scispace - formally typeset
Search or ask a question

Showing papers in "Progress in Biophysics & Molecular Biology in 2011"


Journal ArticleDOI
TL;DR: This paper proposes a tentative list of information that could be included in published descriptions of tissue electrophysiology models, and used to support interpretation and evaluation of simulation results, to discuss challenges and open questions.
Abstract: Models of cardiac tissue electrophysiology are an important component of the Cardiac Physiome Project, which is an international effort to build biophysically based multi-scale mathematical models of the heart. Models of tissue electrophysiology can provide a bridge between electrophysiological cell models at smaller scales, and tissue mechanics, metabolism and blood flow at larger scales. This paper is a critical review of cardiac tissue electrophysiology models, focussing on the micro-structure of cardiac tissue, generic behaviours of action potential propagation, different models of cardiac tissue electrophysiology, the choice of parameter values and tissue geometry, emergent properties in tissue models, numerical techniques and computational issues. We propose a tentative list of information that could be included in published descriptions of tissue electrophysiology models, and used to support interpretation and evaluation of simulation results. We conclude with a discussion of challenges and open questions.

529 citations


Journal ArticleDOI
TL;DR: It is shown that there is a rather large number of theories on how cells can generate and detect electromagnetic fields and experimental evidence on electromagnetic cellular interactions in the modern scientific literature is continuously accumulating.
Abstract: Chemical and electrical interaction within and between cells is well established. Just the opposite is true about cellular interactions via other physical fields. The most probable candidate for an other form of cellular interaction is the electromagnetic field. We review theories and experiments on how cells can generate and detect electromagnetic fields generally, and if the cell-generated electromagnetic field can mediate cellular interactions. We do not limit here ourselves to specialized electro-excitable cells. Rather we describe physical processes that are of a more general nature and probably present in almost every type of living cell. The spectral range included is broad; from kHz to the visible part of the electromagnetic spectrum. We show that there is a rather large number of theories on how cells can generate and detect electromagnetic fields and discuss experimental evidence on electromagnetic cellular interactions in the modern scientific literature. Although small, it is continuously accumulating.

288 citations


Journal ArticleDOI
TL;DR: Evidence is accruing that endocrine or nutritional interventions during early postnatal life can reverse epigenetic and phenotypic changes induced, for example, by unbalanced maternal diet during pregnancy.
Abstract: There is now evidence that developmental influences have lifelong effects on cardiovascular and metabolic function and that elements of the heritable or familial component of susceptibility to cardiovascular disease, obesity and other non-communicable diseases (NCD) can be transmitted across generations by non-genomic means. In animals the developmental environment induces altered phenotypes through genetic, physiological (especially endocrine) and epigenetic mechanisms. The latter include DNA methylation, covalent modifications of histones and non-coding RNAs. Such ‘tuning’ of phenotype has potential adaptive value and may confer Darwinian fitness advantage because it either adjusts the phenotype to current circumstances and/or attempts to match an individual’s responses to the environment predicted to be experienced later. When the phenotype is mismatched to the later environment, e.g. from inaccurate nutritional cues from the mother or placenta before birth, or from rapid environmental change through improved socio-economic conditions, risk of NCD increases. Such mechanisms are also thought to play roles in ageing and early onset of puberty, reinforcing a life-course perspective on such adaptive responses, especially the detrimental later effects of trade-offs. Epigenetic changes induced during development are highly gene-specific and function at the level of individual CpG dinucleotides in both gene promoter and intergenic regions. Evidence is accruing that endocrine or nutritional interventions during early postnatal life can reverse epigenetic and phenotypic changes induced, for example, by unbalanced maternal diet during pregnancy. Elucidation of epigenetic processes may permit perinatal identification of individuals most at risk of later NCD and enable early intervention strategies to reduce such risk.

279 citations


Journal ArticleDOI
TL;DR: A brief description of main experimental features of DNA condensation inside viruses, bacteria, eukaryotes and the test tube and main theoretical approaches for the description of these systems are presented.
Abstract: DNA is stored in vivo in a highly compact, so-called condensed phase, where gene regulatory processes are governed by the intricate interplay between different states of DNA compaction. These systems often have surprising properties, which one would not predict from classical concepts of dilute solutions. The mechanistic details of DNA packing are essential for its functioning, as revealed by the recent developments coming from biochemistry, electrostatics, statistical mechanics, and molecular and cell biology. Different aspects of condensed DNA behavior are linked to each other, but the links are often hidden in the bulk of experimental and theoretical details. Here we try to condense some of these concepts and provide interconnections between the different fields. After a brief description of main experimental features of DNA condensation inside viruses, bacteria, eukaryotes and the test tube, main theoretical approaches for the description of these systems are presented. We end up with an extended discussion of the role of DNA condensation in the context of gene regulation and mention potential applications of DNA condensation in gene therapy and biotechnology.

