scispace - formally typeset
Search or ask a question

Showing papers in "Protoplasma in 2014"


Journal ArticleDOI
TL;DR: Application of 200 μL L−1 ethephon to Ni- or Zn-grown plants significantly alleviated toxicity and reduced the oxidative stress to a greater extent together with the improved net photosynthesis due to induced activity of ascorbate peroxidase and glutathione (GSH) reductase, resulting in increased production of reduced GSH.
Abstract: We investigated the influence of exogenously sourced ethylene (200 μL L(-1) ethephon) in the protection of photosynthesis against 200 mg kg(-1) soil each of nickel (Ni)- and zinc (Zn)-accrued stress in mustard (Brassica juncea L.). Plants grown with Ni or Zn but without ethephon exhibited increased activity of 1-aminocyclopropane carboxylic acid synthase, and ethylene with increased oxidative stress measured as H2O2 content and lipid peroxidation compared with control plants. The oxidative stress in Ni-grown plants was higher than Zn-grown plants. Under metal stress, ethylene protected photosynthetic potential by efficient PS II activity and through increased activity of ribulose-1,5-bisphosphate carboxylase and photosynthetic nitrogen use efficiency (P-NUE). Application of 200 μL L(-1) ethephon to Ni- or Zn-grown plants significantly alleviated toxicity and reduced the oxidative stress to a greater extent together with the improved net photosynthesis due to induced activity of ascorbate peroxidase and glutathione (GSH) reductase, resulting in increased production of reduced GSH. Ethylene formation resulting from ethephon application alleviated Ni and Zn stress by reducing oxidative stress caused by stress ethylene production and maintained increased GSH pool. The involvement of ethylene in reversal of photosynthetic inhibition by Ni and Zn stress was related to the changes in PS II activity, P-NUE, and antioxidant capacity was confirmed using ethylene action inhibitor, norbornadiene.

178 citations


Journal ArticleDOI
TL;DR: Results suggest that oxidative stress is an important component in expression of Cd and Pb toxicities in rice, though uptake of both metals gets reduced considerably when present together in the medium.
Abstract: Interactive effects of two heavy metal pollutants Cd and Pb in the growth medium were examined on their uptake, production of reactive oxygen species (ROS), induction of oxidative stress and antioxidative defence responses in Indica rice (Oryza sativa L.) seedlings. When rice seedlings in sand culture were exposed to 150 μM Cd (NO3)2 or 600 μM Pb (CH3COO)2 individually or in combination for 8–16 days, a significant reduction in root/shoot length, fresh weight, relative water content, photosynthetic pigments and increased production of ROS (O2˙− and H2O2) was observed. Both Cd and Pb were readily taken up by rice roots and localisation of absorbed metals was greater in roots than in shoots. When present together in the growth medium, uptake of both the metals Cd and Pb declined by 25–40 %. Scanning electron microscope (SEM) imaging of leaf stomata revealed that Pb caused more distortion in the shape of guard cells than Cd. Dithizone staining of roots showed localisation of absorbed Cd on root hairs and epidermal cells. Both Cd and Pb caused increased lipid peroxidation, protein carbonylation, decline in protein thiol and increase in non-protein thiol. The level of reduced forms of non-enzymic antioxidants glutathione (GSH) and ascorbate (AsA) and their redox ratios (GSH/AsA) declined, whereas the activities of antioxidative enzymes superoxide dismutase (SOD) and guaiacol peroxidase (GPX) increased in metal treated seedlings compared to controls. In-gel activity staining also revealed increased intensities of SOD and GPX isoforms with metal treatments. Catalase (CAT) activity increased during early days (8 days) of metal exposure and declined by 16 days. Results suggest that oxidative stress is an important component in expression of Cd and Pb toxicities in rice, though uptake of both metals gets reduced considerably when present together in the medium.

