scispace - formally typeset
Search or ask a question

Showing papers in "Proceedings of the National Academy of Sciences of the United States of America in 2010"


Journal ArticleDOI
TL;DR: In this paper, the authors compared the fecal microbiota of European children (EU) and that of children from a rural African village of Burkina Faso (BF), where the diet, high in fiber content, is similar to that of early human settlements at the time of the birth of agriculture.
Abstract: Gut microbial composition depends on different dietary habits just as health depends on microbial metabolism, but the association of microbiota with different diets in human populations has not yet been shown. In this work, we compared the fecal microbiota of European children (EU) and that of children from a rural African village of Burkina Faso (BF), where the diet, high in fiber content, is similar to that of early human settlements at the time of the birth of agriculture. By using high-throughput 16S rDNA sequencing and biochemical analyses, we found significant differences in gut microbiota between the two groups. BF children showed a significant enrichment in Bacteroidetes and depletion in Firmicutes (P < 0.001), with a unique abundance of bacteria from the genus Prevotella and Xylanibacter, known to contain a set of bacterial genes for cellulose and xylan hydrolysis, completely lacking in the EU children. In addition, we found significantly more short-chain fatty acids (P < 0.001) in BF than in EU children. Also, Enterobacteriaceae (Shigella and Escherichia) were significantly underrepresented in BF than in EU children (P < 0.05). We hypothesize that gut microbiota coevolved with the polysaccharide-rich diet of BF individuals, allowing them to maximize energy intake from fibers while also protecting them from inflammations and noninfectious colonic diseases. This study investigates and compares human intestinal microbiota from children characterized by a modern western diet and a rural diet, indicating the importance of preserving this treasure of microbial diversity from ancient rural communities worldwide.

4,233 citations


Journal ArticleDOI
TL;DR: It is found that in direct contrast to the highly differentiated communities of their mothers, neonates harbored bacterial communities that were undifferentiated across multiple body habitats, regardless of delivery mode.
Abstract: Upon delivery, the neonate is exposed for the first time to a wide array of microbes from a variety of sources, including maternal bacteria. Although prior studies have suggested that delivery mode shapes the microbiota's establishment and, subsequently, its role in child health, most researchers have focused on specific bacterial taxa or on a single body habitat, the gut. Thus, the initiation stage of human microbiome development remains obscure. The goal of the present study was to obtain a community-wide perspective on the influence of delivery mode and body habitat on the neonate's first microbiota. We used multiplexed 16S rRNA gene pyrosequencing to characterize bacterial communities from mothers and their newborn babies, four born vaginally and six born via Cesarean section. Mothers' skin, oral mucosa, and vagina were sampled 1 h before delivery, and neonates' skin, oral mucosa, and nasopharyngeal aspirate were sampled <5 min, and meconium <24 h, after delivery. We found that in direct contrast to the highly differentiated communities of their mothers, neonates harbored bacterial communities that were undifferentiated across multiple body habitats, regardless of delivery mode. Our results also show that vaginally delivered infants acquired bacterial communities resembling their own mother's vaginal microbiota, dominated by Lactobacillus, Prevotella, or Sneathia spp., and C-section infants harbored bacterial communities similar to those found on the skin surface, dominated by Staphylococcus, Corynebacterium, and Propionibacterium spp. These findings establish an important baseline for studies tracking the human microbiome's successional development in different body habitats following different delivery modes, and their associated effects on infant health.

3,640 citations


Journal ArticleDOI
TL;DR: The epigenetic landscape of enhancer elements in embryonic stem cells and several adult tissues in the mouse is interrogated and it is found that histone H3K27ac distinguishes active enhancers from inactive/poised enhancers and poised enhancer networks provide clues to unrealized developmental programs.
Abstract: Developmental programs are controlled by transcription factors and chromatin regulators, which maintain specific gene expression programs through epigenetic modification of the genome. These regulatory events at enhancers contribute to the specific gene expression programs that determine cell state and the potential for differentiation into new cell types. Although enhancer elements are known to be associated with certain histone modifications and transcription factors, the relationship of these modifications to gene expression and developmental state has not been clearly defined. Here we interrogate the epigenetic landscape of enhancer elements in embryonic stem cells and several adult tissues in the mouse. We find that histone H3K27ac distinguishes active enhancers from inactive/poised enhancer elements containing H3K4me1 alone. This indicates that the amount of actively used enhancers is lower than previously anticipated. Furthermore, poised enhancer networks provide clues to unrealized developmental programs. Finally, we show that enhancers are reset during nuclear reprogramming.

