scispace - formally typeset
Search or ask a question

Showing papers in "Polymers in 2014"


Journal ArticleDOI
22 Aug 2014-Polymers
TL;DR: In this article, a review article intended to present information about diverse classes of natural fibers, nanofiller, cellulosic fiber based composite, nanocomposite, and natural fiber/nanofiller-based hybrid composite with specific concern to their applications.
Abstract: The increasing demand for greener and biodegradable materials leading to the satisfaction of society requires a compelling towards the advancement of nano-materials science. The polymeric matrix materials with suitable and proper filler, better filler/matrix interaction together with advanced and new methods or approaches are able to develop polymeric composites which shows great prospective applications in constructions and buildings, automotive, aerospace and packaging industries. The biodegradability of the natural fibers is considered as the most important and interesting aspects of their utilization in polymeric materials. Nanocomposite shows considerable applications in different fields because of larger surface area, and greater aspect ratio, with fascinating properties. Being environmentally friendly, applications of nanocomposites offer new technology and business opportunities for several sectors, such as aerospace, automotive, electronics, and biotechnology industries. Hybrid bio-based composites that exploit the synergy between natural fibers in a nano-reinforced bio-based polymer can lead to improved properties along with maintaining environmental appeal. This review article intended to present information about diverse classes of natural fibers, nanofiller, cellulosic fiber based composite, nanocomposite, and natural fiber/nanofiller-based hybrid composite with specific concern to their applications. It will also provide summary of the emerging new aspects of nanotechnology for development of hybrid composites for the sustainable and greener environment.

520 citations


Journal ArticleDOI
12 Mar 2014-Polymers
TL;DR: This review aims to facilitate the start-up of PHA research by providing a summary of commercially available PHA-accumulating microbial cultures, PHA biosynthetic pathways, and methods for PHA detection, extraction and analysis.
Abstract: With the impending fossil fuel crisis, the search for and development of alternative chemical/material substitutes is pivotal in reducing mankind's dependency on fossil resources. One of the potential substitute candidates is polyhydroxyalkanoate (PHA). PHA is a carbon-neutral and valuable polymer that could be produced from many renewable carbon sources by microorganisms, making it a sustainable and environmental-friendly material. At present, PHA is not cost competitive compared to fossil-derived products. Encouraging and intensifying research work on PHA is anticipated to enhance its economic viability in the future. The development of various biomolecular and chemical techniques for PHA analysis has led to the identification of many PHA-producing microbial strains, some of which are deposited in culture collections. Research work on PHA could be rapidly initiated with these ready-to-use techniques and microbial strains. This review aims to facilitate the start-up of PHA research by providing a summary of commercially available PHA-accumulating microbial cultures, PHA biosynthetic pathways, and methods for PHA detection, extraction and analysis.

357 citations


Journal ArticleDOI
23 May 2014-Polymers
TL;DR: The structure and synthesis of polyzwitterions are reviewed in this paper, emphasizing the general challenges faced, and successful strategies to obtain polymers with a true balance of permanent cationic and anionic groups, thus resulting in an overall zero charge.
Abstract: The structures and synthesis of polyzwitterions ("polybetaines") are reviewed, emphasizing the literature of the past decade. Particular attention is given to the general challenges faced, and to successful strategies to obtain polymers with a true balance of permanent cationic and anionic groups, thus resulting in an overall zero charge. Also, the progress due to applying new methodologies from general polymer synthesis, such as controlled polymerization methods or the use of "click" chemical reactions is presented. Furthermore, the emerging topic of responsive ("smart") polyzwitterions is addressed. The considerations and critical discussions are illustrated by typical examples.

320 citations


Journal ArticleDOI
20 Nov 2014-Polymers
TL;DR: In this article, thermal reduced graphite oxide (TRGO) was combined with ammonium polyphosphate (APP) and magnesium hydroxide (MH) in polypropylene (PP) for pyrolysis, reaction to small flame, fire behavior and mechanical properties.
Abstract: Thermally reduced graphite oxide (TRGO), containing only four single carbon layers on average, was combined with ammonium polyphosphate (APP) and magnesium hydroxide (MH), respectively, in polypropylene (PP). The nanoparticle's influence on different flame-retarding systems and possible synergisms in pyrolysis, reaction to small flame, fire behavior and mechanical properties were determined. TRGO has a positive effect on the yield stress, which is decreased by both flame-retardants and acts as a synergist with regard to Young's modulus. The applicability and effects of TRGO as an adjuvant in combination with conventional flame-retardants depends strongly on the particular flame-retardancy mechanism. In the intumescent system, even small concentrations of TRGO change the viscosity of the pyrolysing melt crucially. In case of oxygen index (OI) and UL 94 test, the addition of increasing amounts of TRGO to PP/APP had a negative impact on the oxygen index and the UL 94 classification. Nevertheless, systems with only low amounts (≤1 wt%) of TRGO achieved V-0 classification in the UL 94 test and high oxygen indices (>31 vol%). TRGO strengthens the residue structure of MH and therefore functions as a strong synergist in terms of OI and UL 94 classification (from HB to V-0).