167 citations


Journal ArticleDOI
TL;DR: It is suggested that Cu exposure provoked an oxidative burden while reduced Cu uptake and modulating the antioxidant defense and glyoxalase systems by adding SNP and GSH play an important role in alleviating Cu toxicity.
Abstract: Nitric oxide (NO) and glutathione (GSH) regulate a variety of physiological processes and stress responses; however, their involvement in mitigating Cu toxicity in plants has not been extensively studied. This study investigated the interactive effect of exogenous sodium nitroprusside (SNP) and GSH on Cu homeostasis and Cu-induced oxidative damage in rice seedlings. Hydroponically grown 12-day-old seedlings were subjected to 100 μM CuSO4 alone and in combination with 200 μM SNP (an NO donor) and 200 μM GSH. Cu exposure for 48 h resulted in toxicity symptoms such as stunted growth, chlorosis, and rolling in leaves. Cu toxicity was also manifested by a sharp increase in lipoxygenase (LOX) activity, lipid peroxidation (MDA), hydrogen peroxide (H2O2), proline (Pro) content, and rapid reductions in biomass, chlorophyll (Chl), and relative water content (RWC). Cu-caused oxidative stress was evident by overaccumulation of reactive oxygen species (ROS; superoxide (O2 •–) and H2O2). Ascorbate (AsA) content decreased while GSH and phytochelatin (PC) content increased significantly in Cu-stressed seedlings. Exogenous SNP, GSH, or SNP + GSH decreased toxicity symptoms and diminished a Cu-induced increase in LOX activity, O2 •–, H2O2, MDA, and Pro content. They also counteracted a Cu-induced increase in superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione reductase (GR), monodehydroascorbate reductase (MDHAR), and glyoxalase I and glyoxalase II activities, which paralleled changes in ROS and MDA levels. These seedlings also showed a significant increase in catalase (CAT), glutathione peroxidase (GPX), dehydroascorbate reductase (DHAR), glutathione S-transferase (GST) activities, and AsA and PC content compared with the seedlings stressed with Cu alone. Cu analysis revealed that SNP and GSH restricted the accumulation of Cu in the roots and leaves of Cu-stressed seedlings. Our results suggest that Cu exposure provoked an oxidative burden while reduced Cu uptake and modulating the antioxidant defense and glyoxalase systems by adding SNP and GSH play an important role in alleviating Cu toxicity. Furthermore, the protective action of GSH and SNP + GSH was more efficient than SNP alone.

152 citations


Journal ArticleDOI
TL;DR: A critical assessment of the recent research reports available on metal/metalloid-accrued modulation of reduced AsA pool, AsA/DHA redox couple and AsA-related major enzymes, and the cumulative significance of these antioxidant system components in plant metal/ Metalloid stress tolerance is presented.
Abstract: The enhanced generation of reactive oxygen species (ROS) under metal/metalloid stress is most common in plants, and the elevated ROS must be successfully metabolized in order to maintain plant growth, development, and productivity Ascorbate (AsA) is a highly abundant metabolite and a water-soluble antioxidant, which besides positively influencing various aspects in plants acts also as an enigmatic component of plant defense armory As a significant component of the ascorbate-glutathione (AsA-GSH) pathway, it performs multiple vital functions in plants including growth and development by either directly or indirectly metabolizing ROS and its products Enzymes such as monodehydroascorbate reductase (MDHAR, EC 1654) and dehydroascorbate reductase (DHAR, EC 1851) maintain the reduced form of AsA pool besides metabolically controlling the ratio of AsA with its oxidized form (dehydroascorbate, DHA) Ascorbate peroxidase (APX, EC 111111) utilizes the reduced AsA pool as the specific electron donor during ROS metabolism Thus, AsA, its redox couple (AsA/DHA), and related enzymes (MDHAR, DHAR, and APX) cumulatively form an AsA redox system to efficiently protect plants particularly against potential anomalies caused by ROS and its products Here we present a critical assessment of the recent research reports available on metal/metalloid-accrued modulation of reduced AsA pool, AsA/DHA redox couple and AsA-related major enzymes, and the cumulative significance of these antioxidant system components in plant metal/metalloid stress tolerance