225 citations


Journal ArticleDOI
TL;DR: Transfer entropy analysis of MEG source-level signals detected changes in the network between the different task types that prominently involved the left temporal pole and cerebellum--structures that have previously been implied in auditory short-term or working memory.
Abstract: The analysis of cortical and subcortical networks requires the identification of their nodes, and of the topology and dynamics of their interactions. Exploratory tools for the identification of nodes are available, e.g. magnetoencephalography (MEG) in combination with beamformer source analysis. Competing network topologies and interaction models can be investigated using dynamic causal modelling. However, we lack a method for the exploratory investigation of network topologies to choose from the very large number of possible network graphs. Ideally, this method should not require a pre-specified model of the interaction. Transfer entropy--an information theoretic implementation of Wiener-type causality--is a method for the investigation of causal interactions (or information flow) that is independent of a pre-specified interaction model. We analysed MEG data from an auditory short-term memory experiment to assess whether the reconfiguration of networks implied in this task can be detected using transfer entropy. Transfer entropy analysis of MEG source-level signals detected changes in the network between the different task types. These changes prominently involved the left temporal pole and cerebellum--structures that have previously been implied in auditory short-term or working memory. Thus, the analysis of information flow with transfer entropy at the source-level may be used to derive hypotheses for further model-based testing.

191 citations


Journal ArticleDOI
TL;DR: It is suggested that high γ-band activity is impaired in neuropsychiatric disorders, such as schizophrenia and epilepsy, through establishing correlations between the modulation of oscillations in the 60-200 Hz frequency and specific cognitive functions.
Abstract: γ-band oscillations are thought to play a crucial role in information processing in cortical networks. In addition to oscillatory activity between 30 and 60 Hz, current evidence from electro- and magnetoencephalography (EEG/MEG) and local-field potentials (LFPs) has consistently shown oscillations >60 Hz (high γ-band) whose function and generating mechanisms are unclear. In the present paper, we summarize data that highlights the importance of high γ-band activity for cortical computations through establishing correlations between the modulation of oscillations in the 60-200 Hz frequency and specific cognitive functions. Moreover, we will suggest that high γ-band activity is impaired in neuropsychiatric disorders, such as schizophrenia and epilepsy. In the final part of the paper, we will review physiological mechanisms underlying the generation of high γ-band oscillations and discuss the functional implications of low vs. high γ-band activity patterns in cortical networks.

183 citations


Journal ArticleDOI
TL;DR: The similarities and differences of these two incretin hormones in secretion and metabolism, their insulinotropic actions and their effects on pancreatic β cell preservation are summarized and their potential in treatment of type 2 diabetes is discussed.
Abstract: Gastric inhibitory polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are the two primary incretin hormones secreted from the intestine upon ingestion of glucose or nutrients to stimulate insulin secretion from pancreatic β cells. GIP and GLP-1 exert their effects by binding to their specific receptors, the GIP receptor (GIPR) and the GLP-1 receptor (GLP-1R), which belong to the G-protein coupled receptor family. Receptor binding activates and increases the level of intracellular cAMP in pancreatic β cells, thereby stimulating insulin secretion glucose-dependently. In addition to their insulinotropic effects, GIP and GLP-1 have been shown to preserve pancreatic β cell mass by inhibiting apoptosis of β cells and enhancing their proliferation. Due to such characteristics, incretin hormones have been gaining mush attention as attractive targets for treatment of type 2 diabetes, and indeed incretin-based therapeutics have been rapidly disseminated worldwide. However, despites of plethora of rigorous studies, molecular mechanisms underlying how GIPR and GLP-1R activation leads to enhancement of glucose-dependent insulin secretion are still largely unknown. Here, we summarize the similarities and differences of these two incretin hormones in secretion and metabolism, their insulinotropic actions and their effects on pancreatic β cell preservation. We then try to discuss potential of GLP-1 and GIP in treatment of type 2 diabetes.

176 citations


Journal ArticleDOI
TL;DR: An arbitrary Eulerian-Lagrangian framework governing the behaviour of both fluid and solid components is introduced and the potential of cardiac mechanics modelling for clinical applications is discussed.
Abstract: We outline and review the mathematical framework for representing mechanical deformation and contraction of the cardiac ventricles, and how this behaviour integrates with other processes crucial for understanding and modelling heart function. Building on general conservation principles of space, mass and momentum, we introduce an arbitrary Eulerian-Lagrangian framework governing the behaviour of both fluid and solid components. Exploiting the natural alignment of cardiac mechanical properties with the tissue microstructure, finite deformation measures and myocardial constitutive relations are referred to embedded structural axes. Coupling approaches for solving this large deformation mechanics framework with three dimensional fluid flow, coronary hemodynamics and electrical activation are described. We also discuss the potential of cardiac mechanics modelling for clinical applications.