3,541 citations


Journal ArticleDOI
TL;DR: The 1000 Functional Connectomes Project (Fcon_1000) as discussed by the authors is a large-scale collection of functional connectome data from 1,414 volunteers collected independently at 35 international centers.
Abstract: Although it is being successfully implemented for exploration of the genome, discovery science has eluded the functional neuroimaging community. The core challenge remains the development of common paradigms for interrogating the myriad functional systems in the brain without the constraints of a priori hypotheses. Resting-state functional MRI (R-fMRI) constitutes a candidate approach capable of addressing this challenge. Imaging the brain during rest reveals large-amplitude spontaneous low-frequency (<0.1 Hz) fluctuations in the fMRI signal that are temporally correlated across functionally related areas. Referred to as functional connectivity, these correlations yield detailed maps of complex neural systems, collectively constituting an individual's "functional connectome." Reproducibility across datasets and individuals suggests the functional connectome has a common architecture, yet each individual's functional connectome exhibits unique features, with stable, meaningful interindividual differences in connectivity patterns and strengths. Comprehensive mapping of the functional connectome, and its subsequent exploitation to discern genetic influences and brain-behavior relationships, will require multicenter collaborative datasets. Here we initiate this endeavor by gathering R-fMRI data from 1,414 volunteers collected independently at 35 international centers. We demonstrate a universal architecture of positive and negative functional connections, as well as consistent loci of inter-individual variability. Age and sex emerged as significant determinants. These results demonstrate that independent R-fMRI datasets can be aggregated and shared. High-throughput R-fMRI can provide quantitative phenotypes for molecular genetic studies and biomarkers of developmental and pathological processes in the brain. To initiate discovery science of brain function, the 1000 Functional Connectomes Project dataset is freely accessible at www.nitrc.org/projects/fcon_1000/.

2,787 citations


Journal ArticleDOI
TL;DR: It is concluded that high income buys life satisfaction but not happiness, and that low income is associated both with low life evaluation and low emotional well-being.
Abstract: aspects of well-being. We report an analysis ofmore than 450,000 responsesto the Gallup-HealthwaysWell-BeingIndex, adailysurveyof 1,000 US residents conducted by the Gallup Organization. We find that emotional well-being (measured by questions about emotional experiencesyesterday)andlifeevaluation(measuredbyCantril’sSelfAnchoringScale) have different correlates. Income andeducation are more closely related to life evaluation, but health, care giving, loneliness,andsmokingarerelativelystrongerpredictorsofdailyemotions. When plotted against log income, life evaluation rises steadily. Emotional well-being also rises with log income, but there is no further progress beyond an annual income of ∼$75,000. Low income exacerbates the emotional pain associated with such misfortunes as divorce, ill health, and being alone. We conclude that high income buys life satisfaction but not happiness, and that low income is associated both with low life evaluation and low emotional well-being.

2,198 citations


Journal ArticleDOI
TL;DR: It is reported that NETs provide a heretofore unrecognized scaffold and stimulus for thrombus formation and may further explain the epidemiological association of infection with thrombosis.
Abstract: Neutrophil extracellular traps (NETs) are part of the innate immune response to infections. NETs are a meshwork of DNA fibers comprising histones and antimicrobial proteins. Microbes are immobilized in NETs and encounter a locally high and lethal concentration of effector proteins. Recent studies show that NETs are formed inside the vasculature in infections and noninfectious diseases. Here we report that NETs provide a heretofore unrecognized scaffold and stimulus for thrombus formation. NETs perfused with blood caused platelet adhesion, activation, and aggregation. DNase or the anticoagulant heparin dismantled the NET scaffold and prevented thrombus formation. Stimulation of platelets with purified histones was sufficient for aggregation. NETs recruited red blood cells, promoted fibrin deposition, and induced a red thrombus, such as that found in veins. Markers of extracellular DNA traps were detected in a thrombus and plasma of baboons subjected to deep vein thrombosis, an example of inflammation-enhanced thrombosis. Our observations indicate that NETs are a previously unrecognized link between inflammation and thrombosis and may further explain the epidemiological association of infection with thrombosis.

1,880 citations


Journal ArticleDOI
TL;DR: It is demonstrated that PSA is not only able to prevent, but also cure experimental colitis in animals, and co-opts the Treg lineage differentiation pathway in the gut to actively induce mucosal tolerance.
Abstract: To maintain intestinal health, the immune system must faithfully respond to antigens from pathogenic microbes while limiting reactions to self-molecules. The gastrointestinal tract represents a unique challenge to the immune system, as it is permanently colonized by a diverse amalgam of bacterial phylotypes producing multitudes of foreign microbial products. Evidence from human and animal studies indicates that inflammatory bowel disease results from uncontrolled inflammation to the intestinal microbiota. However, molecular mechanisms that actively promote mucosal tolerance to the microbiota remain unknown. We report herein that a prominent human commensal, Bacteroides fragilis, directs the development of Foxp3+ regulatory T cells (Tregs) with a unique “inducible” genetic signature. Monocolonization of germ-free animals with B. fragilis increases the suppressive capacity of Tregs and induces anti-inflammatory cytokine production exclusively from Foxp3+ T cells in the gut. We show that the immunomodulatory molecule, polysaccharide A (PSA), of B. fragilis mediates the conversion of CD4+ T cells into Foxp3+ Treg cells that produce IL-10 during commensal colonization. Functional Foxp3+ Treg cells are also produced by PSA during intestinal inflammation, and Toll-like receptor 2 signaling is required for both Treg induction and IL-10 expression. Most significantly, we show that PSA is not only able to prevent, but also cure experimental colitis in animals. Our results therefore demonstrate that B. fragilis co-opts the Treg lineage differentiation pathway in the gut to actively induce mucosal tolerance.