236 citations


Journal ArticleDOI
30 Jan 2014-Polymers
TL;DR: Although, so far, there are no HA-drug conjugates on the market, several derivatives are presently under clinical investigation, and the promising results encourage further investigations and the exploitation of this versatile polysaccharide.
Abstract: Hyaluronic acid (HA) has currently several therapeutic applications: in ophthalmology, osteoarthritis, wound healing, tissue regeneration, postoperative anti-adhesion and anesthetic medicine. In the last ten years, it has also been successfully investigated in the field of drug delivery, in the form of conjugates or hydrogel depot systems. HAylation, the covalent conjugation of HA to bioactive molecules, allows the overcoming of disadvantages associated with some pharmaceuticals, such as insolubility, instability and fast kidney clearance. These issues can be addressed also by covalent attachment of polyethylene glycol (PEGylation), but HA has the relevant advantages of biodegradability, high loading and specific targeting. In this review, the novel HA derivatives and the latest advances in HA-based drug delivery with a particular focus on the chemistry of conjugation will be discussed. Although, so far, there are no HA-drug conjugates on the market, several derivatives are presently under clinical investigation, and the promising results encourage further investigations and the exploitation of this versatile polysaccharide.

221 citations


Journal ArticleDOI
16 Jun 2014-Polymers
TL;DR: In this article, the effect of salt type on coacervate formation using two vinyl polyelectrolytes, poly(acrylic acid sodium salt) (pAA) and poly(allylamine hydrochloride) (PAH), was investigated.
Abstract: Complex coacervation is an electrostatically-driven phase separation phenomenon that is utilized in a wide range of everyday applications and is of great interest for the creation of self-assembled materials. Here, we utilized turbidity to characterize the effect of salt type on coacervate formation using two vinyl polyelectrolytes, poly(acrylic acid sodium salt) (pAA) and poly(allylamine hydrochloride) (pAH), as simple models for industrial and biological coacervates. We confirmed the dominant role of salt valence on the extent of coacervate formation, while demonstrating the presence of significant secondary effects, which can be described by Hofmeister-like behavior. These results revealed the importance of ion-specific interactions, which are crucial for the informed design of coacervate-based materials for use in complex ionic environments, and can enable more detailed theoretical investigations on the role of subtle electrostatic and thermodynamic effects in complex coacervation.

193 citations


Journal ArticleDOI
25 Sep 2014-Polymers
TL;DR: In this article, the state-of-the-art performance of organic photovoltaic cells (OPVs) is summarized based on several of the latest developed approaches to accurately detect the separation of electron-hole pairs in the femtosecond regime, especially for OPVs with bulk and multiple heterojunctions.
Abstract: Organic photovoltaic cells (OPVs) have been a hot topic for research during the last decade due to their promising application in relieving energy pressure and environmental problems caused by the increasing combustion of fossil fuels Much effort has been made toward understanding the photovoltaic mechanism, including evolving chemical structural motifs and designing device structures, leading to a remarkable enhancement of the power conversion efficiency of OPVs from 3% to over 15% In this brief review, the advanced progress and the state-of-the-art performance of OPVs in very recent years are summarized Based on several of the latest developed approaches to accurately detect the separation of electron-hole pairs in the femtosecond regime, the theoretical interpretation to exploit the comprehensive mechanistic picture of energy harvesting and charge carrier generation are discussed, especially for OPVs with bulk and multiple heterojunctions Subsequently, the novel structural designs of the device architecture of OPVs embracing external geometry modification and intrinsic structure decoration are presented Additionally, some approaches to further increase the efficiency of OPVs are described, including thermotics and dynamics modification methods Finally, this review highlights the challenges and prospects with the aim of providing a better understanding towards highly efficient OPVs

