scispace - formally typeset
Search or ask a question

Showing papers in "Polymers in 2022"


Journal ArticleDOI
01 Jan 2022-Polymers
TL;DR: PLA’s potential as a strong material in engineering applications areas is addressed and issues, challenges, opportunities, and perspectives in developing and characterizing PLA-based green composites are covered.
Abstract: Polylactic acid (PLA) is a thermoplastic polymer produced from lactic acid that has been chiefly utilized in biodegradable material and as a composite matrix material. PLA is a prominent biomaterial that is widely used to replace traditional petrochemical-based polymers in various applications owing environmental concerns. Green composites have gained greater attention as ecological consciousness has grown since they have the potential to be more appealing than conventional petroleum-based composites, which are toxic and nonbiodegradable. PLA-based composites with natural fiber have been extensively utilized in a variety of applications, from packaging to medicine, due to their biodegradable, recyclable, high mechanical strength, low toxicity, good barrier properties, friendly processing, and excellent characteristics. A summary of natural fibers, green composites, and PLA, along with their respective properties, classification, functionality, and different processing methods, are discussed to discover the natural fiber-reinforced PLA composite material development for a wide range of applications. This work also emphasizes the research and properties of PLA-based green composites, PLA blend composites, and PLA hybrid composites over the past few years. PLA’s potential as a strong material in engineering applications areas is addressed. This review also covers issues, challenges, opportunities, and perspectives in developing and characterizing PLA-based green composites.

109 citations


Journal ArticleDOI
28 Feb 2022-Polymers
TL;DR: This review focuses on the various uses of biopolymers in the food and medical industry and provides a future outlook for the biopolymer industry.
Abstract: Biopolymers are a leading class of functional material suitable for high-value applications and are of great interest to researchers and professionals across various disciplines. Interdisciplinary research is important to understand the basic and applied aspects of biopolymers to address several complex problems associated with good health and well-being. To reduce the environmental impact and dependence on fossil fuels, a lot of effort has gone into replacing synthetic polymers with biodegradable materials, especially those derived from natural resources. In this regard, many types of natural or biopolymers have been developed to meet the needs of ever-expanding applications. These biopolymers are currently used in food applications and are expanding their use in the pharmaceutical and medical industries due to their unique properties. This review focuses on the various uses of biopolymers in the food and medical industry and provides a future outlook for the biopolymer industry.

103 citations


Journal ArticleDOI
01 Jan 2022-Polymers
TL;DR: This review is aimed to critically discuss the characteristics of PCL-based biocomposites, which cover each mechanical and thermal properties and their importance towards several applications.
Abstract: Recent developments within the topic of biomaterials has taken hold of researchers due to the mounting concern of current environmental pollution as well as scarcity resources. Amongst all compatible biomaterials, polycaprolactone (PCL) is deemed to be a great potential biomaterial, especially to the tissue engineering sector, due to its advantages, including its biocompatibility and low bioactivity exhibition. The commercialization of PCL is deemed as infant technology despite of all its advantages. This contributed to the disadvantages of PCL, including expensive, toxic, and complex. Therefore, the shift towards the utilization of PCL as an alternative biomaterial in the development of biocomposites has been exponentially increased in recent years. PCL-based biocomposites are unique and versatile technology equipped with several importance features. In addition, the understanding on the properties of PCL and its blend is vital as it is influenced by the application of biocomposites. The superior characteristics of PCL-based green and hybrid biocomposites has expanded their applications, such as in the biomedical field, as well as in tissue engineering and medical implants. Thus, this review is aimed to critically discuss the characteristics of PCL-based biocomposites, which cover each mechanical and thermal properties and their importance towards several applications. The emergence of nanomaterials as reinforcement agent in PCL-based biocomposites was also a tackled issue within this review. On the whole, recent developments of PCL as a potential biomaterial in recent applications is reviewed.

96 citations


Journal ArticleDOI
23 Feb 2022-Polymers
TL;DR: The use of green composites from natural fiber, particularly with regard to the development and characterization of chitosan, natural-fiber-reinforced CHITOSAN biopolymer, chitOSan blends, and CHITosan nanocomposites, was highlighted in this paper .
Abstract: There has been much effort to provide eco-friendly and biodegradable materials for the next generation of composite products owing to global environmental concerns and increased awareness of renewable green resources. This review article uniquely highlights the use of green composites from natural fiber, particularly with regard to the development and characterization of chitosan, natural-fiber-reinforced chitosan biopolymer, chitosan blends, and chitosan nanocomposites. Natural fiber composites have a number of advantages such as durability, low cost, low weight, high specific strength, non-abrasiveness, equitably good mechanical properties, environmental friendliness, and biodegradability. Findings revealed that chitosan is a natural fiber that falls to the animal fiber category. As it has a biomaterial form, chitosan can be presented as hydrogels, sponges, film, and porous membrane. There are different processing methods in the preparation of chitosan composites such as solution and solvent casting, dipping and spray coating, freeze casting and drying, layer-by-layer preparation, and extrusion. It was also reported that the developed chitosan-based composites possess high thermal stability, as well as good chemical and physical properties. In these regards, chitosan-based “green” composites have wide applicability and potential in the industry of biomedicine, cosmetology, papermaking, wastewater treatment, agriculture, and pharmaceuticals.