173 citations


Journal ArticleDOI
TL;DR: The relationship between experimental data and model parameterisation across a range of model types and cellular physiological systems is focused on in the context of parameter identification and model reuse within the Cardiac Physiome.
Abstract: In this manuscript we review the state of cardiac cell modelling in the context of international initiatives such as the IUPS Physiome and Virtual Physiological Human Projects, which aim to integrate computational models across scales and physics. In particular we focus on the relationship between experimental data and model parameterisation across a range of model types and cellular physiological systems. Finally, in the context of parameter identification and model reuse within the Cardiac Physiome, we suggest some future priority areas for this field.

167 citations


Journal ArticleDOI
TL;DR: Comparisons of prevalence and incidence of outcomes in children and teenagers sharing common ancestry, but living at different latitudes, show that prevalence rates of photoaging and melanocytic naevi are higher in Australian compared with British children, and similarly for melanoma.
Abstract: We review the general amount and patterns of exposure to solar ultraviolet (UV) radiation that children and teenagers experience and the spectrum of UV-related skin damage that can occur as a result. Data about the amount of solar UV received by children and teenagers are relatively few but suggest that around 40-50% of total UV to age 60 occurs before age 20. Among white children, those with the palest complexions suffer the most damage. Comparisons of prevalence and incidence of outcomes in children and teenagers sharing common ancestry, but living at different latitudes, show that prevalence rates of photoaging and melanocytic naevi are higher in Australian compared with British children, and similarly for melanoma. Genetic risk for the majority of the melanomas in teens is a function of genes controlling naevus propensity and pigmentation in the skin. High numbers of naevi and freckles, red hair, blue eyes, inability to tan, as well as a family history are the primary determinants of melanoma among adolescents. Beyond the signs of skin damage seen in children are the latent effects observed later in adulthood. Childhood is believed to be a susceptible window for long-term harmful effects of UV, as evidenced by clear differences in skin cancer risk between child and adult migrants from high to low latitudes. Effective UV radiation protection from childhood is necessary to control both immediate and long-term harmful effects on children's skin.

158 citations


Journal ArticleDOI
TL;DR: The results emphasize anew the complexities of the interactions within the TME and their effect on tumor growth, and show that tumor progression is not solely determined by the presence of a clone of mutated immortal cells, but rather that it can be 'community-controlled'.
Abstract: Mathematical modeling and computational analysis are essential for understanding the dynamics of the complex gene networks that control normal development and homeostasis, and can help to understand how circumvention of that control leads to abnormal outcomes such as cancer. Our objectives here are to discuss the different mechanisms by which the local biochemical and mechanical microenvironment, which is comprised of various signaling molecules, cell types and the extracellular matrix (ECM), affects the progression of potentially-cancerous cells, and to present new results on two aspects of these effects. We first deal with the major processes involved in the progression from a normal cell to a cancerous cell at a level accessible to a general scientific readership, and we then outline a number of mathematical and computational issues that arise in cancer modeling. In Section 2 we present results from a model that deals with the effects of the mechanical properties of the environment on tumor growth, and in Section 3 we report results from a model of the signaling pathways and the tumor microenvironment (TME), and how their interactions affect the development of breast cancer. The results emphasize anew the complexities of the interactions within the TME and their effect on tumor growth, and show that tumor progression is not solely determined by the presence of a clone of mutated immortal cells, but rather that it can be 'community-controlled'.

Journal ArticleDOI
TL;DR: A state-of-the-art computational platform has been developed, which can be used for studying multi-scale electrical phenomena during atrial conduction and AF arrhythmogenesis, and can be directly compared with electrophysiological and endocardial mapping data, as well as clinical ECG recordings.
Abstract: Despite a vast amount of experimental and clinical data on the underlying ionic, cellular and tissue substrates, the mechanisms of common atrial arrhythmias (such as atrial fibrillation, AF) arising from the functional interactions at the whole atria level remain unclear. Computational modelling provides a quantitative framework for integrating such multi-scale data and understanding the arrhythmogenic behaviour that emerges from the collective spatio-temporal dynamics in all parts of the heart. In this study, we have developed a multi-scale hierarchy of biophysically detailed computational models for the human atria--the 3D virtual human atria. Primarily, diffusion tensor MRI reconstruction of the tissue geometry and fibre orientation in the human sinoatrial node (SAN) and surrounding atrial muscle was integrated into the 3D model of the whole atria dissected from the Visible Human dataset. The anatomical models were combined with the heterogeneous atrial action potential (AP) models, and used to simulate the AP conduction in the human atria under various conditions: SAN pacemaking and atrial activation in the normal rhythm, break-down of regular AP wave-fronts during rapid atrial pacing, and the genesis of multiple re-entrant wavelets characteristic of AF. Contributions of different properties of the tissue to mechanisms of the normal rhythm and arrhythmogenesis were investigated. Primarily, the simulations showed that tissue heterogeneity caused the break-down of the normal AP wave-fronts at rapid pacing rates, which initiated a pair of re-entrant spiral waves; and tissue anisotropy resulted in a further break-down of the spiral waves into multiple meandering wavelets characteristic of AF. The 3D virtual atria model itself was incorporated into the torso model to simulate the body surface ECG patterns in the normal and arrhythmic conditions. Therefore, a state-of-the-art computational platform has been developed, which can be used for studying multi-scale electrical phenomena during atrial conduction and AF arrhythmogenesis. Results of such simulations can be directly compared with electrophysiological and endocardial mapping data, as well as clinical ECG recordings. The virtual human atria can provide in-depth insights into 3D excitation propagation processes within atrial walls of a whole heart in vivo, which is beyond the current technical capabilities of experimental or clinical set-ups.