1,880 citations


Journal ArticleDOI
TL;DR: The role that geometric shape cues can play in orchestrating the mechanochemical signals and paracrine/autocrine factors that can direct MSCs to appropriate fates is pointed to.
Abstract: Significant efforts have been directed to understanding the factors that influence the lineage commitment of stem cells. This paper demonstrates that cell shape, independent of soluble factors, has a strong influence on the differentiation of human mesenchymal stem cells (MSCs) from bone marrow. When exposed to competing soluble differentiation signals, cells cultured in rectangles with increasing aspect ratio and in shapes with pentagonal symmetry but with different subcellular curvature—and with each occupying the same area—display different adipogenesis and osteogenesis profiles. The results reveal that geometric features that increase actomyosin contractility promote osteogenesis and are consistent with in vivo characteristics of the microenvironment of the differentiated cells. Cytoskeletal-disrupting pharmacological agents modulate shape-based trends in lineage commitment verifying the critical role of focal adhesion and myosin-generated contractility during differentiation. Microarray analysis and pathway inhibition studies suggest that contractile cells promote osteogenesis by enhancing c-Jun N-terminal kinase (JNK) and extracellular related kinase (ERK1/2) activation in conjunction with elevated wingless-type (Wnt) signaling. Taken together, this work points to the role that geometric shape cues can play in orchestrating the mechanochemical signals and paracrine/autocrine factors that can direct MSCs to appropriate fates.

1,652 citations


Journal ArticleDOI
TL;DR: Combination blockade of the PD-1/PD-L1- and CTLA-4-negative costimulatory pathways allows tumor-specific T cells that would otherwise be inactivated to continue to expand and carry out effector functions, thereby shifting the tumor microenvironment from suppressive to inflammatory.
Abstract: Vaccination with irradiated B16 melanoma cells expressing either GM-CSF (Gvax) or Flt3-ligand (Fvax) combined with antibody blockade of the negative T-cell costimulatory receptor cytotoxic T-lymphocyte antigen-4 (CTLA-4) promotes rejection of preimplanted tumors. Despite CTLA-4 blockade, T-cell proliferation and cytokine production can be inhibited by the interaction of programmed death-1 (PD-1) with its ligands PD-L1 and PD-L2 or by the interaction of PD-L1 with B7-1. Here, we show that the combination of CTLA-4 and PD-1 blockade is more than twice as effective as either alone in promoting the rejection of B16 melanomas in conjunction with Fvax. Adding αPD-L1 to this regimen results in rejection of 65% of preimplanted tumors vs. 10% with CTLA-4 blockade alone. Combination PD-1 and CTLA-4 blockade increases effector T-cell (Teff) infiltration, resulting in highly advantageous Teff-to-regulatory T-cell ratios with the tumor. The fraction of tumor-infiltrating Teffs expressing CTLA-4 and PD-1 increases, reflecting the proliferation and accumulation of cells that would otherwise be anergized. Combination blockade also synergistically increases Teff-to-myeloid-derived suppressor cell ratios within B16 melanomas. IFN-γ production increases in both the tumor and vaccine draining lymph nodes, as does the frequency of IFN-γ/TNF-α double-producing CD8+ T cells within the tumor. These results suggest that combination blockade of the PD-1/PD-L1- and CTLA-4-negative costimulatory pathways allows tumor-specific T cells that would otherwise be inactivated to continue to expand and carry out effector functions, thereby shifting the tumor microenvironment from suppressive to inflammatory.

1,624 citations


Journal ArticleDOI
TL;DR: A high-throughput microfluidic mixing device, the herringbone-chip, or “HB-Chip,” is described, which provides an enhanced platform for CTC isolation and reveals microclusters of CTCs, previously unappreciated tumor cell aggregates that may contribute to the hematogenous dissemination of cancer.
Abstract: Rare circulating tumor cells (CTCs) present in the bloodstream of patients with cancer provide a potentially accessible source for detection, characterization, and monitoring of nonhematological cancers. We previously demonstrated the effectiveness of a microfluidic device, the CTC-Chip, in capturing these epithelial cell adhesion molecule (EpCAM)-expressing cells using antibody-coated microposts. Here, we describe a high-throughput microfluidic mixing device, the herringbone-chip, or “HB-Chip,” which provides an enhanced platform for CTC isolation. The HB-Chip design applies passive mixing of blood cells through the generation of microvortices to significantly increase the number of interactions between target CTCs and the antibody-coated chip surface. Efficient cell capture was validated using defined numbers of cancer cells spiked into control blood, and clinical utility was demonstrated in specimens from patients with prostate cancer. CTCs were detected in 14 of 15 (93%) patients with metastatic disease (median = 63 CTCs/mL, mean = 386 ± 238 CTCs/mL), and the tumor-specific TMPRSS2-ERG translocation was readily identified following RNA isolation and RT-PCR analysis. The use of transparent materials allowed for imaging of the captured CTCs using standard clinical histopathological stains, in addition to immunofluorescence-conjugated antibodies. In a subset of patient samples, the low shear design of the HB-Chip revealed microclusters of CTCs, previously unappreciated tumor cell aggregates that may contribute to the hematogenous dissemination of cancer.

1,579 citations


Journal ArticleDOI
TL;DR: A framework for analyzing the provision of multiple ecosystem services across landscapes is developed and an empirical demonstration of ecosystem service bundles, sets of services that appear together repeatedly, are presented.
Abstract: A key challenge of ecosystem management is determining how to manage multiple ecosystem services across landscapes. Enhancing important provisioning ecosystem services, such as food and timber, often leads to tradeoffs between regulating and cultural ecosystem services, such as nutrient cycling, flood protection, and tourism. We developed a framework for analyzing the provision of multiple ecosystem services across landscapes and present an empirical demonstration of ecosystem service bundles, sets of services that appear together repeatedly. Ecosystem service bundles were identified by analyzing the spatial patterns of 12 ecosystem services in a mixed-use landscape consisting of 137 municipalities in Quebec, Canada. We identified six types of ecosystem service bundles and were able to link these bundles to areas on the landscape characterized by distinct social–ecological dynamics. Our results show landscape-scale tradeoffs between provisioning and almost all regulating and cultural ecosystem services, and they show that a greater diversity of ecosystem services is positively correlated with the provision of regulating ecosystem services. Ecosystem service-bundle analysis can identify areas on a landscape where ecosystem management has produced exceptionally desirable or undesirable sets of ecosystem services.