160 citations


Journal ArticleDOI
Guoxin Cao1
22 Sep 2014-Polymers
TL;DR: In this article, a review of the properties of graphene lattice lattice is presented, including the in-plane tensile response and the free-standing indentation response, based on multiscale levels: including quantum mechanical and classical molecular dynamics simulations and parallel continuum models.
Abstract: Recent progress of simulations/modeling at the atomic level has led to a better understanding of the mechanical behaviors of graphene, which include the linear elastic modulus E, the nonlinear elastic modulus D, the Poisson’s ratio ν, the intrinsic strength σint and the corresponding strain eint as well as the ultimate strain emax (the fracture strain beyond which the graphene lattice will be unstable). Due to the two-dimensional geometric characteristic, the in-plane tensile response and the free-standing indentation response of graphene are the focal points in this review. The studies are based on multiscale levels: including quantum mechanical and classical molecular dynamics simulations, and parallel continuum models. The numerical studies offer useful links between scientific research with engineering application, which may help to fulfill graphene potential applications such as nano sensors, nanotransistors, and other nanodevices.

154 citations


Journal ArticleDOI
21 Oct 2014-Polymers
TL;DR: In this article, the influence of sulphuric acid hydrolysis and high-pressure homogenization as an effective chemo-mechanical process for the isolation of quality nanofibrillated cellulose (NFC) was determined.
Abstract: The aim of the present study was to determine the influence of sulphuric acid hydrolysis and high-pressure homogenization as an effective chemo-mechanical process for the isolation of quality nanofibrillated cellulose (NFC). The cellulosic fiber was isolated from oil palm empty fruit bunch (OPEFB) using acid hydrolysis methods and, subsequently, homogenized using a high-pressure homogenizer to produce NFC. The structural analysis and the crystallinity of the raw fiber and extracted cellulose were carried out by Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). The morphology and thermal stability were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and thermogravimetric (TGA) analyses, respectively. The FTIR results showed that lignin and hemicellulose were removed effectively from the extracted cellulose nanofibrils. XRD analysis revealed that the percentage of crystallinity was increased from raw EFB to microfibrillated cellulose (MFC), but the decrease for NFC might due to a break down the hydrogen bond. The size of the NFC was determined within the 5 to 10 nm. The TGA analysis showed that the isolated NFC had high thermal stability. The finding of present study reveals that combination of sulphuric acid hydrolysis and high-pressure homogenization could be an effective chemo-mechanical process to isolate cellulose nanofibers from cellulosic plant fiber for reinforced composite materials.

119 citations


Journal ArticleDOI
14 Jul 2014-Polymers
TL;DR: In this article, the authors compare in situ/ex situ preparation of nanocomposites and compare the applicability of two-photon polymerization (2PP) of synthesized nanocomposition.
Abstract: This article reports about nanocomposites, which refractive index is tuned by adding TiO2 nanoparticles. We compare in situ/ex situ preparation of nanocomposites. Preparation procedure is described, properties of nanocomposites are compared, and especially we examine the applicability of two-photon polymerization (2PP) of synthesized nanocomposites. All prepared samples exhibit suitable optical transparency at specific laser wavelengths. Three-dimensional structures were generated by means of two-photon polymerization effect induced by a femtosecond laser.

119 citations


Journal ArticleDOI
20 May 2014-Polymers
TL;DR: A comprehensive review on the use of vinyl ester monomers in reversible addition fragmentation chain transfer (RAFT) polymerization can be found in this article, where all the synthetic aspects associated with the definition of precision polymers comprising poly(vinyl ester) building blocks, such as the choice of RAFT agent and reaction conditions, are discussed.
Abstract: This article is the first comprehensive review on the study and use of vinyl ester monomers in reversible addition fragmentation chain transfer (RAFT) polymerization. It covers all the synthetic aspects associated with the definition of precision polymers comprising poly(vinyl ester) building blocks, such as the choice of RAFT agent and reaction conditions in order to progress from simple to complex macromolecular architectures. Although vinyl acetate was by far the most studied monomer of the range, many vinyl esters have been considered in order to tune various polymer properties, in particular, solubility in supercritical carbon dioxide (scCO2). A special emphasis is given to novel poly(vinyl alkylate)s with enhanced solubilities in scCO2, with applications as reactive stabilizers for dispersion polymerization and macromolecular surfactants for CO2 media. Other miscellaneous uses of poly(vinyl ester)s synthesized by RAFT, for instance as a means to produce poly(vinyl alcohol) with controlled characteristics for use in the biomedical area, are also covered.