131 citations


Journal ArticleDOI
TL;DR: After 4 weeks from the last dose of cladribine, the stronger expression of p53 protein was associated with both the existing changes in the cell's genome, the effects of the ongoing repair mechanisms, as well as the high proliferation activity.
Abstract: The p53 protein is an important factor of many intra- and extracellular processes. This protein regulates the repair of cellular DNA and induces apoptosis. It is also responsible for the regulation of the senescence and the cell entering the subsequent stages of the cellular cycle. The protein p53 is also involved in inhibiting angiogenesis and the induction of oxidative shock. In our study, we examined the activity of p53 protein in the uterine epithelial cells in rats treated with cladribine. Its action is mainly based on apoptosis induction. We compared the activity of p53 protein in cells with a high apoptosis index and in cells with active repair mechanisms and high proliferation index. We observed stronger p53 protein expression in the epithelial cells of the materials taken 24 h after the last dose of 2-CdA associated with the active process of apoptosis and inhibition of proliferation. After 4 weeks from the last dose of cladribine, the stronger expression of p53 protein was associated with both the existing changes in the cell's genome, the effects of the ongoing repair mechanisms, as well as the high proliferation activity.

130 citations


Journal ArticleDOI
TL;DR: H2S maintains ion homeostasis in the H2O2-dependent manner in salt-stress Arabidopsis root by promoting the genes expression and the phosphorylation level of PM H+-ATPase and Na+/H+ antiporter protein level.
Abstract: Hydrogen sulfide (H2S) and hydrogen peroxide (H2O2) function as the signaling molecules in plants responding to salt stresses. The present study presents a signaling network involving H2S and H2O2 in salt resistance pathway of the Arabidopsis root. Arabidopsis roots were sensitive to 100 mM NaCl treatment, which displayed a great increase in electrolyte leakage (EL) and Na(+)/K(+) ratio under salt stress. The treatment of H2S donors sodium hydrosulfide (NaHS) enhanced the salt tolerance by maintaining a lower Na(+)/K(+) ratio. In addition, the inhibition of root growth under salt stress was removed by H2S. Further studies indicated that H2O2 was involved in H2S-induced salt tolerance pathway. H2S induced the production of the endogenous H2O2 via regulating the activities of glucose-6-phosphate dehydrogenase (G6PDH) and plasma membrane (PM) NADPH oxidase, with the treatment with dimethylthiourea (DMTU, an ROS scavenger), diphenylene iodonium (DPI, a PM NADPH oxidase inhibitor), or glycerol (G6PDH inhibitor) removing the effect of H2S. Treatment with amiloride (an inhibitor of PM Na(+)/H(+) antiporter) and vanadate (an inhibitor of PM H(+)-ATPase) also inhibited the activity of H2S on Na(+)/K(+) ratio. Through an analysis of quantitative real-time polymerase chain reaction and Western blot, we found that H2S promoted the genes expression and the phosphorylation level of PM H(+)-ATPase and Na(+)/H(+) antiporter protein level. However, when the endogenous H2O2 level was inhibited by DPI or DMTU, the effect of H2S on the PM Na(+)/H(+) antiporter system was removed. Taken together, H2S maintains ion homeostasis in the H2O2-dependent manner in salt-stress Arabidopsis root.