Journal ArticleDOI
TL;DR: Several potential candidates for the long-term effects of the early environment on the function and metabolism of a cell are elucidated, including Epigenetic alterations and Oxidative stress that changes the balance between reactive oxygen species generation and antioxidant defense capacity.
Abstract: The intrauterine environment is a major contributor to normal physiological growth and development of an individual. Disturbances at this critical time can affect the long-term health of the offspring. Low birth weight individuals have strong correlations with increased susceptibility to type 2 diabetes and cardiovascular disease in later-life. These observations led to the Thrifty Phenotype Hypothesis which suggested that these associations arose because of the response of a growing fetus to a suboptimal environment such as poor nutrition. Animal models have shown that environmentally induced intrauterine growth restriction increases the risk of a variety of diseases later in life. These detrimental features are also observed in high birth weight offspring from mothers who were obese or consumed a high fat diet during gestation. Recent advances in our understanding of the mechanisms underlying this phenomenon have elucidated several potential candidates for the long-term effects of the early environment on the function and metabolism of a cell. These include: (1) Epigenetic alterations (e.g. DNA methylation and histone modifications), which regulate specific gene expression and can be influenced by the environment, both during gestation and early postnatal life and (2) Oxidative stress that changes the balance between reactive oxygen species generation (e.g. through mitochondrial dysfunction) and antioxidant defense capacity. This has permanent effects on cellular ageing such as regulation of telomere length. Further understanding of these processes will help in the development of therapeutic strategies to increase healthspan and reduced the burden of age-associated diseases.

Journal ArticleDOI
TL;DR: Some of the remaining challenges in developing reliable patient-specific models of cardiac electromechanical activity are discussed, and some of the main areas for focusing future research efforts are identified.
Abstract: The development and clinical use of patient-specific models of the heart is now a feasible goal. Models have the potential to aid in diagnosis and support decision-making in clinical cardiology. Several groups are now working on developing multi-scale models of the heart for understanding therapeutic mechanisms and better predicting clinical outcomes of interventions such as cardiac resynchronization therapy. Here we describe the methodology for generating a patient-specific model of the failing heart with a myocardial infarct and left ventricular bundle branch block. We discuss some of the remaining challenges in developing reliable patient-specific models of cardiac electromechanical activity, and identify some of the main areas for focusing future research efforts. Key challenges include: efficiently generating accurate patient-specific geometric meshes and mapping regional myofiber architecture to them; modeling electrical activation patterns based on cellular alterations in human heart failure, and estimating regional tissue conductivities based on clinically available electrocardiographic recordings; estimating unloaded ventricular reference geometry and material properties for biomechanical simulations; and parameterizing systemic models of circulatory dynamics from available hemodynamic measurements.

Journal ArticleDOI
TL;DR: These genes, like the Igf2-H19 locus, have a major role in the epigenetic regulation of placental phenotype with long term consequences for the developmental programming of adult health and disease.
Abstract: Imprinted genes are expressed in a parent-of-origin manner by epigenetic modifications that silence either the paternal or maternal allele. They are widely expressed in fetal and placental tissues and are essential for normal placental development. In general, paternally expressed genes enhance feto-placental growth while maternally expressed genes limit conceptus growth, consistent with the hypothesis that imprinting evolved in response to the conflict between parental genomes in the allocation of maternal resources to fetal growth. Using targeted deletion, uniparental duplication, loss of imprinting and transgenic approaches, imprinted genes have been shown to determine the transport capacity of the definitive mouse placenta by regulating its growth, morphology and transporter abundance. Imprinted genes in the placenta are also responsive to environmental challenges and adapt placental phenotype to the prevailing nutritional conditions, in part, by varying their epigenetic status. In addition, interplay between placental and fetal imprinted genes is important in regulating resource partitioning via the placenta both developmentally and in response to environmental factors. By balancing the opposing parental drives on resource allocation with the environmental signals of nutrient availability, imprinted genes, like the Igf2-H19 locus, may act as nutrient sensors and optimise the fetal acquisition of nutrients for growth. These genes, therefore, have a major role in the epigenetic regulation of placental phenotype with long term consequences for the developmental programming of adult health and disease.

