and WIND observations of tripolar Hall magnetic fields across the same exhaust and Grad–Shrafranov reconstructions of the magnetic field suggest that an elongated magnetic island was encountered which displayed a 4RE normal width and a 43RE extent along the exhaust between two neighboring X-lines.