Journal ArticleDOI
19 Sep 2014-Polymers
TL;DR: In this paper, a series of biopolymer electrolytes comprised of the synthesized carboxymethyl cellulose (CMC) and ammonium acetate (CH3COONH4) were prepared by the solution-casting technique.
Abstract: A cellulose derivative, carboxymethyl cellulose (CMC), was synthesized by the reaction of cellulose from kenaf bast fiber with monochloroacetic acid. A series of biopolymer electrolytes comprised of the synthesized CMC and ammonium acetate (CH3COONH4) were prepared by the solution-casting technique. The biopolymer-based electrolyte films were characterized by Fourier Transform Infrared spectroscopy to investigate the formation of the CMC-CH3COONH4 complexes. Electrochemical impedance spectroscopy was conducted to obtain their ionic conductivities. The highest conductivity at ambient temperature of 5.77 × 10 −4 S cm −1 was obtained for the electrolyte film containing 20 wt% of CH3COONH4. The biopolymer electrolyte film also exhibited electrochemical stability up to 2.5 V. These results indicated that the biopolymer electrolyte has great potential for applications to electrochemical devices, such as proton batteries and solar cells.

Journal ArticleDOI
21 Aug 2014-Polymers
TL;DR: In this paper, two types of graphene-based materials, graphene nanoplatelets (xGnP) and reduced graphene oxide (rGO), were used as nanofiller in poly(lactic acid) (PLA) polymer matrix, as well as plasticized PLA.
Abstract: The superlative mechanical properties of graphene-based materials make them the ideal filler materials for polymer composites reinforcement. Two types of graphene-based materials, graphene nanoplatelets (xGnP) and reduced graphene oxide (rGO), were used as nanofiller in poly(lactic acid) (PLA) polymer matrix, as well as plasticized PLA. The addition of rGO into PLA or plasticized PLA substantially enhanced the tensile strength without deteriorating elasticity, compared to xGnP nanocomposites. In addition, the investigation of the thermal properties has found that the presence of rGO in the system is very beneficial for improving thermal stability of the PLA or plasticized PLA. Scanning electron microscope (SEM) images of the rGO nanocomposites display homogenous and good uniformity morphology. Transmission electron microscopy (TEM) images revealed that the rGO remained intact as graphene sheet layers and were dispersed well into the polymer matrix, and it was confirmed by X-ray diffraction (XRD) results, which shows no graphitic peak in the XRD pattern.

Journal ArticleDOI
03 Apr 2014-Polymers
TL;DR: In this article, a review of the progress in the area of fiber reinforced polymers (FRP)-strengthening of columns for several loading scenarios including impact load is provided, and the authors conclude that there is a need for additional research for the columns under impact loading senarios.
Abstract: This paper provides a review of some of the progress in the area of fiber reinforced polymers (FRP)-strengthening of columns for several loading scenarios including impact load The addition of FRP materials to upgrade deficiencies or to strengthen structural components can save lives by preventing collapse, reduce the damage to infrastructure, and the need for their costly replacement The retrofit with FRP materials with desirable properties provides an excellent replacement for traditional materials, such as steel jacket, to strengthen the reinforced concrete structural members Existing studies have shown that the use of FRP materials restore or improve the column original design strength for possible axial, shear, or flexure and in some cases allow the structure to carry more load than it was designed for The paper further concludes that there is a need for additional research for the columns under impact loading senarios The compiled information prepares the ground work for further evaluation of FRP-strengthening of columns that are deficient in design or are in serious need for repair due to additional load or deterioration

Journal ArticleDOI
16 May 2014-Polymers
TL;DR: In this paper, the classical Voorn-Overbeek thermodynamic theory of phase separation of oppositely charged polyelectrolytes is generalized to account for the charge accessibility and hydrophobicity of polyions, size of salt ions, and pH variations.
Abstract: The classical Voorn-Overbeek thermodynamic theory of complexation and phase separation of oppositely charged polyelectrolytes is generalized to account for the charge accessibility and hydrophobicity of polyions, size of salt ions, and pH variations. Theoretical predictions of the effects of pH and salt concentration are compared with published experimental data and experiments we performed, on systems containing poly(acrylic acid) (PAA) as the polyacid and poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA) or poly(diallyldimethyl ammonium chloride) (PDADMAC) as the polybase. In general, the critical salt concentration below which the mixture phase separates, increases with degree of ionization and with the hydrophobicity of polyelectrolytes. We find experimentally that as the pH is decreased below 7, and PAA monomers are neutralized, the critical salt concentration increases, while the reverse occurs when pH is raised above 7. We predict this asymmetry theoretically by introducing a large positive Flory parameter (= 0.75) for the interaction of neutral PAA monomers with water. This large positive Flory parameter is supported by molecular dynamics simulations, which show much weaker hydrogen bonding between neutral PAA and water than between charged PAA and water, while neutral and charged PDMAEMA show similar numbers of hydrogen bonds. This increased hydrophobicity of neutral PAA at reduced pH increases the tendency towards phase separation despite the reduction in charge interactions between the polyelectrolytes. Water content and volume of coacervate are found to be a strong function of the pH and salt concentration.