Journal ArticleDOI
TL;DR: The design principles and distributed memory architecture behind the OpenCMISS code are discussed, and the design of the interfaces that link the sets of physical equations across common boundaries, or between spatial fields over the same domain, are discussed.
Abstract: The VPH/Physiome Project is developing the model encoding standards CellML (cellml.org) and FieldML (fieldml.org) as well as web-accessible model repositories based on these standards (models.physiome.org). Freely available open source computational modelling software is also being developed to solve the partial differential equations described by the models and to visualise results. The OpenCMISS code (opencmiss.org), described here, has been developed by the authors over the last six years to replace the CMISS code that has supported a number of organ system Physiome projects. OpenCMISS is designed to encompass multiple sets of physical equations and to link subcellular and tissue-level biophysical processes into organ-level processes. In the Heart Physiome project, for example, the large deformation mechanics of the myocardial wall need to be coupled to both ventricular flow and embedded coronary flow, and the reaction-diffusion equations that govern the propagation of electrical waves through myocardial tissue need to be coupled with equations that describe the ion channel currents that flow through the cardiac cell membranes. In this paper we discuss the design principles and distributed memory architecture behind the OpenCMISS code. We also discuss the design of the interfaces that link the sets of physical equations across common boundaries (such as fluid-structure coupling), or between spatial fields over the same domain (such as coupled electromechanics), and the concepts behind CellML and FieldML that are embodied in the OpenCMISS data structures. We show how all of these provide a flexible infrastructure for combining models developed across the VPH/Physiome community.

Journal ArticleDOI
TL;DR: A freely-downloadable method for estimating statistical significance of PAC is introduced, and it is found that varying data length and noise levels leads to the three measures differentially detecting false positives or correctly identifying frequency bands of interaction; these conditions should be taken into careful consideration when selecting PAC analyses.
Abstract: Neuroscience time series data from a range of techniques and species reveal complex, non-linear interactions between different frequencies of neuronal network oscillations within and across brain regions. Here, we briefly review the evidence that these nested, cross-frequency interactions act in concert with linearly covariant (within-frequency) activity to dynamically coordinate functionally related neuronal ensembles during behaviour. Such studies depend upon reliable quantification of cross-frequency coordination, and we compare the properties of three techniques used to measure phase-amplitude coupling (PAC)--Envelope-to-Signal Correlation (ESC), the Modulation Index (MI) and Cross-Frequency Coherence (CFC)--by standardizing their filtering algorithms and systematically assessing their robustness to noise and signal amplitude using artificial signals. Importantly, we also introduce a freely-downloadable method for estimating statistical significance of PAC, a step overlooked in the majority of published studies. We find that varying data length and noise levels leads to the three measures differentially detecting false positives or correctly identifying frequency bands of interaction; these conditions should therefore be taken into careful consideration when selecting PAC analyses. Finally, we demonstrate the utility of the three measures in quantifying PAC in local field potential data simultaneously recorded from rat hippocampus and prefrontal cortex, revealing a novel finding of prefrontal cortical theta phase modulating hippocampal gamma power. Future adaptations that allow detection of time-variant PAC should prove essential in deciphering the roles of cross-frequency coupling in mediating or reflecting nervous system function.

Journal ArticleDOI
TL;DR: The gaps between different modeling methodologies and between scales are discussed, and potential methods for bridging the gaps are discussed.
Abstract: Human physiological functions are regulated across many orders of magnitude in space and time. Integrating the information and dynamics from one scale to another is critical for the understanding of human physiology and the treatment of diseases. Multi-scale modeling, as a computational approach, has been widely adopted by researchers in computational and systems biology. A key unsolved issue is how to represent appropriately the dynamical behaviors of a high-dimensional model of a lower scale by a low-dimensional model of a higher scale, so that it can be used to investigate complex dynamical behaviors at even higher scales of integration. In the article, we first review the widely-used different modeling methodologies and their applications at different scales. We then discuss the gaps between different modeling methodologies and between scales, and discuss potential methods for bridging the gaps between scales.

Journal ArticleDOI
TL;DR: New evidence is discussed that provides a conceptual framework with which to understand why GLP-1R agonists are less likely to induce hypoglycemia when they are administered for the treatment of T2DM.
Abstract: Insulin secretion from pancreatic β cells is stimulated by glucagon-like peptide-1 (GLP-1), a blood glucose-lowering hormone that is released from enteroendocrine L cells of the distal intestine after the ingestion of a meal. GLP-1 mimetics (e.g., Byetta) and GLP-1 analogs (e.g., Victoza) activate the β cell GLP-1 receptor (GLP-1R), and these compounds stimulate insulin secretion while also lowering levels of blood glucose in patients diagnosed with type 2 diabetes mellitus (T2DM). An additional option for the treatment of T2DM involves the administration of dipeptidyl peptidase-IV (DPP-IV) inhibitors (e.g., Januvia, Galvus). These compounds slow metabolic degradation of intestinally released GLP-1, thereby raising post-prandial levels of circulating GLP-1 substantially. Investigational compounds that stimulate GLP-1 secretion also exist, and in this regard a noteworthy advance is the demonstration that small molecule GPR119 agonists (e.g., AR231453) stimulate L cell GLP-1 secretion while also directly stimulating β cell insulin release. In this review, we summarize what is currently known concerning the signal transduction properties of the β cell GLP-1R as they relate to insulin secretion. Emphasized are the cyclic AMP, protein kinase A, and Epac2-mediated actions of GLP-1 to regulate ATP-sensitive K⁺ channels, voltage-dependent K⁺ channels, TRPM2 cation channels, intracellular Ca⁺ release channels, and Ca⁺-dependent exocytosis. We also discuss new evidence that provides a conceptual framework with which to understand why GLP-1R agonists are less likely to induce hypoglycemia when they are administered for the treatment of T2DM.