91 citations


Journal ArticleDOI
01 May 2022-Polymers
TL;DR: In this article , the application of bistable morphing composites in energy harvesting is discussed and mathematical modeling of the dynamic behavior of these composite structures is explained, and the applications of artificial-intelligence techniques to optimize the design of Bistable structures and to predict their response under different actuating schemes are discussed.
Abstract: Bistable morphing composites have shown promising applications in energy harvesting due to their capabilities to change their shape and maintain two different states without any external loading. In this review article, the application of these composites in energy harvesting is discussed. Actuating techniques used to change the shape of a composite structure from one state to another is discussed. Mathematical modeling of the dynamic behavior of these composite structures is explained. Finally, the applications of artificial-intelligence techniques to optimize the design of bistable structures and to predict their response under different actuating schemes are discussed.

86 citations


Journal ArticleDOI
30 Jun 2022-Polymers
TL;DR: The most abundant microplastics were composed of polyethylene, polyvinyl chloride, and polypropylene, with sizes ranging from 2 to 12 µm, and the detected microparticles were classified according to their shape, color, dimensions, and chemical composition as mentioned in this paper .
Abstract: The widespread use of plastics determines the inevitable human exposure to its by-products, including microplastics (MPs), which enter the human organism mainly by ingestion, inhalation, and dermal contact. Once internalised, MPs may pass across cell membranes and translocate to different body sites, triggering specific cellular mechanisms. Hence, the potential health impairment caused by the internalisation and accumulation of MPs is of prime concern, as confirmed by numerous studies reporting evident toxic effects in various animal models, marine organisms, and human cell lines. In this pilot single-centre observational prospective study, human breastmilk samples collected from N. 34 women were analysed by Raman Microspectroscopy, and, for the first time, MP contamination was found in 26 out of 34 samples. The detected microparticles were classified according to their shape, colour, dimensions, and chemical composition. The most abundant MPs were composed of polyethylene, polyvinyl chloride, and polypropylene, with sizes ranging from 2 to 12 µm. MP data were statistically analysed in relation to specific patients’ data (age, use of personal care products containing plastic compounds, and consumption of fish/shellfish, beverages, and food in plastic packaging), but no significant relationship was found, suggesting that the ubiquitous MP presence makes human exposure inevitable.

71 citations


Journal ArticleDOI
24 Jan 2022-Polymers
TL;DR: In this paper , a review of green materials for fused filament fabrication can be found, referring to all kinds of possible industrial applications, and in particular to the field of Cultural Heritage.
Abstract: Recently, Fused Filament Fabrication (FFF), one of the most encouraging additive manufacturing (AM) techniques, has fascinated great attention. Although FFF is growing into a manufacturing device with considerable technological and material innovations, there still is a challenge to convert FFF-printed prototypes into functional objects for industrial applications. Polymer components manufactured by FFF process possess, in fact, low and anisotropic mechanical properties, compared to the same parts, obtained by using traditional building methods. The poor mechanical properties of the FFF-printed objects could be attributed to the weak interlayer bond interface that develops during the layer deposition process and to the commercial thermoplastic materials used. In order to increase the final properties of the 3D printed models, several polymer-based composites and nanocomposites have been proposed for FFF process. However, even if the mechanical properties greatly increase, these materials are not all biodegradable. Consequently, their waste disposal represents an important issue that needs an urgent solution. Several scientific researchers have therefore moved towards the development of natural or recyclable materials for FFF techniques. This review details current progress on innovative green materials for FFF, referring to all kinds of possible industrial applications, and in particular to the field of Cultural Heritage.

65 citations


Journal ArticleDOI
01 Feb 2022-Polymers
TL;DR: An overview of the green, facile, and rapid synthesis of AgNPs using biological resources and antibacterial use of biosynthesized AgNps, highlighting their antibacterial mechanisms is provided.
Abstract: Green synthesis of silver nanoparticles (AgNPs) using biological resources is the most facile, economical, rapid, and environmentally friendly method that mitigates the drawbacks of chemical and physical methods. Various biological resources such as plants and their different parts, bacteria, fungi, algae, etc. could be utilized for the green synthesis of bioactive AgNPs. In recent years, several green approaches for non-toxic, rapid, and facile synthesis of AgNPs using biological resources have been reported. Plant extract contains various biomolecules, including flavonoids, terpenoids, alkaloids, phenolic compounds, and vitamins that act as reducing and capping agents during the biosynthesis process. Similarly, microorganisms produce different primary and secondary metabolites that play a crucial role as reducing and capping agents during synthesis. Biosynthesized AgNPs have gained significant attention from the researchers because of their potential applications in different fields of biomedical science. The widest application of AgNPs is their bactericidal activity. Due to the emergence of multidrug-resistant microorganisms, researchers are exploring the therapeutic abilities of AgNPs as potential antibacterial agents. Already, various reports have suggested that biosynthesized AgNPs have exhibited significant antibacterial action against numerous human pathogens. Because of their small size and large surface area, AgNPs have the ability to easily penetrate bacterial cell walls, damage cell membranes, produce reactive oxygen species, and interfere with DNA replication as well as protein synthesis, and result in cell death. This paper provides an overview of the green, facile, and rapid synthesis of AgNPs using biological resources and antibacterial use of biosynthesized AgNPs, highlighting their antibacterial mechanisms.