Journal ArticleDOI
24 Sep 2014-Polymers
TL;DR: A simultaneous synthesis of polyaniline (PANI) and nickel (Ni) nanoparticles embedded in polyvinyl alcohol (PVA) film matrix by gamma radiolytic method was reported in this article.
Abstract: This article reports a simultaneous synthesis of polyaniline (PANI) and nickel (Ni) nanoparticles embedded in polyvinyl alcohol (PVA) film matrix by gamma radiolytic method. The mechanism of formation of PANI and Ni nanoparticles were proposed via oxidation of aniline and reduction of Ni ions, respectively. The effects of dose and Ni ions concentration on structural, optical, and electrical properties of the final PVA/PANI/Ni nanocomposites film were carefully examined. The structural and morphological studies show the presence of PANI with irregular granular microstructure and Ni nanoparticles with spherical shape and diameter less than 60 nm. The average particle size of Ni nanoparticles decreased with increasing dose and decreasing of precursor concentration due to increase of nucleation process over aggregation process during gamma irradiation. The optical absorption spectra showed that the absorption peak of Ni nanoparticles at about 390 nm shifted to lower wavelength and the absorbance increased with increasing dose. The formation of PANI was also revealed at 730 nm absorption peak with the absorbance increasing by the increase of dose. The electrical conductivity increased with increasing of dose and chlorine concentration due to number of polarons formation increases in the PVA/PANI/Ni nanocomposites.

Journal ArticleDOI
22 Aug 2014-Polymers
TL;DR: In this article, the authors provide a brief review on the advanced shape memory technology (ASMT) with a focus on polymeric materials and conclude that the ASMT is indeed able to provide a range of powerful approaches to reshape part of the life cycle or the whole life cycle of products.
Abstract: This paper provides a brief review on the advanced shape memory technology (ASMT) with a focus on polymeric materials. In addition to introducing the concept and fundamentals of the ASMT, the potential applications of the ASMT either alone or integrated with an existing mature technique (such as, 3D printing, quick response (QR) code, lenticular lens) and phenomena (e.g., wrinkling and stress-enhanced swelling effect) in product design, manufacturing, and recycling are demonstrated. It is concluded that the ASMT is indeed able to provide a range of powerful approaches to reshape part of the life cycle or the whole life cycle of products.

Journal ArticleDOI
11 Mar 2014-Polymers
TL;DR: In this article, the performance as reinforcement of a fibrillar protein such as feather keratin fiber over a biopolymeric matrix composed of polysaccharides was evaluated.
Abstract: The performance as reinforcement of a fibrillar protein such as feather keratin fiber over a biopolymeric matrix composed of polysaccharides was evaluated in this paper. Three different kinds of keratin reinforcement were used: short and long biofibers and rachis particles. These were added separately at 5, 10, 15 and 20 wt% to the chitosan-starch matrix and the composites were processed by a casting/solvent evaporation method. The morphological characteristics, mechanical and thermal properties of the matrix and composites were studied by scanning electron microscopy, thermogravimetric analysis, differential scanning calorimetry and dynamic mechanical analysis. The thermal results indicated that the addition of keratin enhanced the thermal stability of the composites compared to pure matrix. This was corroborated with dynamic mechanical analysis as the results revealed that the storage modulus of the composites increased with respect to the pure matrix. The morphology, evaluated by scanning electron microscopy, indicated a uniform dispersion of keratin in the chitosan-starch matrix as a result of good compatibility between these biopolymers, also corroborated by FTIR. These results demonstrate that chicken feathers can be useful to obtain novel keratin reinforcements and develop new green composites providing better properties, than the original biopolymer matrix.