Journal ArticleDOI
TL;DR: This work finds that, in 2004, 23% of global CO2 emissions, or 6.2 gigatonnes CO2, were traded internationally, primarily as exports from China and other emerging markets to consumers in developed countries.
Abstract: CO2 emissions from the burning of fossil fuels are the primary cause of global warming. Much attention has been focused on the CO2 directly emitted by each country, but relatively little attention has been paid to the amount of emissions associated with the consumption of goods and services in each country. Consumption-based accounting of CO2 emissions differs from traditional, production-based inventories because of imports and exports of goods and services that, either directly or indirectly, involve CO2 emissions. Here, using the latest available data, we present a global consumption-based CO2 emissions inventory and calculations of associated consumption-based energy and carbon intensities. We find that, in 2004, 23% of global CO2 emissions, or 6.2 gigatonnes CO2, were traded internationally, primarily as exports from China and other emerging markets to consumers in developed countries. In some wealthy countries, including Switzerland, Sweden, Austria, the United Kingdom, and France, >30% of consumption-based emissions were imported, with net imports to many Europeans of >4 tons CO2 per person in 2004. Net import of emissions to the United States in the same year was somewhat less: 10.8% of total consumption-based emissions and 2.4 tons CO2 per person. In contrast, 22.5% of the emissions produced in China in 2004 were exported, on net, to consumers elsewhere. Consumption-based accounting of CO2 emissions demonstrates the potential for international carbon leakage. Sharing responsibility for emissions among producers and consumers could facilitate international agreement on global climate policy that is now hindered by concerns over the regional and historical inequity of emissions.

Journal ArticleDOI
TL;DR: This study analyzes the rich, pan-tropical database of classified Landsat scenes created by the Food and Agricultural Organization of the United Nations to examine pathways of agricultural expansion across the major tropical forest regions in the 1980s and 1990s and highlights the future land conversions that probably will be needed to meet mounting demand for agricultural products.
Abstract: Global demand for agricultural products such as food, feed, and fuel is now a major driver of cropland and pasture expansion across much of the developing world. Whether these new agricultural lands replace forests, degraded forests, or grasslands greatly influences the environmental consequences of expansion. Although the general pattern is known, there still is no definitive quantification of these land-cover changes. Here we analyze the rich, pan-tropical database of classified Landsat scenes created by the Food and Agricultural Organization of the United Nations to examine pathways of agricultural expansion across the major tropical forest regions in the 1980s and 1990s and use this information to highlight the future land conversions that probably will be needed to meet mounting demand for agricultural products. Across the tropics, we find that between 1980 and 2000 more than 55% of new agricultural land came at the expense of intact forests, and another 28% came from disturbed forests. This study underscores the potential consequences of unabated agricultural expansion for forest conservation and carbon emissions.

Journal ArticleDOI
TL;DR: These findings are consistent with miRNA-mediated gene silencing as a potential mechanism of intercellular communication between cells of the immune system that may be exploited by the persistent human γ-herpesvirus EBV.
Abstract: Noncoding regulatory microRNAs (miRNAs) of cellular and viral origin control gene expression by repressing the translation of mRNAs into protein. Interestingly, miRNAs are secreted actively through small vesicles called “exosomes” that protect them from degradation by RNases, suggesting that these miRNAs may function outside the cell in which they were produced. Here we demonstrate that miRNAs secreted by EBV-infected cells are transferred to and act in uninfected recipient cells. Using a quantitative RT-PCR approach, we demonstrate that mature EBV-encoded miRNAs are secreted by EBV-infected B cells through exosomes. These EBV-miRNAs are functional because internalization of exosomes by MoDC results in a dose-dependent, miRNA-mediated repression of confirmed EBV target genes, including CXCL11/ITAC, an immunoregulatory gene down-regulated in primary EBV-associated lymphomas. We demonstrate that throughout coculture of EBV-infected B cells EBV-miRNAs accumulate in noninfected neighboring MoDC and show that this accumulation is mediated by transfer of exosomes. Thus, the exogenous EBV-miRNAs transferred through exosomes are delivered to subcellular sites of gene repression in recipient cells. Finally, we show in peripheral blood mononuclear cells from patients with increased EBV load that, although EBV DNA is restricted to the circulating B-cell population, EBV BART miRNAs are present in both B-cell and non-B-cell fractions, suggestive of miRNA transfer. Taken together our findings are consistent with miRNA-mediated gene silencing as a potential mechanism of intercellular communication between cells of the immune system that may be exploited by the persistent human γ-herpesvirus EBV.