64 citations


Journal ArticleDOI
01 Feb 2022-Polymers
TL;DR: In this paper , a review of the characteristics of bio-waste-derived adsorbents for methylene blue removal is presented, as well as related parameters influencing the performance of this process.
Abstract: Over the last few years, various industries have released wastewater containing high concentrations of dyes straight into the ecological system, which has become a major environmental problem (i.e., soil, groundwater, surface water pollution, etc.). The rapid growth of textile industries has created an alarming situation in which further deterioration to the environment has been caused due to substances being left in treated wastewater, including dyes. The application of activated carbon has recently been demonstrated to be a highly efficient technology in terms of removing methylene blue (MB) from wastewater. Agricultural waste, as well as animal-based and wood products, are excellent sources of bio-waste for MB remediation since they are extremely efficient, have high sorption capacities, and are renewable sources. Despite the fact that commercial activated carbon is a favored adsorbent for dye elimination, its extensive application is restricted because of its comparatively high cost, which has prompted researchers to investigate alternative sources of adsorbents that are non-conventional and more economical. The goal of this review article was to critically evaluate the accessible information on the characteristics of bio-waste-derived adsorbents for MB’s removal, as well as related parameters influencing the performance of this process. The review also highlighted the processing methods developed in previous studies. Regeneration processes, economic challenges, and the valorization of post-sorption materials were also discussed. This review is beneficial in terms of understanding recent advances in the status of biowaste-derived adsorbents, highlighting the accelerating need for the development of low-cost adsorbents and functioning as a precursor for large-scale system optimization.

60 citations


Journal ArticleDOI
01 Apr 2022-Polymers
TL;DR: In this article , the synthesis of titanium dioxide nanoparticles (TiO2 NPs) in a green/sustainable manner has received a lot of interest in the previous quarter.
Abstract: Nanotechnology is a fast-expanding area with several applications in science, engineering, health, pharmacy, and other fields. Several physical/chemical techniques are often used to manufacture nanoparticles (NPs). Simpler, safer, and more cost-effective green synthesis technologies have recently been developed. The synthesis of titanium dioxide nanoparticles (TiO2 NPs) in a green/sustainable manner has gotten a lot of interest in the previous quarter. Bioactive components present in organisms such as plants and bacteria enhance the bio-reduction and capping processes. The biogenic synthesis of TiO2 NPs, as well as the synthesis methods and formation process, are discussed in this review. A range of natural reducing agents including proteins, enzymes, phytochemicals, and others, are involved in the synthesis of TiO2 NPs. The physics of antibacterial and photocatalysis applications were also thoroughly discussed. Finally, we provide an overview of current research and future concerns in biologically mediated TiO2 nanostructures-based feasible platforms for industrial applications.

58 citations


Journal ArticleDOI
01 Jan 2022-Polymers
TL;DR: In this paper , the authors describe the creation of NNHs from routinely used biocompatible polymer composites using single-step procedures and self-assembly methodologies, and combine recent research discoveries to focus on the application of nanomaterials in drug release, antibacterial, and tissue engineering.
Abstract: The search for higher-quality nanomaterials for medicinal applications continues. There are similarities between electrospun fibers and natural tissues. This property has enabled electrospun fibers to make significant progress in medical applications. However, electrospun fibers are limited to tissue scaffolding applications. When nanoparticles and nanofibers are combined, the composite material can perform more functions, such as photothermal, magnetic response, biosensing, antibacterial, drug delivery and biosensing. To prepare nanofiber and nanoparticle hybrids (NNHs), there are two primary ways. The electrospinning technology was used to produce NNHs in a single step. An alternate way is to use a self-assembly technique to create nanoparticles in fibers. This paper describes the creation of NNHs from routinely used biocompatible polymer composites. Single-step procedures and self-assembly methodologies are used to discuss the preparation of NNHs. It combines recent research discoveries to focus on the application of NNHs in drug release, antibacterial, and tissue engineering in the last two years.