117 citations


Journal ArticleDOI
TL;DR: New methods that reduce the times for freeze substitution and resin embedding to a few hours are discussed as well as a new rapid room temperature method for preparing cells for on-section immunolabeling without the use of aldehyde fixatives.
Abstract: This article presents the best current practices for preparation of biological samples for examination as thin sections in an electron microscope. The historical development of fixation, dehydration, and embedding procedures for biological materials are reviewed for both conventional and low temperature methods. Conventional procedures for processing cells and tissues are usually done over days and often produce distortions, extractions, and other artifacts that are not acceptable for today’s structural biology standards. High-pressure freezing and freeze substitution can minimize some of these artifacts. New methods that reduce the times for freeze substitution and resin embedding to a few hours are discussed as well as a new rapid room temperature method for preparing cells for on-section immunolabeling without the use of aldehyde fixatives.

89 citations


Journal ArticleDOI
TL;DR: The potential of the serial block face SEM technique for studying the three-dimensional organisation of animal, plant and microbial cells is discussed.
Abstract: One of the major drawbacks in transmission electron microscopy has been the production of three-dimensional views of cells and tissues. Currently, there is no one suitable 3D microscopy technique that answers all questions and serial block face scanning electron microscopy (SEM) fills the gap between 3D imaging using high-end fluorescence microscopy and the high resolution offered by electron tomography. In this review, we discuss the potential of the serial block face SEM technique for studying the three-dimensional organisation of animal, plant and microbial cells.

84 citations


Journal ArticleDOI
TL;DR: The current state of the art in cryo-soft X-ray tomography (cryo-SXT) is reviewed, which is the only imaging modality that can provide nanoscale 3D information fromCryo-preserved, unstained, whole cells thicker than 1 μm.
Abstract: One of the ultimate aims of imaging in biology is to achieve molecular localisation in the context of the structure of cells in their native state. Here, we review the current state of the art in cryo-soft X-ray tomography (cryo-SXT), which is the only imaging modality that can provide nanoscale 3D information from cryo-preserved, unstained, whole cells thicker than 1 μm. Correlative cryo-fluorescence and cryo-SXT adds functional information to structure, enabling studies of cellular events that cannot be captured using light, electron or X-ray microscopes alone.

84 citations


Journal ArticleDOI
TL;DR: The present finding revealed that treatment T4 (Az3) (A. vinelandii) are highly efficient to improved growth and yield of rice crop.
Abstract: Biological nitrogen fixation (BNF) is highly effective in the field and potentially useful to reduce adverse effects chemical fertilisers. Here, Azotobacter species were selected via phenotypic, biochemical and molecular characterisations from different rice fields. Acetylene reduction assay of Azotobacter spp. showed that Azotobacter vinelandii (Az3) fixed higher amount of nitrogen (121.09 nmol C2H4 mg-1 bacteria h-1). Likewise, its plant growth functions, viz. siderophore, hydrogen cyanide, salicylic acid, IAA, GA3, zeatin, NH3, phosphorus solubilisation, ACC deaminase and iron tolerance, were also higher. The profile of gDNA, plasmid DNA and cellular protein profile depicted inter-generic and inter-specific diversity among the isolates of A. vinelandii. The PCR-amplified genes nifH, nifD and nifK of 0.87, 1.4 and 1.5 kb , respectively, were ascertained by Southern blot hybridisation in isolates of A. vinelandii. The 16S rRNA sequence from A. vinelandii (Az3) was novel, and its accession number (JQ796077) was received from NCBI data base. Biofertiliser formulation of novel A. vinelandii isolates along with commercial one was evaluated in rice (Oriza sativa L. var. Khandagiri) fields. The present finding revealed that treatment T4 (Az3) (A. vinelandii) are highly efficient to improved growth and yield of rice crop.