Journal ArticleDOI
TL;DR: A systematic framework to identify barriers that may impede the process of adaptation to climate change and provides a systematic starting point for answering critical questions about how to support climate change adaptation at all levels of decision-making.
Abstract: This article presents a systematic framework to identify barriers that may impede the process of adaptation to climate change. The framework targets the process of planned adaptation and focuses on potentially challenging but malleable barriers. Three key sets of components create the architecture for the framework. First, a staged depiction of an idealized, rational approach to adaptation decision-making makes up the process component. Second, a set of interconnected structural elements includes the actors, the larger context in which they function (e.g., governance), and the object on which they act (the system of concern that is exposed to climate change). At each of these stages, we ask (i) what could impede the adaptation process and (ii) how do the actors, context, and system of concern contribute to the barrier. To facilitate the identification of barriers, we provide a series of diagnostic questions. Third, the framework is completed by a simple matrix to help locate points of intervention to overcome a given barrier. It provides a systematic starting point for answering critical questions about how to support climate change adaptation at all levels of decision-making.

Journal ArticleDOI
TL;DR: It is suggested that Parkin, together with PINK1, modulates mitochondrial trafficking, especially to the perinuclear region, a subcellular area associated with autophagy, which may alter mitochondrial turnover which, in turn, may cause the accumulation of defective mitochondria and, ultimately, neurodegeneration in Parkinson's disease.
Abstract: Phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1) and PARK2/Parkin mutations cause autosomal recessive forms of Parkinson's disease. Upon a loss of mitochondrial membrane potential (DeltaPsi(m)) in human cells, cytosolic Parkin has been reported to be recruited to mitochondria, which is followed by a stimulation of mitochondrial autophagy. Here, we show that the relocation of Parkin to mitochondria induced by a collapse of DeltaPsi(m) relies on PINK1 expression and that overexpression of WT but not of mutated PINK1 causes Parkin translocation to mitochondria, even in cells with normal DeltaPsi(m). We also show that once at the mitochondria, Parkin is in close proximity to PINK1, but we find no evidence that Parkin catalyzes PINK1 ubiquitination or that PINK1 phosphorylates Parkin. However, co-overexpression of Parkin and PINK1 collapses the normal tubular mitochondrial network into mitochondrial aggregates and/or large perinuclear clusters, many of which are surrounded by autophagic vacuoles. Our results suggest that Parkin, together with PINK1, modulates mitochondrial trafficking, especially to the perinuclear region, a subcellular area associated with autophagy. Thus by impairing this process, mutations in either Parkin or PINK1 may alter mitochondrial turnover which, in turn, may cause the accumulation of defective mitochondria and, ultimately, neurodegeneration in Parkinson's disease.

Journal ArticleDOI
TL;DR: It is reported that the major function of glucose metabolism for Kras-induced anchorage-independent growth, a hallmark of transformed cells, is to support the pentose phosphate pathway.
Abstract: Otto Warburg's theory on the origins of cancer postulates that tumor cells have defects in mitochondrial oxidative phosphorylation and therefore rely on high levels of aerobic glycolysis as the major source of ATP to fuel cellular proliferation (the Warburg effect). This is in contrast to normal cells, which primarily utilize oxidative phosphorylation for growth and survival. Here we report that the major function of glucose metabolism for Kras-induced anchorage-independent growth, a hallmark of transformed cells, is to support the pentose phosphate pathway. The major function of glycolytic ATP is to support growth under hypoxic conditions. Glutamine conversion into the tricarboxylic acid cycle intermediate alpha-ketoglutarate through glutaminase and alanine aminotransferase is essential for Kras-induced anchorage-independent growth. Mitochondrial metabolism allows for the generation of reactive oxygen species (ROS) which are required for Kras-induced anchorage-independent growth through regulation of the ERK MAPK signaling pathway. We show that the major source of ROS generation required for anchorage-independent growth is the Qo site of mitochondrial complex III. Furthermore, disruption of mitochondrial function by loss of the mitochondrial transcription factor A (TFAM) gene reduced tumorigenesis in an oncogenic Kras-driven mouse model of lung cancer. These results demonstrate that mitochondrial metabolism and mitochondrial ROS generation are essential for Kras-induced cell proliferation and tumorigenesis.

Journal ArticleDOI
TL;DR: Findings support Btk inhibition as a therapeutic approach for the treatment of human diseases associated with activation of the BCR pathway.
Abstract: Activation of the B-cell antigen receptor (BCR) signaling pathway contributes to the initiation and maintenance of B-cell malignancies and autoimmune diseases. The Bruton tyrosine kinase (Btk) is specifically required for BCR signaling as demonstrated by human and mouse mutations that disrupt Btk function and prevent B-cell maturation at steps that require a functional BCR pathway. Herein we describe a selective and irreversible Btk inhibitor, PCI-32765, that is currently under clinical development in patients with B-cell non-Hodgkin lymphoma. We have used this inhibitor to investigate the biologic effects of Btk inhibition on mature B-cell function and the progression of B cell-associated diseases in vivo. PCI-32765 blocked BCR signaling in human peripheral B cells at concentrations that did not affect T cell receptor signaling. In mice with collagen-induced arthritis, orally administered PCI-32765 reduced the level of circulating autoantibodies and completely suppressed disease. PCI-32765 also inhibited autoantibody production and the development of kidney disease in the MRL-Fas(lpr) lupus model. Occupancy of the Btk active site by PCI-32765 was monitored in vitro and in vivo using a fluorescent affinity probe for Btk. Active site occupancy of Btk was tightly correlated with the blockade of BCR signaling and in vivo efficacy. Finally, PCI-32765 induced objective clinical responses in dogs with spontaneous B-cell non-Hodgkin lymphoma. These findings support Btk inhibition as a therapeutic approach for the treatment of human diseases associated with activation of the BCR pathway.