Journal ArticleDOI
01 Apr 2022-Polymers
TL;DR: In this article , the synthesis of titanium dioxide nanoparticles (TiO2 NPs) in a green/sustainable manner has received a lot of interest in the previous quarter and the authors provide an overview of current research and future concerns in biologically mediated TiO2 nanostructures based feasible platforms for industrial applications.
Abstract: Nanotechnology is a fast-expanding area with a wide range of applications in science, engineering, health, pharmacy, and other fields. Nanoparticles (NPs) are frequently prepared via a variety of physical and chemical processes. Simpler, sustainable, and cost-effective green synthesis technologies have recently been developed. The synthesis of titanium dioxide nanoparticles (TiO2 NPs) in a green/sustainable manner has gotten a lot of interest in the previous quarter. Bioactive components present in organisms such as plants and bacteria facilitate the bio-reduction and capping processes. The biogenic synthesis of TiO2 NPs, as well as the different synthesis methods and mechanistic perspectives, are discussed in this review. A range of natural reducing agents including proteins, enzymes, phytochemicals, and others, are involved in the synthesis of TiO2 NPs. The physics of antibacterial and photocatalysis applications were also thoroughly discussed. Finally, we provide an overview of current research and future concerns in biologically mediated TiO2 nanostructures-based feasible platforms for industrial applications.

Journal ArticleDOI
01 Feb 2022-Polymers
TL;DR: This brief review has the aim to provide the status concerning the synthesis, production, thermal, morphological and mechanical properties underlying biodegradation ability, and major applications of PBS and its principal copolymers.
Abstract: PBS, an acronym for poly (butylene succinate), is an aliphatic polyester that is attracting increasing attention due to the possibility of bio-based production, as well as its balanced properties, enhanced processability, and excellent biodegradability. This brief review has the aim to provide the status concerning the synthesis, production, thermal, morphological and mechanical properties underlying biodegradation ability, and major applications of PBS and its principal copolymers.

Journal ArticleDOI
01 Mar 2022-Polymers
TL;DR: This review will provide fundamental knowledge and current information connected to the PAA nanoplatforms and their applications in biological fields for a broad audience of researchers, engineers, and newcomers.
Abstract: Polyacrylic acid (PAA) is a non-toxic, biocompatible, and biodegradable polymer that gained lots of interest in recent years. PAA nano-derivatives can be obtained by chemical modification of carboxyl groups with superior chemical properties in comparison to unmodified PAA. For example, nano-particles produced from PAA derivatives can be used to deliver drugs due to their stability and biocompatibility. PAA and its nanoconjugates could also be regarded as stimuli-responsive platforms that make them ideal for drug delivery and antimicrobial applications. These properties make PAA a good candidate for conventional and novel drug carrier systems. Here, we started with synthesis approaches, structure characteristics, and other architectures of PAA nanoplatforms. Then, different conjugations of PAA/nanostructures and their potential in various fields of nanomedicine such as antimicrobial, anticancer, imaging, biosensor, and tissue engineering were discussed. Finally, biocompatibility and challenges of PAA nanoplatforms were highlighted. This review will provide fundamental knowledge and current information connected to the PAA nanoplatforms and their applications in biological fields for a broad audience of researchers, engineers, and newcomers. In this light, PAA nanoplatforms could have great potential for the research and development of new nano vaccines and nano drugs in the future.

Journal ArticleDOI
01 Aug 2022-Polymers
TL;DR: The findings suggest that the antitumor effect of these CMC-Ag nanoparticles is due to the induction of apoptosis and necrosis in hepatic cancer cells via increased caspase-8 and -9 activities and diminished levels of VEGFR-2.
Abstract: Traditional cancer treatments include surgery, radiation, and chemotherapy. According to medical sources, chemotherapy is still the primary method for curing or treating cancer today and has been a major contributor to the recent decline in cancer mortality. Nanocomposites based on polymers and metal nanoparticles have recently received the attention of researchers. In the current study, a nanocomposite was fabricated based on carboxymethyl cellulose and silver nanoparticles (CMC-AgNPs) and their antibacterial, antifungal, and anticancer activities were evaluated. The antibacterial results revealed that CMC-AgNPs have promising antibacterial activity against Gram-negative (Klebsiella oxytoca and Escherichia coli) and Gram-positive bacteria (Bacillus cereus and Staphylococcus aureus). Moreover, CMC-AgNPs exhibited antifungal activity against filamentous fungi such as Aspergillus fumigatus, A. niger, and A. terreus. Concerning the HepG2 hepatocellular cancer cell line, the lowest IC50 values (7.9 ± 0.41 µg/mL) were recorded for CMC-AgNPs, suggesting a strong cytotoxic effect on liver cancer cells. As a result, our findings suggest that the antitumor effect of these CMC-Ag nanoparticles is due to the induction of apoptosis and necrosis in hepatic cancer cells via increased caspase-8 and -9 activities and diminished levels of VEGFR-2. In conclusion, CMC-AgNPs exhibited antibacterial, antifungal, and anticancer activities, which can be used in the pharmaceutical and medical fields.