Journal ArticleDOI
TL;DR: The strongest evidence for a link between artificial UV and melanoma is found among individuals who had their first exposure to indoor tanning before the age of 30: they have a 75% increase risk of developing melanoma thanindividuals who had no exposure to indoors tanning.
Abstract: Melanoma is the most common form of cancer among young adults aged 25–29 years and the second most common cancer in those aged 15–29 years. We reviewed all the evidence regarding risk factors for melanoma, looking in particular at childhood exposure to ultraviolet radiation (UV). UV radiation is clearly the predominant environmental and thus potentially modifiable risk factor for melanoma. All activities related to tan-seeking behaviour and history of sunburns were shown to be significantly associated to melanoma. Host factors, such as pigmentary characteristics, and genetic predisposition plays also an important role. UV exposure is not only due to the sun but also to indoor tanning devices that have been shown to lead to an elevated risk of melanoma. The strongest evidence for a link between artificial UV and melanoma is found among individuals who had their first exposure to indoor tanning before the age of 30: they have a 75% increase risk of developing melanoma than individuals who had no exposure to indoor tanning. Prevention is very important, especially for children and young adults, as childhood and adolescence are critical periods in the development of later melanoma. Indoor tanning is a widespread practice in most developed countries, particularly in Northern Europe and the USA. In the recent decades more and more people, especially teenagers and women, are exposed to substantially high radiant exposures of UV through artificial sources and these trends raised a considerable concern. In fact the International Agency for Research on Cancer concluded that the association between skin cancer and exposure to solar radiation and the use of UV-emitting tanning devices are causal. Interesting analyses carried out in Iceland showed that when interventions to discourage sunbed use were introduced the incidence of melanoma among women decreased. All this evidence encouraged many countries to introduce regulations on sunbed use to avoid exposure before the age of 18.

Journal ArticleDOI
TL;DR: This work proposes an efficient Bayesian inference method for model personalization using polynomial chaos and compressed sensing and demonstrates how this can help in quantifying the impact of the data characteristics on the personalization (and thus prediction) results.
Abstract: Biophysical models are increasingly used for medical applications at the organ scale. However, model predictions are rarely associated with a confidence measure although there are important sources of uncertainty in computational physiology methods. For instance, the sparsity and noise of the clinical data used to adjust the model parameters (personalization), and the difficulty in modeling accurately soft tissue physiology. The recent theoretical progresses in stochastic models make their use computationally tractable, but there is still a challenge in estimating patient-specific parameters with such models. In this work we propose an efficient Bayesian inference method for model personalization using polynomial chaos and compressed sensing. This method makes Bayesian inference feasible in real 3D modeling problems. We demonstrate our method on cardiac electrophysiology. We first present validation results on synthetic data, then we apply the proposed method to clinical data. We demonstrate how this can help in quantifying the impact of the data characteristics on the personalization (and thus prediction) results. Described method can be beneficial for the clinical use of personalized models as it explicitly takes into account the uncertainties on the data and the model parameters while still enabling simulations that can be used to optimize treatment. Such uncertainty handling can be pivotal for the proper use of modeling as a clinical tool, because there is a crucial requirement to know the confidence one can have in personalized models.

Journal ArticleDOI
TL;DR: During fetal life the myocardium expands through replication of cardiomyocytes, and two normally circulating hormones have been identified that suppress proliferation: atrial natriuretic peptide (ANP) and tri-iodo-L-thyronine (T₃).
Abstract: During fetal life the myocardium expands through replication of cardiomyocytes. In sheep, cardiomyocytes begin the process of becoming terminally differentiated at about 100 gestation days out of 145 days term. In this final step of development, cardiomyocytes become binucleated and stop dividing. The number of cells at birth is important in determining the number of cardiomyocytes for life. Therefore, the regulation of cardiomyocyte growth in the womb is critical to long term disease outcome. Growth factors that stimulate proliferation of fetal cardiomyocytes include angiotensin II, cortisol and insulin-like growth factor-1. Increased ventricular wall stress leads to short term increases in proliferation but longer-term loss of cardiomyocyte generative capacity. Two normally circulating hormones have been identified that suppress proliferation: atrial natriuretic peptide (ANP) and tri-iodo-L-thyronine (T₃). Atrial natriuretic peptide signals through the NPRA receptor that serves as a guanylate cyclase and signals through cGMP. ANP powerfully suppresses mitotic activity in cardiomyocytes in the presence of angiotensin II in culture. Addition of a cGMP analog has the same effect as ANP. ANP suppresses both the extracellular receptor kinases and the phosphoinositol-3 kinase pathways. T₃ also suppresses increased mitotic activity of stimulated cardiomyocytes but does so by increasing the cell cycle suppressant, p21, and decreasing the cell cycle activator, cyclin D1.