Journal ArticleDOI
24 Dec 2014-Polymers
TL;DR: In this paper, redox-active catechol-modified chitosan films are used as an interface material to bridge redoxbased communication between biology and an electrode.
Abstract: Individually, advances in microelectronics and biology transformed the way we live our lives. However, there remain few examples in which biology and electronics have been interfaced to create synergistic capabilities. We believe there are two major challenges to the integration of biological components into microelectronic systems: (i) assembly of the biological components at an electrode address, and (ii) communication between the assembled biological components and the underlying electrode. Chitosan possesses a unique combination of properties to meet these challenges and serve as an effective bio-device interface material. For assembly, chitosan’s pH-responsive film-forming properties allow it to “recognize” electrode-imposed signals and respond by self-assembling as a stable hydrogel film through a cathodic electrodeposition mechanism. A separate anodic electrodeposition mechanism was recently reported and this also allows chitosan hydrogel films to be assembled at an electrode address. Protein-based biofunctionality can be conferred to electrodeposited films through a variety of physical, chemical and biological methods. For communication, we are investigating redox-active catechol-modified chitosan films as an interface to bridge redox-based communication between biology and an electrode. Despite significant progress over the last decade, many questions still remain which warrants even deeper study of chitosan’s structure, properties, and functions.

Journal ArticleDOI
08 May 2014-Polymers
TL;DR: In this article, the authors present the results of an experimental study into the behavior of concrete-filled steel tube columns confined by fiber-reinforced polymer (FRP) and investigate the effects of the FRP layer number, the thickness of the steel tube and concrete strength on their load capacity and axial deformation capacity.
Abstract: This paper presents the results of an experimental study into the behavior of concrete-filled steel tube columns confined by fiber-reinforced polymer (FRP). Eleven columns were tested to investigate the effects of the FRP layer number, the thickness of the steel tube and concrete strength on their load capacity and axial deformation capacity. The experimental results indicated that the FRP wrap can effectively confine the concrete expansion and delay the local buckling of the steel tube. Both the load capacity and the axial deformation capacity of concrete-filled steel tube columns can be substantially enhanced with FRP confinement. A model is proposed to predict the load capacity of the FRP-confined concrete-filled steel tube columns. The predicted results are generally in good agreement with the experimental ones obtained in this study and in the literature.

Journal ArticleDOI
21 Feb 2014-Polymers
TL;DR: An overview of the advantages of these systems and the main methodologies for their synthesis is provided, highlighting the different polypeptide architectures and the current research towards clinical applications.
Abstract: Polypeptides are envisaged to achieve a major impact on a number of different relevant areas such as biomedicine and biotechnology Acquired knowledge and the increasing interest on amino acids, peptides and proteins is establishing a large panel of these biopolymers whose physical, chemical and biological properties are ruled by their controlled sequences and composition Polymer therapeutics has helped to establish these polypeptide-based constructs as polymeric nanomedicines for different applications, such as disease treatment and diagnostics Herein, we provide an overview of the advantages of these systems and the main methodologies for their synthesis, highlighting the different polypeptide architectures and the current research towards clinical applications

Journal ArticleDOI
22 Oct 2014-Polymers
TL;DR: In this article, a review of recent progress in molecular engineering and technological aspects of fused-thiophene-based organic dye molecules for applications in solar cells is presented, focusing on the design principles and stability of these dye molecules, as well as on the effects of various electrolyte systems for DSSCs.
Abstract: Organic photovoltaics (OPVs) and dye-sensitized solar cells (DSSCs) have drawn great interest from both academics and industry, due to the possibility of low-cost conversion of photovoltaic energy at reasonable efficiencies. This review focuses on recent progress in molecular engineering and technological aspects of fused-thiophene-based organic dye molecules for applications in solar cells. Particular attention has been paid to the design principles and stability of these dye molecules, as well as on the effects of various electrolyte systems for DSSCs. Importantly, it has been found that incorporation of a fused-thiophene unit into the sensitizer has several advantages, such as red-shift of the intramolecular charge transfer band, tuning of the frontier molecular energy level, and improvements in both photovoltaic performance and stability. This work also examines the correlation between the physical properties and placement of fused-thiophene in the molecular structure with regard to their performance in OPVs and DSSCs.