Journal ArticleDOI
01 Feb 2022-Polymers
TL;DR: Based on the outstanding performance of polymer-based wound dressings on diabetic wounds in the pre-clinical experiments, the in vivo and in vitro therapeutic results of the wound dressing materials on the diabetic wound are hereby reviewed.
Abstract: Diabetic wounds are severe injuries that are common in patients that suffer from diabetes. Most of the presently employed wound dressing scaffolds are inappropriate for treating diabetic wounds. Improper treatment of diabetic wounds usually results in amputations. The shortcomings that are related to the currently used wound dressings include poor antimicrobial properties, inability to provide moisture, weak mechanical features, poor biodegradability, and biocompatibility, etc. To overcome the poor mechanical properties, polymer-based wound dressings have been designed from the combination of biopolymers (natural polymers) (e.g., chitosan, alginate, cellulose, chitin, gelatin, etc.) and synthetic polymers (e.g., poly (vinyl alcohol), poly (lactic-co-glycolic acid), polylactide, poly-glycolic acid, polyurethanes, etc.) to produce effective hybrid scaffolds for wound management. The loading of bioactive agents or drugs into polymer-based wound dressings can result in improved therapeutic outcomes such as good antibacterial or antioxidant activity when used in the treatment of diabetic wounds. Based on the outstanding performance of polymer-based wound dressings on diabetic wounds in the pre-clinical experiments, the in vivo and in vitro therapeutic results of the wound dressing materials on the diabetic wound are hereby reviewed.

Journal ArticleDOI
01 Jan 2022-Polymers
TL;DR: The enhanced electrochemical performances of ASC are congregated by depositing PANI on NF that boosts the electrode's conductivity, which is assured by faster ions diffusion, higher surface area, and ample electroactive sites for better electrolyte interaction.
Abstract: Energy generation can be clean and sustainable if it is dependent on renewable resources and it can be prominently utilized if stored efficiently. Recently, biomass-derived carbon and polymers have been focused on developing less hazardous eco-friendly electrodes for energy storage devices. We have focused on boosting the supercapacitor’s energy storage ability by engineering efficient electrodes in this context. The well-known conductive polymer, polyaniline (PANI), deposited on nickel foam (NF) is used as a positive electrode, while the activated carbon derived from jute sticks (JAC) deposited on NF is used as a negative electrode. The asymmetric supercapacitor (ASC) is fabricated for the electrochemical studies and found that the device has exhibited an energy density of 24 µWh/cm2 at a power density of 3571 µW/cm2. Furthermore, the ASC PANI/NF//KOH//JAC/NF has exhibited good stability with ~86% capacitance retention even after 1000 cycles. Thus, the enhanced electrochemical performances of ASC are congregated by depositing PANI on NF that boosts the electrode’s conductivity. Such deposition patterns are assured by faster ions diffusion, higher surface area, and ample electroactive sites for better electrolyte interaction. Besides advancing technology, such work also encourages sustainability.

Journal ArticleDOI
01 Jun 2022-Polymers
TL;DR: An overview of PET bottle-to-bottle recycling and guidance for beverage manufacturers looking to advance goals for sustainability is provided in this paper , where the authors provide an overview of the current state-of-the-art in PET recycling.
Abstract: Disposal of plastic waste has become a widely discussed issue, due to the potential environmental impact of improper waste disposal. Polyethylene terephthalate (PET) packaging accounted for 44.7% of single-serve beverage packaging in the US in 2021, and 12% of global solid waste. A strategic solution is needed to manage plastic packaging solid waste. Major beverage manufacturers have pledged to reduce their environmental footprint by taking steps towards a sustainable future. The PET bottle has several properties that make it an environmentally friendly choice. The PET bottle has good barrier properties as its single-layer, mono-material composition allows it to be more easily recycled. Compared to glass, the PET bottle is lightweight and has a lower carbon footprint in production and transportation. With modern advancements to decontamination processes in the recycling of post-consumer recycled PET (rPET or PCR), it has become a safe material for reuse as beverage packaging. It has been 30 years since the FDA first began certifying PCR PET production processes as compliant for production of food contact PCR PET, for application within the United States. This article provides an overview of PET bottle-to-bottle recycling and guidance for beverage manufacturers looking to advance goals for sustainability.

Journal ArticleDOI
21 Jan 2022-Polymers
TL;DR: In this paper , the preparation and molding ways of gelatin-based edible films and the applications of gelatin modified with other biopolymers are discussed, and the latest advances in gelatinbased biodegradable packaging and food applications that exhibit outstanding advantages in food preservation.
Abstract: Owing to the increasing environmental concerns and requirements for high-quality foods, edible films and coatings (based on proteins, polysaccharides, natural phenolic active substances, etc.) are being developed as effective alternatives to traditional plastic packaging. Gelatin is extracted from collagen. It is an ideal material for food packaging due to its versatile advantages such as low price, polymerization, biodegradability, good antibacterial and antioxidant properties, etc. However, gelatin film exists poor waterproof and mechanical properties, which limit its developments and applications in food packaging. Previous studies show that pure gelatin can be modified by adding active ingredients and incorporating them with bio-polymers to improve its mechanical properties, aiming to achieve the desirable effect of preservation. This review mainly shows the preparation and molding ways of gelatin-based edible films and the applications of gelatin modified with other biopolymers. Furthermore, this review provides the latest advances in gelatin-based biodegradable packaging and food applications that exhibit outstanding advantages in food preservation.