Journal ArticleDOI
TL;DR: It is shown that volume changes of less than 0.5% suffice to grip objects reliably and hold them with forces exceeding many times their weight, and opens up new possibilities for the design of simple, yet highly adaptive systems that excel at fast gripping of complex objects.
Abstract: Gripping and holding of objects are key tasks for robotic manipulators. The development of universal grippers able to pick up unfamiliar objects of widely varying shape and surface properties remains, however, challenging. Most current designs are based on the multifingered hand, but this approach introduces hardware and software complexities. These include large numbers of controllable joints, the need for force sensing if objects are to be handled securely without crushing them, and the computational overhead to decide how much stress each finger should apply and where. Here we demonstrate a completely different approach to a universal gripper. Individual fingers are replaced by a single mass of granular material that, when pressed onto a target object, flows around it and conforms to its shape. Upon application of a vacuum the granular material contracts and hardens quickly to pinch and hold the object without requiring sensory feedback. We find that volume changes of less than 0.5% suffice to grip objects reliably and hold them with forces exceeding many times their weight. We show that the operating principle is the ability of granular materials to transition between an unjammed, deformable state and a jammed state with solid-like rigidity. We delineate three separate mechanisms, friction, suction, and interlocking, that contribute to the gripping force. Using a simple model we relate each of them to the mechanical strength of the jammed state. This advance opens up new possibilities for the design of simple, yet highly adaptive systems that excel at fast gripping of complex objects.

Journal ArticleDOI
TL;DR: A Bayesian modeling approach is used to generate the posterior probabilities of species assignments taking account of uncertainties due to unknown gene trees and the ancestral coalescent process and the method is illustrated by analyzing sequence data from rotifers, fence lizards, and human populations.
Abstract: In the absence of recent admixture between species, bipartitions of individuals in gene trees that are shared across loci can potentially be used to infer the presence of two or more species. This approach to species delimitation via molecular sequence data has been constrained by the fact that genealogies for individual loci are often poorly resolved and that ancestral lineage sorting, hybridization, and other population genetic processes can lead to discordant gene trees. Here we use a Bayesian modeling approach to generate the posterior probabilities of species assignments taking account of uncertainties due to unknown gene trees and the ancestral coalescent process. For tractability, we rely on a user-specified guide tree to avoid integrating over all possible species delimitations. The statistical performance of the method is examined using simulations, and the method is illustrated by analyzing sequence data from rotifers, fence lizards, and human populations.

Journal ArticleDOI
TL;DR: It is shown that serum endonuclease DNase1 is essential for disassembly of NETs, and identification of SLE patients who cannot dismantle NETs might be a useful indicator of renal involvement and represent a therapeutic target in SLE.
Abstract: Systemic lupus erythematosus (SLE) is an autoimmune disease in which patients develop autoantibodies to DNA, histones, and often to neutrophil proteins. These form immune complexes that are pathogenic and may cause lupus nephritis. In SLE patients, infections can initiate flares and are a major cause of mortality. Neutrophils respond to infections and release extracellular traps (NETs), which are antimicrobial and are made of DNA, histones, and neutrophil proteins. The timely removal of NETs may be crucial for tissue homeostasis to avoid presentation of self-antigens. We tested the hypothesis that SLE patients cannot clear NETs, contributing to the pathogenesis of lupus nephritis. Here we show that serum endonuclease DNase1 is essential for disassembly of NETs. Interestingly, a subset of SLE patients’ sera degraded NETs poorly. Two mechanisms caused this impaired NET degradation: (i) the presence of DNase1 inhibitors or (ii) anti-NET antibodies prevented DNase1 access to NETs. Impairment of DNase1 function and failure to dismantle NETs correlated with kidney involvement. Hence, identification of SLE patients who cannot dismantle NETs might be a useful indicator of renal involvement. Moreover, NETs might represent a therapeutic target in SLE.

Journal ArticleDOI
TL;DR: It is shown that inhibition of LDHA with FX11 is an achievable and tolerable treatment for LDHA-dependent tumors and oxidative stress and cell death are critical aspects of cancer biology to consider for the therapeutical targeting of cancer energy metabolism.
Abstract: As the result of genetic alterations and tumor hypoxia, many cancer cells avidly take up glucose and generate lactate through lactate dehydrogenase A (LDHA), which is encoded by a target gene of c-Myc and hypoxia-inducible factor (HIF-1). Previous studies with reduction of LDHA expression indicate that LDHA is involved in tumor initiation, but its role in tumor maintenance and progression has not been established. Furthermore, how reduction of LDHA expression by interference or antisense RNA inhibits tumorigenesis is not well understood. Here, we report that reduction of LDHA by siRNA or its inhibition by a small-molecule inhibitor (FX11 [3-dihydroxy-6-methyl-7-(phenylmethyl)-4-propylnaphthalene-1-carboxylic acid]) reduced ATP levels and induced significant oxidative stress and cell death that could be partially reversed by the antioxidant N-acetylcysteine. Furthermore, we document that FX11 inhibited the progression of sizable human lymphoma and pancreatic cancer xenografts. When used in combination with the NAD+ synthesis inhibitor FK866, FX11 induced lymphoma regression. Hence, inhibition of LDHA with FX11 is an achievable and tolerable treatment for LDHA-dependent tumors. Our studies document a therapeutical approach to the Warburg effect and demonstrate that oxidative stress and metabolic phenotyping of cancers are critical aspects of cancer biology to consider for the therapeutical targeting of cancer energy metabolism.