Journal ArticleDOI
TL;DR: It is indicated that K(ATP)-channels not only constitute the glucose-regulated resting conductance in the β-cell but also provide a variable K⁺-conductance that influence the duration of the bursts of action potentials and the silent intervals.
Abstract: When exposed to intermediate glucose concentrations (6-16 mol/l), pancreatic β-cells in intact islets generate bursts of action potentials (superimposed on depolarised plateaux) separated by repolarised electrically silent intervals. First described more than 40 years ago, these oscillations have continued to intrigue β-cell electrophysiologists. To date, most studies of β-cell ion channels have been performed on isolated cells maintained in tissue culture (that do not burst). Here we will review the electrophysiological properties of β-cells in intact, freshly isolated, mouse pancreatic islets. We will consider the role of ATP-regulated K⁺-channels (K(ATP)-channels), small-conductance Ca²⁺-activated K⁺-channels and voltage-gated Ca²⁺-channels in the generation of the bursts. Our data indicate that K(ATP)-channels not only constitute the glucose-regulated resting conductance in the β-cell but also provide a variable K⁺-conductance that influence the duration of the bursts of action potentials and the silent intervals. We show that inactivation of the voltage-gated Ca²⁺-current is negligible at voltages corresponding to the plateau potential and consequently unlikely to play a major role in the termination of the burst. Finally, we propose a model for glucose-induced β-cell electrical activity based on observations made in intact pancreatic islets.

Journal ArticleDOI
TL;DR: It is posited that the dynamics of biological organisms, in their various levels of organization, are not "just" processes, but permanent (extended, in the authors' terminology) critical transitions and, thus, symmetry changes, and that variability is at the core of these transitions.
Abstract: In comparison to modern physics, symmetries play a radically different role in biology.By arguing on the relation between symmetries and conservation and stability properties in physics, we posit that the dynamics of biological organisms, in their various levels of organization, are not “just” processes, but permanent (extended, in our terminology) critical transitions and, thus, symmetry changes.Within the limits of a relative structural stability (or interval of viability), variability is at the core of these transitions. And biological adaptivity and diversity are a consequence of it.

Journal ArticleDOI
TL;DR: The roles of chaos in the genesis of cardiac arrhythmias, the transition to ventricular fibrillation, and the spontaneous termination of fibrills are reviewed, based on evidence from computer simulation of mathematical models and experiments of animal models.
Abstract: Dynamical chaos, an irregular behavior of deterministic systems, has been widely shown in nature. It also has been demonstrated in cardiac myocytes in many studies, including rapid pacing-induced irregular beat-to-beat action potential alterations and slow pacing-induced irregular early afterdepolarizations, etc. Here we review the roles of chaos in the genesis of cardiac arrhythmias, the transition to ventricular fibrillation, and the spontaneous termination of fibrillation, based on evidence from computer simulation of mathematical models and experiments of animal models.

Journal ArticleDOI
TL;DR: The major challenges associated with integrating the component models are highlighted to develop a computational tool that can ultimately be used to simulate the responses of the coronary vascular system to changing demands and to diseases and therapies.
Abstract: A key aim of the cardiac Physiome Project is to develop theoretical models to simulate the functional behaviour of the heart under physiological and pathophysiological conditions. Heart function is critically dependent on the delivery of an adequate blood supply to the myocardium via the coronary vasculature. Key to this critical function of the coronary vasculature is system dynamics that emerge via the interactions of the numerous constituent components at a range of spatial and temporal scales. Here, we focus on several components for which theoretical approaches can be applied, including vascular structure and mechanics, blood flow and mass transport, flow regulation, angiogenesis and vascular remodelling, and vascular cellular mechanics. For each component, we summarise the current state of the art in model development, and discuss areas requiring further research. We highlight the major challenges associated with integrating the component models to develop a computational tool that can ultimately be used to simulate the responses of the coronary vascular system to changing demands and to diseases and therapies.