Journal ArticleDOI
01 Feb 2022-Polymers
TL;DR: Recent advances in using bioactive GQD-based polymer composites in drug delivery, gene delivery, thermal therapy, thermodynamic therapy, bioimaging, tissue engineering, bioactiveGQD synthesis, and G QD green resuscitation are summarized.
Abstract: Today, nanomedicine seeks to develop new polymer composites to overcome current problems in diagnosing and treating common diseases, especially cancer. To achieve this goal, research on polymer composites has expanded so that, in recent years, interdisciplinary collaborations between scientists have been expanding day by day. The synthesis and applications of bioactive GQD-based polymer composites have been investigated in medicine and biomedicine. Bioactive GQD-based polymer composites have a special role as drug delivery carriers. Bioactive GQDs are one of the newcomers to the list of carbon-based nanomaterials. In addition, the antibacterial and anti-diabetic potentials of bioactive GQDs are already known. Due to their highly specific surface properties, π-π aggregation, and hydrophobic interactions, bioactive GQD-based polymer composites have a high drug loading capacity, and, in case of proper correction, can be used as an excellent option for the release of anticancer drugs, gene carriers, biosensors, bioimaging, antibacterial applications, cell culture, and tissue engineering. In this paper, we summarize recent advances in using bioactive GQD-based polymer composites in drug delivery, gene delivery, thermal therapy, thermodynamic therapy, bioimaging, tissue engineering, bioactive GQD synthesis, and GQD green resuscitation, in addition to examining GQD-based polymer composites.

Journal ArticleDOI
01 Mar 2022-Polymers
TL;DR: This review focuses on the properties and applications of PLLA in the TE field, finally affording an insight into future directions and challenges to address an effective improvement of scaffold properties.
Abstract: Synthetic biopolymers are effective cues to replace damaged tissue in the tissue engineering (TE) field, both for in vitro and in vivo application. Among them, poly-l-lactic acid (PLLA) has been highlighted as a biomaterial with tunable mechanical properties and biodegradability that allows for the fabrication of porous scaffolds with different micro/nanostructures via various approaches. In this review, we discuss the structure of PLLA, its main properties, and the most recent advances in overcoming its hydrophobic, synthetic nature, which limits biological signaling and protein absorption. With this aim, PLLA-based scaffolds can be exposed to surface modification or combined with other biomaterials, such as natural or synthetic polymers and bioceramics. Further, various fabrication technologies, such as phase separation, electrospinning, and 3D printing, of PLLA-based scaffolds are scrutinized along with the in vitro and in vivo applications employed in various tissue repair strategies. Overall, this review focuses on the properties and applications of PLLA in the TE field, finally affording an insight into future directions and challenges to address an effective improvement of scaffold properties.

Journal ArticleDOI
21 Jan 2022-Polymers
TL;DR: This paper aims to present the biomaterial dressings and scaffolds suitable for wound management application, reviewing the most recent studies in the field.
Abstract: Whether they are caused by trauma, illness, or surgery, wounds may occur throughout anyone’s life. Some injuries’ complexity and healing difficulty pose important challenges in the medical field, demanding novel approaches in wound management. A highly researched possibility is applying biomaterials in various forms, ranging from thin protective films, foams, and hydrogels to scaffolds and textiles enriched with drugs and nanoparticles. The synergy of biocompatibility and cell proliferative effects of these materials is reflected in a more rapid wound healing rate and improved structural and functional properties of the newly grown tissue. This paper aims to present the biomaterial dressings and scaffolds suitable for wound management application, reviewing the most recent studies in the field.

Journal ArticleDOI
25 Feb 2022-Polymers
TL;DR: In this article , a new product development review article aims to consolidate the principles and current literature on design for sustainability to seek the field's future direction, including concept, embodiment and detail design processes.
Abstract: New product development review article aims to consolidate the principles and current literature on design for sustainability to seek the field’s future direction. In this point of view, the design for sustainability methods can be established under the idea of sustainability in dimensions of ecology, economy and social pillars. Design for sustainability concept is implemented in concurrent engineering, including concept, embodiment and detail design processes. Integrating sustainability in engineering designs is crucial to producing greener products, system innovation, and services aligned with current market demand. Currently, many concurrent engineering studies related to natural fibre-reinforced polymer composites associated with sustainability enhance the application of design for sustainability techniques by professional designers. However, the current literature is scarce in bridging the design for sustainability concept with concurrent engineering during the design development stage, and these areas should be further developed. Several other future research directions, such as the need for aligning with principles and applications, along with exploring the relationships between the design for sustainability techniques and views of sustainability, are presented in this review paper.