Journal ArticleDOI
TL;DR: Factors that affect microbiota composition in a large mouse advanced intercross line originating from a cross between C57BL/6J and an ICR-derived outbred line (HR) are examined, providing clear evidence for the importance of host genetic control in shaping individual microbiome diversity in mammals.
Abstract: In vertebrates, including humans, individuals harbor gut microbial communities whose species composition and relative proportions of dominant microbial groups are tremendously varied. Although external and stochastic factors clearly contribute to the individuality of the microbiota, the fundamental principles dictating how environmental factors and host genetic factors combine to shape this complex ecosystem are largely unknown and require systematic study. Here we examined factors that affect microbiota composition in a large (n = 645) mouse advanced intercross line originating from a cross between C57BL/6J and an ICR-derived outbred line (HR). Quantitative pyrosequencing of the microbiota defined a core measurable microbiota (CMM) of 64 conserved taxonomic groups that varied quantitatively across most animals in the population. Although some of this variation can be explained by litter and cohort effects, individual host genotype had a measurable contribution. Testing of the CMM abundances for cosegregation with 530 fully informative SNP markers identified 18 host quantitative trait loci (QTL) that show significant or suggestive genome-wide linkage with relative abundances of specific microbial taxa. These QTL affect microbiota composition in three ways; some loci control individual microbial species, some control groups of related taxa, and some have putative pleiotropic effects on groups of distantly related organisms. These data provide clear evidence for the importance of host genetic control in shaping individual microbiome diversity in mammals, a key step toward understanding the factors that govern the assemblages of gut microbiota associated with complex diseases.

Journal ArticleDOI
TL;DR: Comparisons of DNA methylation in eight diverse plant and animal genomes found that patterns of methylation are very similar in flowering plants with methylated cytosines detected in all sequence contexts, whereas CG methylation predominates in animals.
Abstract: Cytosine DNA methylation is a heritable epigenetic mark present in many eukaryotic organisms. Although DNA methylation likely has a conserved role in gene silencing, the levels and patterns of DNA methylation appear to vary drastically among different organisms. Here we used shotgun genomic bisulfite sequencing (BS-Seq) to compare DNA methylation in eight diverse plant and animal genomes. We found that patterns of methylation are very similar in flowering plants with methylated cytosines detected in all sequence contexts, whereas CG methylation predominates in animals. Vertebrates have methylation throughout the genome except for CpG islands. Gene body methylation is conserved with clear preference for exons in most organisms. Furthermore, genes appear to be the major target of methylation in Ciona and honey bee. Among the eight organisms, the green alga Chlamydomonas has the most unusual pattern of methylation, having non-CG methylation enriched in exons of genes rather than in repeats and transposons. In addition, the Dnmt1 cofactor Uhrf1 has a conserved function in maintaining CG methylation in both transposons and gene bodies in the mouse, Arabidopsis, and zebrafish genomes.

Journal ArticleDOI
TL;DR: Evidence that quantum coherence survives in FMO at physiological temperature for at least 300 fs, long enough to impact biological energy transport is presented, proving that the wave-like energy transfer process discovered at 77 K is directly relevant to biological function.
Abstract: Photosynthetic antenna complexes capture and concentrate solar radiation by transferring the excitation to the reaction center that stores energy from the photon in chemical bonds. This process occurs with near-perfect quantum efficiency. Recent experiments at cryogenic temperatures have revealed that coherent energy transfer—a wave-like transfer mechanism—occurs in many photosynthetic pigment-protein complexes. Using the Fenna–Matthews–Olson antenna complex (FMO) as a model system, theoretical studies incorporating both incoherent and coherent transfer as well as thermal dephasing predict that environmentally assisted quantum transfer efficiency peaks near physiological temperature; these studies also show that this mechanism simultaneously improves the robustness of the energy transfer process. This theory requires long-lived quantum coherence at room temperature, which never has been observed in FMO. Here we present evidence that quantum coherence survives in FMO at physiological temperature for at least 300 fs, long enough to impact biological energy transport. These data prove that the wave-like energy transfer process discovered at 77 K is directly relevant to biological function. Microscopically, we attribute this long coherence lifetime to correlated motions within the protein matrix encapsulating the chromophores, and we find that the degree of protection afforded by the protein appears constant between 77 K and 277 K. The protein shapes the energy landscape and mediates an efficient energy transfer despite thermal fluctuations.

Journal ArticleDOI
TL;DR: It is suggested that the newly identified dorsal nexus plays a critical role in depressive symptomatology, in effect “hot wiring” networks together; it further suggests that reducing increased connectivity of the dorsal nexus presents a potential therapeutic target.
Abstract: To better understand intrinsic brain connections in major depression, we used a neuroimaging technique that measures resting state functional connectivity using functional MRI (fMRI). Three different brain networks—the cognitive control network, default mode network, and affective network—were investigated. Compared with controls, in depressed subjects each of these three networks had increased connectivity to the same bilateral dorsal medial prefrontal cortex region, an area that we term the dorsal nexus. The dorsal nexus demonstrated dramatically increased depression-associated fMRI connectivity with large portions of each of the three networks. The discovery that these regions are linked together through the dorsal nexus provides a potential mechanism to explain how symptoms of major depression thought to arise in distinct networks—decreased ability to focus on cognitive tasks, rumination, excessive self-focus, increased vigilance, and emotional, visceral, and autonomic dysregulation—could occur concurrently and behave synergistically. It suggests that the newly identified dorsal nexus plays a critical role in depressive symptomatology, in effect “hot wiring” networks together; it further suggests that reducing increased connectivity of the dorsal nexus presents a potential therapeutic target.