80 citations


Journal ArticleDOI
TL;DR: This is the first report for the production of anthraquinones (emodin and physcion), phenolic compounds and biological activities from hairy root cultures of P. multiflorum untransformed and hairy roots, which includes hydroxybenzoic acids, hydroxycinnamic acids, flavonols and other groups of Phenolic compounds.
Abstract: Polygonum multiflorum Thunb. is a highly important medicinal plant producing anthraquinones (emodin and physcion) and phenolic compounds which has pharmaceutical use. In vitro seedling explants such as roots, internodals, nodals and leaves were inoculated with A. rhizogenes strain KCTC 2703. Transformed roots were induced from internodals and leaf explants. Six transgenic clones of hairy roots were established and confirmed by polymerase chain reaction (PCR) and reverse transcription-PCR (RT-PCR) using rolC specific primers. Hairy roots cultured using MS liquid medium supplemented with 30 g/l sucrose showed highest accumulation of biomass (99.05 g/l FW [fresh weight] and 10.95 g/l DW [dry weight]) and highest production of anthraquinones content (emodin 211.32 μg/g DW and physcion 353.23 μg/g DW) were observed at 20 days. Nearly 9.5-fold increment of biomass was evident in suspension cultures at 20 days of culture and hairy root biomass produced in suspension cultures possessed 3.7- and 3.5-fold higher content of emodin and physcion, respectively, when compared with the untransformed control roots. MS basal liquid medium was superior for the growth of hairy roots and production of anthraquinones compared with other culture media evaluated (SH, B5 and N6), with MS-basal liquid medium supplemented with 30 g/l sucrose was optimal for secondary metabolite production. A total of 23 polyphenolic compounds were identified and quantified from P. multiflorum untransformed and hairy roots, which includes hydroxybenzoic acids, hydroxycinnamic acids, flavonols and other groups of phenolic compounds. The ultra-performance liquid chromatography (UPLC) analysis of the phenolic compounds profile revealed that pyrogallol, hesperidin, naringenin and formononetin were higher in hairy roots compared to untransformed roots. The total phenolics, flavonoids content, antioxidant and antimicrobial activity was high in hairy roots compared to untransformed roots. This is the first report for the production of anthraquinones (emodin and physcion), phenolic compounds and biological activities from hairy root cultures of P. multiflorum.

Journal ArticleDOI
TL;DR: It is reported that overexpression of Arabidopsis thaliana SOS1+SOS2-SOS3 genes enhanced salt tolerance in tall fescue.
Abstract: Crop productivity is greatly affected by soil salinity; therefore, improvement in salinity tolerance of crops is a major goal in salt-tolerant breeding. The Salt Overly Sensitive (SOS) signal-transduction pathway plays a key role in ion homeostasis and salt tolerance in plants. Here, we report that overexpression of Arabidopsis thaliana SOS1+SOS2+SOS3 genes enhanced salt tolerance in tall fescue. The transgenic plants displayed superior growth and accumulated less Na+ and more K+ in roots after 350 mM NaCl treatment. Moreover, Na+ enflux, K+ influx, and Ca2+ influx were higher in the transgenic plants than in the wild-type plants. The activities of the enzyme superoxide dismutase, peroxidase, catalase, and proline content in the transgenic plants were significantly increased; however, the malondialdehyde content decreased in transgenic plants compared to the controls. These results suggested that co-expression of A. thaliana SOS1+SOS2+SOS3 genes enhanced the salt tolerance in transgenic tall fescue.

Journal ArticleDOI
TL;DR: The 16S rRNA sequence revealed novelty of native Azospirillum lipoferum (As6) (JQ796078) in the NCBI database, which revealed that the native formulation of AzospIRillum of CRRI field (As 6) was most effective to elevate endogenous nutrient content, and improved growth and better yield are the result.
Abstract: Beneficial microorganisms have been considered as an important tool for crop improvement. Native isolates of Azospirillum spp. were obtained from the rhizospheres of different rice fields. Phenotypic, biochemical and molecular characterizations of these isolates led to the identification of six efficient strain of Azospirillum. PCR amplification of the nif genes (nifH, nifD and nifK) and protein profile of Azospirillum strains revealed inter-generic and inter-specific diversity among the strains. In vitro nitrogen fixation performance and the plant growth promotion activities, viz. siderophore, HCN, salicylic acid, IAA, GA, zeatin, ABA, NH3, phosphorus metabolism, ACC deaminase and iron tolerance were found to vary among the Azospirillum strains. The effect of Azospirillum formulations on growth of rice var. Khandagiri under field condition was evaluated, which revealed that the native formulation of Azospirillum of CRRI field (As6) was most effective to elevate endogenous nutrient content, and improved growth and better yield are the result. The 16S rRNA sequence revealed novelty of native Azospirillum lipoferum (As6) (JQ796078) in the NCBI database.