Journal ArticleDOI
29 Jun 2022-Polymers
TL;DR: In this paper , the influences of fiber volume fraction and stress level on the fatigue performance of glass fiber-reinforced polyester (GFRP) composite materials have been studied in the tension-tension fatigue scenario.
Abstract: Fibre-reinforced polymeric composite materials are becoming substantial and convenient materials in the repair and replacement of traditional metallic materials due to their high stiffness. The composites undergo different types of fatigue loads during their service life. The drive to enhance the design methodologies and predictive models of fibre-reinforced polymeric composite materials subjected to fatigue stresses is reliant on more precise and reliable techniques for assessing their fatigue life. The influences of fibre volume fraction and stress level on the fatigue performance of glass fibre-reinforced polyester (GFRP) composite materials have been studied in the tension–tension fatigue scenario. The fibre volume fractions for this investigation were set to: 20%, 35%, and 50%. The tensile testing of specimens was performed using a universal testing machine and the Young’s modulus was validated with four different prediction models. In order to identify the modes of failure as well as the fatigue life of composites, polyester-based GFRP specimens were evaluated at five stress levels which were 75%, 65%, 50%, 40%, and 25% of the maximum tensile stress until either a fracture occurred or five million fatigue cycles was reached. The experimental results showed that glass fibre-reinforced polyester samples had a pure tension failure at high applied stress levels, while at low stress levels the failure mode was governed by stress levels. Finally, the experimental results of GFRP composite samples with different volume fractions were utilized for model validation and comparison, which showed that the proposed framework yields acceptable correlations of predicted fatigue lives in tension–tension fatigue regimes with experimental ones.

Journal ArticleDOI
24 May 2022-Polymers
TL;DR: In this paper , the single-fluid blending electrospinning process was combined with the casting film method to fabricate a medicated double-layer hybrid to provide a dual-phase drug controlled release profile, with ibuprofen (IBU) as a common model of poorly water-soluble drug and ethyl cellulose (EC) and polyvinylpyrrolidone (PVP) K60 as the polymeric excipients.
Abstract: One of the most important trends in developments in electrospinning is to combine itself with traditional materials production and transformation methods to take advantage of the unique properties of nanofibers. In this research, the single-fluid blending electrospinning process was combined with the casting film method to fabricate a medicated double-layer hybrid to provide a dual-phase drug controlled release profile, with ibuprofen (IBU) as a common model of a poorly water-soluble drug and ethyl cellulose (EC) and polyvinylpyrrolidone (PVP) K60 as the polymeric excipients. Electrospun medicated IBU-PVP nanofibers (F7), casting IBU-EC films (F8) and the double-layer hybrid films (DHFs, F9) with one layer of electrospun nanofibers containing IBU and PVP and the other layer of casting films containing IBU, EC and PVP, were prepared successfully. The SEM assessments demonstrated that F7 were in linear morphologies without beads or spindles, F8 were solid films, and F9 were composed of one porous fibrous layer and one solid layer. XRD and FTIR results verified that both EC and PVP were compatible with IBU. In vitro dissolution tests indicated that F7 were able to provide a pulsatile IBU release, F8 offered a typical drug sustained release, whereas F9 were able to exhibit a dual-phase controlled release with 40.3 ± 5.1% in the first phase for a pulsatile manner and the residues were released in an extended manner in the second phase. The DHFs from a combination of electrospinning and the casting method pave a new way for developing novel functional materials.

Journal ArticleDOI
28 Feb 2022-Polymers
TL;DR: In this article , a review is devoted to the application of bulk synthetic polymers such as polysulfone (PSf), polyethersulfones (PES), polyacrylonitrile (PAN), and polyvinylidene fluoride (PVDF) for the separation of oil-water emulsions.
Abstract: This review is devoted to the application of bulk synthetic polymers such as polysulfone (PSf), polyethersulfone (PES), polyacrylonitrile (PAN), and polyvinylidene fluoride (PVDF) for the separation of oil-water emulsions. Due to the high hydrophobicity of the presented polymers and their tendency to be contaminated with water-oil emulsions, methods for the hydrophilization of membranes based on them were analyzed: the mixing of polymers, the introduction of inorganic additives, and surface modification. In addition, membranes based on natural hydrophilic materials (cellulose and its derivatives) are given as a comparison.