Journal ArticleDOI
TL;DR: A draft standard for recording, annotating, and reporting experimental data, called Minimum Information about a Cardiac Electrophysiology Experiment (MICEE) is presented, with the ultimate goal of developing a useful tool for cardiac electrophysiologists which facilitates and improves dissemination of the minimum information necessary for reproduction of cardiac electrophic research.
Abstract: Cardiac experimental electrophysiology is in need of a well-defined Minimum Information Standard for recording, annotating, and reporting experimental data. As a step towards establishing this, we present a draft standard, called Minimum Information about a Cardiac Electrophysiology Experiment (MICEE). The ultimate goal is to develop a useful tool for cardiac electrophysiologists which facilitates and improves dissemination of the minimum information necessary for reproduction of cardiac electrophysiology research, allowing for easier comparison and utilisation of findings by others. It is hoped that this will enhance the integration of individual results into experimental, computational, and conceptual models. In its present form, this draft is intended for assessment and development by the research community. We invite the reader to join this effort, and, if deemed productive, implement the Minimum Information about a Cardiac Electrophysiology Experiment standard in their own work.

Journal ArticleDOI
TL;DR: The development of an image-based, species-consistent, anatomically-detailed model of rabbit ventricular electrophysiology that incorporates a detailed description of the free-running part of the specialized conduction system is described.
Abstract: The function of the ventricular specialized conduction system in the heart is to ensure the coordinated electrical activation of the ventricles. It is therefore critical to the overall function of the heart, and has also been implicated as an important player in various diseases, including lethal ventricular arrhythmias such as ventricular fibrillation and drug-induced torsades de pointes. However, current ventricular models of electrophysiology usually ignore, or include highly simplified representations of the specialized conduction system. Here, we describe the development of an image-based, species-consistent, anatomically-detailed model of rabbit ventricular electrophysiology that incorporates a detailed description of the free-running part of the specialized conduction system. Techniques used for the construction of the geometrical model of the specialized conduction system from a magnetic resonance dataset and integration of the system model into a ventricular anatomical model, developed from the same dataset, are described. Computer simulations of rabbit ventricular electrophysiology are conducted using the novel anatomical model and rabbit-specific membrane kinetics to investigate the importance of the components and properties of the conduction system in determining ventricular function under physiological conditions. Simulation results are compared to panoramic optical mapping experiments for model validation and results interpretation. Full access is provided to the anatomical models developed in this study.

Journal ArticleDOI
TL;DR: Using the pregnant sheep, it is shown that maternal overnutrition in late pregnancy results in an upregulation of PPARγ activated genes in fetal visceral fat and a subsequent increase in the mass of subcutaneous fat in the postnatal lamb.
Abstract: Women entering pregnancy with a high body weight and fat mass have babies at increased risk of becoming overweight or obese in childhood and later life. It is not known, whether exposure to a high level of maternal nutrition before pregnancy and exposure to a high transplacental nutrient supply in later pregnancy act through similar mechanisms to program later obesity. Using the pregnant sheep we have shown that maternal overnutrition in late pregnancy results in an upregulation of PPARγ activated genes in fetal visceral fat and a subsequent increase in the mass of subcutaneous fat in the postnatal lamb. Exposure to maternal overnutrition during the periconceptional period alone, however, results in an increase in total body fat mass in female lambs only with a dominant effect on visceral fat depots. Thus the early programming of later obesity may result from 'two hits', the first occurring as a result of maternal overnutrition during the periconceptional period and the second occurring as a result of increased fetal nutrition in late pregnancy. Whilst a short period of dietary restriction during the periconceptional period reverses the impact of periconceptional overnutrition on the programming of obesity, it also results in an increased lamb adrenal weight and cortisol stress response, together with changes in the epigenetic state of the insulin like growth factor 2 (IGF2) gene in the adrenal. Thus, not all of the effects of dietary restriction in overweight or obese mother in the periconceptional period may be beneficial in the longer term.

Journal ArticleDOI
TL;DR: The model shows how the introduction of cell fate heterogeneity paradoxically influences the tumor growth dynamic in response to apoptosis, to reveal yet another bottleneck to tumor progression potentially exploitable for disease control.
Abstract: Conventional wisdom has long held that once a cancer cell has developed it will inevitably progress to clinical disease. Updating this paradigm, it has more recently become apparent that the tumor interacts with its microenvironment and that some environmental bottlenecks, such as the angiogenic switch, must be overcome for the tumor to progress. In parallel, attraction has been drawn to the concept that there is a minority population of cells - the cancer stem cells - bestowed with the exclusive ability to self-renew and regenerate the tumor. With therapeutic targeting issues at stake, much attention has shifted to the identification of cancer stem cells, the thinking being that the remaining non-stem population, already fated to die, will play a negligible role in tumor development. In fact, the newly appreciated importance of intercellular interactions in cancer development also extends in a unique and unexpected way to interactions between the stem and non-stem compartments of the tumor. Here we discuss recent findings drawn from a hybrid mathematical-cellular automaton model that simulates growth of a heterogeneous solid tumor comprised of cancer stem cells and non-stem cancer cells. The model shows how the introduction of cell fate heterogeneity paradoxically influences the tumor growth dynamic in response to apoptosis, to reveal yet another bottleneck to tumor progression potentially exploitable for disease control.