Journal ArticleDOI
TL;DR: In vitro shoots could markedly accumulate Cd in a concentration-dependent manner and interplay of enzymatic as well as nonenzymatic responses constituted a system endeavor of tolerance of Cd accumulation and an efficient scavenging strategy of its stress implications.
Abstract: Withania somnifera is one of the most important medicinal plant and is credited with various pharmacological activities. In this study, in vitro multiple shoot cultures were exposed to different concentrations (5–300 μM) of cadmium (Cd) as cadmium sulphate to explore its ability to accumulate the heavy metal ion and its impact on the metabolic status and adaptive responses. The results showed that supplemental exposure to Cd interfered with N, P, and K uptake creating N, P, and K deficiency at higher doses of Cd that also caused stunting of growth, chlorosis, and necrosis. The study showed that in vitro shoots could markedly accumulate Cd in a concentration-dependent manner. Enzymatic activities and isozymic pattern of catalase, ascorbate peroxidase, guaiacol peroxidase, peroxidase, glutathione-S-transferase, glutathione peroxidase, monodehydroascorbate reductase, and dehydroascorbate reductase were altered substantially under Cd exposure. Sugar metabolism was also markedly modulated under Cd stress. Various other parameters including contents of photosynthetic pigments, phenolics, tocopherol, flavonoids, reduced glutathione, nonprotein thiol, ascorbate, and proline displayed major inductive responses reflecting their protective role. The results showed that interplay of enzymatic as well as nonenzymatic responses constituted a system endeavor of tolerance of Cd accumulation and an efficient scavenging strategy of its stress implications.

Journal ArticleDOI
Xuexia Wu, J. He1, Jianlin Chen, Shao-Jun Yang, Dingshi Zha 
TL;DR: The results indicate that exogenous 6-BA is useful to improve the salt resistance of eggplant, which is most likely related to the increase in photosynthesis and antioxidant capacity.
Abstract: Cytokinins were recently shown to control plant adaptation to environmental stresses. To characterize the roles of cytokinins in the tolerance of eggplant (Solanum melongena Mill.) to salt stress, the protective effects of 6-benzyladenine (6-BA) on the growth, photosynthesis, and antioxidant capacity in the leaves of two eggplant cultivars Huqie12 (salt-sensitive) and Huqie4 (salt-tolerant) were investigated. Under 90 mM NaCl stress, Huqie4 showed higher biomass accumulation and less oxidative damage compared to the Huqie12. Application of exogenous 10 μM 6-BA significantly alleviated the growth suppression caused by salt stress in two eggplant genotypes. In parallel with the growth, 6-BA application in salt-stressed plants resulted in enhanced chlorophyll contents, as well as photosynthetic parameters such as net CO2 assimilation rate (P n), stomatal conductance (g s), transpiration rate (E), and intercellular CO2 concentration (C i). Furthermore, exogenous 6-BA also significantly reduced the O2 − production rate and malondialdehyde content and markedly increased the antioxidant enzymes superoxide dismutase and peroxidase, the antioxidant metabolites ascorbate and reduced glutathione (GSH), and proline in both genotypes under salt stress. The results indicate that exogenous 6-BA is useful to improve the salt resistance of eggplant, which is most likely related to the increase in photosynthesis and antioxidant capacity.