Journal ArticleDOI
31 Jan 2022-Polymers
TL;DR: In this paper , a review on the processing of wood-polymer composites along with additives such as wood flour and various properties of WPCs such as mechanical, structural, and morphological properties is presented.
Abstract: Waste recycling is one of the key aspects in current day studies to boost the country’s circular economy. Recycling wood from construction and demolished structures and combining it with plastics forms wood-polymer composites (WPC) which have a very wide scope of usage. Such recycled composites have very low environmental impact in terms of abiotic potential, global warming potential, and greenhouse potential. Processing of WPCs can be easily done with predetermined strength values that correspond to its end application. Yet, the usage of conventional polymer composite manufacturing techniques such as injection molding and extrusion has very limited scope. Many rheological characterization techniques are being followed to evaluate the influence of formulation and process parameters over the quality of final WPCs. It will be very much interesting to carry out a review on the material formulation of WPCs and additives used. Manufacturing of wood composites can also be made by using bio-based adhesives such as lignin, tannin, and so on. Nuances in complete replacement of synthetic adhesives as bio-based adhesives are also discussed by various researchers which can be done only by complete understanding of formulating factors of bio-based adhesives. Wood composites play a significant role in many non-structural and structural applications such as construction, floorings, windows, and door panels. The current review focuses on the processing of WPCs along with additives such as wood flour and various properties of WPCs such as mechanical, structural, and morphological properties. Applications of wood-based composites in various sectors such as automotive, marine, defense, and structural applications are also highlighted in this review.

Journal ArticleDOI
26 Feb 2022-Polymers
TL;DR: Avantium as discussed by the authors describes the path from invention towards commercialization of their YXY® plants-to-plastics technology, which catalytically converts plant-based sugars into FDCA, the chemical building block for PEF (polyethylene furanoate).
Abstract: Biobased polymers and materials are desperately needed to replace fossil-based materials in the world’s transition to a more sustainable lifestyle. In this article, Avantium describes the path from invention towards commercialization of their YXY® plants-to-plastics Technology, which catalytically converts plant-based sugars into FDCA—the chemical building block for PEF (polyethylene furanoate). PEF is a plant-based, highly recyclable plastic, with superior performance properties compared to today’s widely used petroleum-based packaging materials. The myriad of topics that must be addressed in the process of bringing a new monomer and polymer to market are discussed, including process development and application development, regulatory requirements, IP protection, commercial partnerships, by-product valorisation, life cycle assessment (LCA), recyclability and circular economy fit, and end-of-life. Advice is provided for others considering embarking on a similar journey, as well as an outlook on the next, exciting steps towards large-scale production of FDCA and PEF at Avantium’s Flagship Plant and beyond.

Journal ArticleDOI
26 Jul 2022-Polymers
TL;DR: The main purpose of this review article was to summarize the most recent trends of hydrogel technology, going through the most used polymeric materials and the most popularHydrogel synthesis methods in recent years, including different strategies of enhancing hydrogels’ properties, such as cross-linking and the manufacture of composite hydrogELs.
Abstract: Nowadays, there are still numerous challenges for well-known biomedical applications, such as tissue engineering (TE), wound healing and controlled drug delivery, which must be faced and solved. Hydrogels have been proposed as excellent candidates for these applications, as they have promising properties for the mentioned applications, including biocompatibility, biodegradability, great absorption capacity and tunable mechanical properties. However, depending on the material or the manufacturing method, the resulting hydrogel may not be up to the specific task for which it is designed, thus there are different approaches proposed to enhance hydrogel performance for the requirements of the application in question. The main purpose of this review article was to summarize the most recent trends of hydrogel technology, going through the most used polymeric materials and the most popular hydrogel synthesis methods in recent years, including different strategies of enhancing hydrogels’ properties, such as cross-linking and the manufacture of composite hydrogels. In addition, the secondary objective of this review was to briefly discuss other novel applications of hydrogels that have been proposed in the past few years which have drawn a lot of attention.

Journal ArticleDOI
01 Feb 2022-Polymers
TL;DR: This study’s main purpose is to establish the main properties needed to develop sustainable polymeric scaffolds that can be applied in tissue engineering to improve the tissue regeneration process without producing other side effects to the environment.
Abstract: In recent years, biomaterials development and characterization for new applications in regenerative medicine or controlled release represent one of the biggest challenges. Tissue engineering is one of the most intensively studied domain where hydrogels are considered optimum applications in the biomedical field. The delicate nature of hydrogels and their low mechanical strength limit their exploitation in tissue engineering. Hence, developing new, stronger, and more stable hydrogels with increased biocompatibility, is essential. However, both natural and synthetic polymers possess many limitations. Hydrogels based on natural polymers offer particularly high biocompatibility and biodegradability, low immunogenicity, excellent cytocompatibility, variable, and controllable solubility. At the same time, they have poor mechanical properties, high production costs, and low reproducibility. Synthetic polymers come to their aid through superior mechanical strength, high reproducibility, reduced costs, and the ability to regulate their composition to improve processes such as hydrolysis or biodegradation over variable periods. The development of hydrogels based on mixtures of synthetic and natural polymers can lead to the optimization of their properties to obtain ideal scaffolds. Also, incorporating different nanoparticles can improve the hydrogel’s stability and obtain several biological effects. In this regard, essential oils and drug molecules facilitate the desired biological effect or even produce a synergistic effect. This study’s main purpose is to establish the main properties needed to develop sustainable polymeric scaffolds. These scaffolds can be applied in tissue engineering to improve the tissue regeneration process without producing other side effects to the environment.