Journal ArticleDOI
17 Jun 2014-Polymers
TL;DR: In this paper, the issue of fiber reinforced polymer (FRP) waste management is discussed and the commonly used methods for the handling of FRP waste are reviewed, and a potentially viable use of FT waste is in the partial replacement of fillers or aggregates in cementitious materials (particularly portland cement mortar and concrete).
Abstract: For the last three decades, fiber reinforced polymer (FRP) composite materials have been widely used in major engineering industries. Managing FRP waste is becoming an important issue due to the growth in the production of FRP composite materials. In this article, the issue of FRP waste management is discussed and the commonly used methods for the handling of FRP waste are reviewed. One potentially viable use of FRP waste is in the partial replacement of fillers or aggregates in cementitious materials (particularly portland cement mortar and concrete). A number of important prior investigations performed on the use of FRP waste in concrete and mortar are reviewed. The results from most of those investigations suggest that FRP aggregates significantly reduce the strength of cementitious materials with little significant effect on durability. Recommendations for future research in this area are provided for producing stronger mortars and concretes incorporating FRP production and end-of-life waste.

Journal ArticleDOI
15 Jan 2014-Polymers
TL;DR: Advances on polyester dendrimers as smart carriers for drug delivery applications have been surveyed, both covalent and non-covalent incorporation of drugs are discussed.
Abstract: Polyester dendrimers have been shown to be outstanding candidates for biomedical applications. Compared to traditional polymeric drug vehicles, these biodegradable dendrimers show excellent advantages especially as drug delivery systems because they are non-toxic. Here, advances on polyester dendrimers as smart carriers for drug delivery applications have been surveyed. Both covalent and non-covalent incorporation of drugs are discussed.

Journal ArticleDOI
08 Apr 2014-Polymers
TL;DR: In this paper, the authors reviewed recent advances in high-performance organic field effect transistors (OFETs) based on organic semiconductor/insulator polymer blends with a special attention to phase-separated microstructures.
Abstract: We reviewed recent advances in high-performance organic field-effect transistors (OFETs) based on organic semiconductor/insulator polymer blends. Fundamental aspects of phase separation in binary blends are discussed with special attention to phase-separated microstructures. Strategies for constructing semiconductor, semiconductor/dielectric, or semiconductor/passivation layers in OFETs by blending organic semiconductors with an insulating polymer are discussed. Representative studies that utilized such blended films in the following categories are covered: vertical phase-separation, processing additives, embedded semiconductor nanowires.

Journal ArticleDOI
19 Mar 2014-Polymers
TL;DR: In this paper, poly(acrylic acid) was selected to prepare the bio-adhesive hydrogel adhering to mucosal surfaces using a radiation process, and the solution was then irradiated by an electron beam at up to 75 kGy to make hydrogels.
Abstract: A mucoadhesive drug delivery system can improve the effectiveness of a drug by maintaining the drug concentration and allowing targeting and localization of the drug at a specific site. Acrylic-based hydrogels have been used extensively as a mucoadhesive system owing to their flexibility and excellent bioadhesion. In this experiment, poly(acrylic acid) was selected to prepare the bioadhesive hydrogel adhering to mucosal surfaces using a radiation process. Poly(acrylic acid) was dissolved in water to a prepare poly(acrylic acid) solution, and the solution was then irradiated by an electron beam at up to 75 kGy to make hydrogels. Their physical properties, such as gel percent, swelling percent and adhesive strength to mucosal surfaces, were investigated. Triamcinolone acetonide was used as a model drug. The dried poly(acrylic acid) film was dipped in a 0.1 wt% triamcinolone acetonide solution in ethanol, and then dried at 25 °C. The release of triamcinolone acetonide was determined at different time intervals, and UV (Ultraviolet)-Vis spectroscopy was used to determine the released concentration of triamcinolone acetonide at 238 nm. It was shown that poly(acrylic acid)-based drug carriers were successfully prepared for use in a bioadhesive drug delivery system.

Journal ArticleDOI
29 Aug 2014-Polymers
TL;DR: In this article, the role of surface modification of materials, mainly polymers, to improve the hemocompatibility of stent materials is discussed; additional discussion of other materials commonly used in stents is also provided.
Abstract: The search for a single material with ideal surface properties and necessary mechanical properties is on-going, especially with regard to cardiovascular stent materials. Since the majority of stent problems arise from surface issues rather than bulk material deficiencies, surface optimization of a material that already contains the necessary bulk properties is an active area of research. Polymers can be surface-modified using a variety of methods to increase hemocompatibilty by reducing either late-stage restenosis or acute thrombogenicity, or both. These modification methods can be extended to shape memory polymers (SMPs), in an effort to make these materials more surface compatible, based on the application. This review focuses on the role of surface modification of materials, mainly polymers, to improve the hemocompatibility of stent materials; additional discussion of other materials commonly used in stents is also provided. Although shape memory polymers are not yet extensively used for stents, they offer numerous benefits that may make them good candidates for next-generation stents. Surface modification techniques discussed here include roughening, patterning, chemical modification, and surface modification for biomolecule and drug delivery.