Journal ArticleDOI
TL;DR: The results of DNA fragmentation suggested that the mechanisms of DNA repair were not effective enough to eliminate early genotoxicity effects, and the results of oxidative stress and nonenzymatic and enzymatic antioxidant responses were able to maintain the oxidative damage to levels not significantly different from the control.
Abstract: This work was aimed to provide further information about toxicology of TiO2 nanoparticles (NPs) on Vicia narbonensis L., considering different endpoints. After exposure to TiO2 nanoparticle suspension (mixture of rutile and anatase, size <100 nm) at four different concentrations (0.2, 1.0, 2.0 and 4.0 ‰), the seeds of V. narbonensis were let to germinate in controlled environmental conditions. After 72 h, the extent of the success of the whole process (seed germination plus root elongation) was recorded as the vigour index, an indicator of possible phytotoxicity. After the characterisation of the hydric state of different materials, oxidative stress and enzymatic and nonenzymatic antioxidant responses were considered as indicators of possible cytotoxicity and to assess if damage induced by TiO2 NPs was oxidative stress-dependent. Cytohistochemical detection of in situ DNA fragmentation as genotoxicity endpoint was monitored by TUNEL reaction. The treatments with TiO2 NPs in our system induced phytotoxic effects, ROS production and DNA fragmentation. The nonenzymatic and enzymatic antioxidant responses were gradually and differentially activated and were able to maintain the oxidative damage to levels not significantly different from the control. On the other hand, the results of DNA fragmentation suggested that the mechanisms of DNA repair were not effective enough to eliminate early genotoxicity effects.

Journal ArticleDOI
TL;DR: Extracellular compounds seem to be involved in the pathogenicity of the fungi associated with botryosphaeria dieback, but the doses used in this study are 100 times higher than those found in the liquid fungal cultures: therefore, the possible function of this toxin is discussed.
Abstract: Three major grapevine trunk diseases, esca, botryosphaeria dieback and eutypa dieback, pose important economic problems for vineyards worldwide, and currently, no efficient treatment is available to control these diseases. The different fungi associated with grapevine trunk diseases can be isolated in the necrotic wood, but not in the symptomatic leaves. Other factors seem to be responsible for the foliar symptoms and may represent the link between wood and foliar symptoms. One hypothesis is that the extracellular compounds produced by the fungi associated with grapevine trunk diseases are responsible for pathogenicity.In the present work, we used Vitis vinifera cv. Chardonnay cells to test the aggressiveness of total extracellular compounds produced by Diplodia seriata and Neofusicoccum parvum, two causal agents associated with botryosphaeria dieback. Additionally, the toxicity of purified mellein, a characteristic toxin present in the extracellular compounds of Botryosphaeriaceae, was assessed.Our results show that the total extracellular compounds produced by N. parvum induce more necrosis on Chardonnay calli and induce a different defence gene expression pattern than those of D. seriata. Mellein was produced by both fungi in amounts proportional to its aggressiveness. However, when purified mellein was added to the culture medium of calli, only a delayed necrosis and a lower-level expression of defence genes were observed. Extracellular compounds seem to be involved in the pathogenicity of the fungi associated with botryosphaeria dieback. However, the doses of mellein used in this study are 100 times higher than those found in the liquid fungal cultures: therefore, the possible function of this toxin is discussed.

