scispace - formally typeset
Search or ask a question
JournalISSN: 0961-8368

Protein Science 

Wiley-Blackwell
About: Protein Science is an academic journal published by Wiley-Blackwell. The journal publishes majorly in the area(s): Protein structure & Protein folding. It has an ISSN identifier of 0961-8368. Over the lifetime, 10231 publications have been published receiving 474825 citations. The journal is also known as: Electronic protein science & PS.


Papers
More filters
Journal ArticleDOI
C. N. Pace1, Felix Vajdos1, L. R. Fee1, Gerald R. Grimsley1, T Gray1 
TL;DR: The studies reported here suggest that the Edelhoch method is the best method for measuring ε for a protein, which can best be predicted with this equation.
Abstract: The molar absorption coefficient, E, of a protein is usually based on concentrations measured by dry weight, nitrogen, or amino acid analysis. The studies reported here suggest that the Edelhoch method is the best method for measuring E for a protein. (This method is described by Gill and von Hippel [1989, Anal Biochem 182:3193261 and is based on data from Edelhoch [1967, Biochemistry 6:1948-19541.) The absorbance of a protein at 280 nm depends on the content of Trp, Tyr, and cystine (disulfide bonds). The average E values for these chromophores in a sample of 18 well-characterized proteins have been estimated, and the E values in water, propanol, 6 M guanidine hydrochloride (GdnHCI), and 8 M urea have been measured. For Trp, the average E values for the proteins are less than the E values measured in any of the solvents. For Tyr, the average E values for the proteins are intermediate between those measured in 6 M GdnHCl and those measured in propanol. Based on a sample of 116 measured t values for 80 proteins, the t at 280 nm of a folded protein in water, t(280), can best be predicted with this equation:

3,718 citations

Journal ArticleDOI
TL;DR: ChimeraX brings significant performance and graphics enhancements, new implementations of Chimera's most highly used tools, several entirely new analysis features, and support for new areas such as virtual reality, light‐sheet microscopy, and medical imaging data.
Abstract: UCSF ChimeraX is the next-generation interactive visualization program from the Resource for Biocomputing, Visualization, and Informatics (RBVI), following UCSF Chimera. ChimeraX brings (a) significant performance and graphics enhancements; (b) new implementations of Chimera's most highly used tools, many with further improvements; (c) several entirely new analysis features; (d) support for new areas such as virtual reality, light-sheet microscopy, and medical imaging data; (e) major ease-of-use advances, including toolbars with icons to perform actions with a single click, basic "undo" capabilities, and more logical and consistent commands; and (f) an app store for researchers to contribute new tools. ChimeraX includes full user documentation and is free for noncommercial use, with downloads available for Windows, Linux, and macOS from https://www.rbvi.ucsf.edu/chimerax.

3,081 citations

Journal ArticleDOI
TL;DR: A novel method for differentiating between correctly and incorrectly determined regions of protein structures based on characteristic atomic interactions is described.
Abstract: A novel method for differentiating between correctly and incorrectly determined regions of protein structures based on characteristic atomic interaction is described. Different types of atoms are distributed nonrandomly with respect to each other in proteins. Errors in model building lead to more randomized distributions of the different atom types, which can be distinguished from correct distributions by statistical methods. Atoms are classified in one of three categories: carbon (C), nitrogen (N), and oxygen (O). This leads to six different combinations of pairwise noncovalently bonded interactions (CC, CN, CO, NN, NO, and OO). A quadratic error function is used to characterize the set of pairwise interactions from nine-residue sliding windows in a database of 96 reliable protein structures. Regions of candidate protein structures that are mistraced or misregistered can then be identified by analysis of the pattern of nonbonded interactions from each window.

2,993 citations

Journal ArticleDOI
TL;DR: This article highlights some specific advances in the areas of visualization and usability, performance, and extensibility in ChimeraX.
Abstract: UCSF ChimeraX is next-generation software for the visualization and analysis of molecular structures, density maps, 3D microscopy, and associated data. It addresses challenges in the size, scope, and disparate types of data attendant with cutting-edge experimental methods, while providing advanced options for high-quality rendering (interactive ambient occlusion, reliable molecular surface calculations, etc.) and professional approaches to software design and distribution. This article highlights some specific advances in the areas of visualization and usability, performance, and extensibility. ChimeraX is free for noncommercial use and is available from http://www.rbvi.ucsf.edu/chimerax/ for Windows, Mac, and Linux.

2,866 citations

Journal ArticleDOI
TL;DR: Due to wide application of MolProbity validation and corrections by the research community, in Phenix, and at the worldwide Protein Data Bank, newly deposited structures have continued to improve greatly as measured by Mol probity's unique all‐atom clashscore.
Abstract: This paper describes the current update on macromolecular model validation services that are provided at the MolProbity website, emphasizing changes and additions since the previous review in 2010. There have been many infrastructure improvements, including rewrite of previous Java utilities to now use existing or newly written Python utilities in the open-source CCTBX portion of the Phenix software system. This improves long-term maintainability and enhances the thorough integration of MolProbity-style validation within Phenix. There is now a complete MolProbity mirror site at http://molprobity.manchester.ac.uk. GitHub serves our open-source code, reference datasets, and the resulting multi-dimensional distributions that define most validation criteria. Coordinate output after Asn/Gln/His "flip" correction is now more idealized, since the post-refinement step has apparently often been skipped in the past. Two distinct sets of heavy-atom-to-hydrogen distances and accompanying van der Waals radii have been researched and improved in accuracy, one for the electron-cloud-center positions suitable for X-ray crystallography and one for nuclear positions. New validations include messages at input about problem-causing format irregularities, updates of Ramachandran and rotamer criteria from the million quality-filtered residues in a new reference dataset, the CaBLAM Cα-CO virtual-angle analysis of backbone and secondary structure for cryoEM or low-resolution X-ray, and flagging of the very rare cis-nonProline and twisted peptides which have recently been greatly overused. Due to wide application of MolProbity validation and corrections by the research community, in Phenix, and at the worldwide Protein Data Bank, newly deposited structures have continued to improve greatly as measured by MolProbity's unique all-atom clashscore.

2,355 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
2023147
2022308
2021283
2020239
2019261
2018242