Journal ArticleDOI
14 Jul 2014-Polymers
TL;DR: In this paper, the properties of solvent-cast calcium-caseinate/glycerol (CaCas:Gly ratio of 3:1) were characterized as a function of processing and environmental conditions, including film thickness, solution formulation and ambient humidity.
Abstract: Thin casein films for food packaging applications reportedly possess good strength and low oxygen permeability, but low elasticity and high sensitivity to moisture. Modifying the films to target specific behaviors depending on environmental conditions can enable a variety of commercial applications for casein-based films. The mechanical properties of solvent-cast (15% solids) calcium-caseinate/glycerol films (CaCas:Gly ratio of 3:1) were characterized as a function of processing and environmental conditions, including film thickness, solution formulation and ambient humidity (from 22% to 70% relative humidity (RH) at ~20 °C). At constant RH, the elongation at break (EAB) had a strong positive dependence on the film thickness. When RH increased, the tensile strength (TS) and modulus (E) decreased approximately linearly, while EAB increased. From 0.05% to 1% ( w / w ) of citric pectin (CP) was then incorporated into CaCas/Gly films following seven different formulations (mixing sequences), to alter the protein network and to evaluate the effects of CP on the tensile properties of CaCas/Gly/CP films. At constant film thickness and ~60% RH, the addition of 0.1% or 1.0% CP to the films considerably increased or decreased EAB, TS and E in different directions and to different extents, depending on the formulation, while optical micrographs also showed vastly differing

Journal ArticleDOI
01 Dec 2014-Polymers
TL;DR: In this article, a modified Weibull model by incorporating the diameter variation of bamboo fiber is proposed to investigate the effect of fiber length and diameter on the tensile strength of the fiber.
Abstract: There is growing evidence that the standard Weibull strength distribution is not always accurate for the description of variability in tensile strength and its dependence on the gauge size of brittle fibers. In this work, a modified Weibull model by incorporating the diameter variation of bamboo fiber is proposed to investigate the effect of fiber length and diameter on the tensile strength. Fiber strengths are obtained for lengths ranging from 20 to 60 mm and diameters ranging from 196.6 to 584.3 μm through tensile tests. It is shown that as the within-fiber diameter variation increases, the fracture strength of the bamboo fiber decreases. In addition, the accuracy of using weak-link scaling predictions based on the standard and modified Weibull distribution are assessed, which indicates that the use of the modified distribution provides better correlation with the experimental data than the standard model. The result highlights the accuracy of the modified Weibull model for characterizing the strength and predicting the size dependence of bamboo fiber.

Journal ArticleDOI
20 Jun 2014-Polymers
TL;DR: In this article, the effects of different additives including hydrophilic polymer (polyethylene glycol (PEG)), inorganic salt (lithium chloride (LiCl)) and the surfactant (Tween-80) on the morphology and performance of PPTA/PVDF blend membranes were studied.
Abstract: Poly(p-phenylene terephtalamide) (PPTA), a high-performance polymer with high modulus and good hydrophilicity, is often used as a reinforced material. However, due to its high crystallity, micro-phase separation often occurs in the blends. In this paper, PPTA/poly(vinylidene fluoride) (PVDF) compatible blend solution was synthesized by in situ polycondensation. Blend ultra-filtration membrane was prepared through the immersion phase inversion process. In order to obtain desired pore structure, the effects of different additives including hydrophilic polymer (polyethylene glycol (PEG)), inorganic salt (lithium chloride (LiCl)) and the surfactant (Tween-80) on the morphology and performance of PPTA/PVDF blend membranes were studied. The membrane formation process was investigated through ternary phase diagram (thermodynamics) and viscosities (kinetics) analysis. It was found that, with the increasing of LiCl content, a porous membrane structure with long finger-like pores was formed due to the accelerated demixing process which resulted in the increase of porosity and pore diameter as well as the enhancement of water flux and the decline of PEG rejection. When Tween content increased to over 3 wt%, dynamic viscosity became the main factor resulting in a decreased phase separation rate. The transfer of PEG and LiCl molecules onto membrane surface increased the surface hydrophilicity. The effect of Tween content on membrane hydrophilicity was also correlated with the compatibility of blend components.