Journal ArticleDOI
TL;DR: A broad compilation of modern carbon isotope compositions in all C3 plant types shows a monotonic increase in δ13C with decreasing mean annual precipitation (MAP) that differs from previous models, allowing refined interpretation of MAP, paleodiet, and paleoecology of ecosystems dominated by C3 plants, either prior to 7–8 million years ago (Ma), or more recently at mid- to high latitudes.
Abstract: A broad compilation of modern carbon isotope compositions in all C3 plant types shows a monotonic increase in δ13C with decreasing mean annual precipitation (MAP) that differs from previous models. Corrections for temperature, altitude, or latitude are smaller than previously estimated. As corrected for altitude, latitude, and the δ13C of atmospheric CO2, these data permit refined interpretation of MAP, paleodiet, and paleoecology of ecosystems dominated by C3 plants, either prior to 7–8 million years ago (Ma), or more recently at mid- to high latitudes. Twenty-nine published paleontological studies suggest preservational or scientific bias toward dry ecosystems, although wet ecosystems are also represented. Unambiguous isotopic evidence for C4 plants is lacking prior to 7–8 Ma, and hominid ecosystems at 4.4 Ma show no isotopic evidence for dense forests. Consideration of global plant biomass indicates that average δ13C of C3 plants is commonly overestimated by approximately 2‰.

Journal ArticleDOI
TL;DR: It is shown that human iPSCs use the same transcriptional network to generate neuroepithelia and functionally appropriate neuronal types over the same developmental time course as hESCs in response to the same set of morphogens; however, they do it with significantly reduced efficiency and increased variability.
Abstract: For the promise of human induced pluripotent stem cells (iPSCs) to be realized, it is necessary to ask if and how efficiently they may be differentiated to functional cells of various lineages. Here, we have directly compared the neural-differentiation capacity of human iPSCs and embryonic stem cells (ESCs). We have shown that human iPSCs use the same transcriptional network to generate neuroepithelia and functionally appropriate neuronal types over the same developmental time course as hESCs in response to the same set of morphogens; however, they do it with significantly reduced efficiency and increased variability. These results were consistent across iPSC lines and independent of the set of reprogramming transgenesusedtoderiveiPSCsaswellasthepresenceorabsenceof reprogramming transgenes in iPSCs. These findings, which show a need for improving differentiation potency of iPSCs, suggest the possibility of employing human iPSCs in pathological studies, therapeutic screening, and autologous cell transplantation.

Journal ArticleDOI
TL;DR: In this paper, lineage-negative IL-25 and IL-33 responsive cells are found to be widely distributed in tissues of the mouse and are particularly prevalent in mesenteric lymph nodes, spleen, and liver.
Abstract: Type 2 immunity is a stereotyped host response to allergens and parasitic helminths that is sustained in large part by the cytokines IL-4 and IL-13. Recent advances have called attention to the contributions by innate cells in initiating adaptive immunity, including a novel lineage-negative population of cells that secretes IL-13 and IL-5 in response to the epithelial cytokines IL-25 and IL-33. Here, we use IL-4 and IL-13 reporter mice to track lineage-negative innate cells that arise during type 2 immunity or in response to IL-25 and IL-33 in vivo. Unexpectedly, lineage-negative IL-25 (and IL-33) responsive cells are widely distributed in tissues of the mouse and are particularly prevalent in mesenteric lymph nodes, spleen, and liver. These cells expand robustly in response to exogenous IL-25 or IL-33 and after infection with the helminth Nippostrongylus brasiliensis, and they are the major innate IL-13–expressing cells under these conditions. Activation of these cells using IL-25 is sufficient for worm clearance, even in the absence of adaptive immunity. Widely dispersed innate type 2 helper cells, which we designate Ih2 cells, play an integral role in type 2 immune responses.

Journal ArticleDOI
TL;DR: It is shown that the concentrations of ice nuclei active in mixed-phase cloud conditions can be related to temperature and the number concentrations of particles larger than 0.5 μm in diameter, which reduces unexplained variability in iceuclei concentrations at a given temperature from ∼103 to less than a factor of 10.
Abstract: Knowledge of cloud and precipitation formation processes remains incomplete, yet global precipitation is predominantly produced by clouds containing the ice phase. Ice first forms in clouds warmer than -36 °C on particles termed ice nuclei. We combine observations from field studies over a 14-year period, from a variety of locations around the globe, to show that the concentrations of ice nuclei active in mixed-phase cloud conditions can be related to temperature and the number concentrations of particles larger than 0.5 μm in diameter. This new relationship reduces unexplained variability in ice nuclei concentrations at a given temperature from ∼103 to less than a factor of 10, with the remaining variability apparently due to variations in aerosol chemical composition or other factors. When implemented in a global climate model, the new parameterization strongly alters cloud liquid and ice water distributions compared to the simple, temperature-only parameterizations currently widely used. The revised treatment indicates a global net cloud radiative forcing increase of ∼1 W m-2 for each order of magnitude increase in ice nuclei concentrations, demonstrating the strong sensitivity of climate simulations to assumptions regarding the initiation of cloud glaciation.