Journal ArticleDOI
Yucui Wu1, Congling Liu1, Jing Kuang1, Qian Ge1, Yuan Zhang1, Zhezhi Wang1 
TL;DR: Under either salinity or drought, overexpressing plants had greater superoxide dismutase activity and a higher glutathione concentration, suggesting that SmLEA may be useful in efforts to improve drought and salinity tolerance in S. miltiorrhiza.
Abstract: Salinity and drought are important abiotic stresses limiting plant growth and development. Late embryogenesis abundant (LEA) proteins are a group of proteins associated with tolerance to water-related stress. We previously cloned an LEA gene, SmLEA, from Salvia miltiorrhiza Bunge. Phylogenetic analysis indicated that SmLEA belongs to Group LEA14, which is involved in the dehydration response. To determine its function in detail, we have now overexpressed SmLEA in Escherichia coli and S. miltiorrhiza. The logarithmic increase in accumulations of SmLEA proteins in E. coli occurred earlier under salinity than under standard conditions. SmLEA-transformed S. miltiorrhiza plants also showed faster root elongation and a lower malondialdehyde concentration than the empty vector control plants did when cultured on MS media supplemented with 60 mM NaCl or 150 mM mannitol. Moreover, SmLEA-overexpressing transgenics experienced a less rapid rate of water loss. Under either salinity or drought, overexpressing plants had greater superoxide dismutase activity and a higher glutathione concentration. These results suggest that SmLEA may be useful in efforts to improve drought and salinity tolerance in S. miltiorrhiza. Our data also provide a good foundation for further studies into the stress resistance mechanism and molecular breeding of this valuable medicinal plant.

Journal ArticleDOI
TL;DR: The suitability of ME tissues for tissue culture and the chronological series of morphological data observed at the macroscopic level are documented and Cytological, physiological, and some biochemical aspects of somatic embryo formation in wheat ME culture are discussed.
Abstract: Cellular totipotency is one of the basic principles of plant biotechnology. Currently, the success of the procedure used to produce transgenic plants is directly proportional to the successful insertion of foreign DNA into the genome of suitable target tissue/cells that are able to regenerate plants. The mature embryo (ME) is increasingly recognized as a valuable explant for developing regenerable cell lines in wheat biotechnology. We have previously developed a regeneration procedure based on fragmented ME in vitro culture. Before we can use this regeneration system as a model for molecular studies of the morphogenic pathway induced in vitro and investigate the functional links between regenerative capacity and transformation receptiveness, some questions need to be answered. Plant regeneration from cultured tissues is genetically controlled. Factors such as age/degree of differentiation and physiological conditions affect the response of explants to culture conditions. Plant regeneration in culture can be achieved through embryogenesis or organogenesis. In this paper, the suitability of ME tissues for tissue culture and the chronological series of morphological data observed at the macroscopic level are documented. Genetic variability at each step of the regeneration process was evaluated through a varietal comparison of several elite wheat cultivars. A detailed histological analysis of the chronological sequence of morphological events during ontogeny was conducted. Compared with cultures of immature zygotic embryos, we found that the embryogenic pathway occurs slightly earlier and is of a different origin in our model. Cytological, physiological, and some biochemical aspects of somatic embryo formation in wheat ME culture are discussed.

Journal ArticleDOI
TL;DR: Fluorescence lifetime imaging applications have now progressed to a state where, besides their utility in cell biological research, they can be employed as clinical diagnostic tools.
Abstract: The steady improvement in the imaging of cellular processes in living tissue over the last 10-15 years through the use of various fluorophores including organic dyes, fluorescent proteins and quantum dots, has made observing biological events common practice. Advances in imaging and recording technology have made it possible to exploit a fluorophore's fluorescence lifetime. The fluorescence lifetime is an intrinsic parameter that is unique for each fluorophore, and that is highly sensitive to its immediate environment and/or the photophysical coupling to other fluorophores by the phenomenon Forster resonance energy transfer (FRET). The fluorescence lifetime has become an important tool in the construction of optical bioassays for various cellular activities and reactions. The measurement of the fluorescence lifetime is possible in two formats; time domain or frequency domain, each with their own advantages. Fluorescence lifetime imaging applications have now progressed to a state where, besides their utility in cell biological research, they can be employed as clinical diagnostic tools. This review highlights the multitude of fluorophores, techniques and clinical applications that make use of fluorescence lifetime imaging microscopy (FLIM).

Journal ArticleDOI
TL;DR: The exogenous maize C4-specific pepc gene was more effective than ppdk at improving the photosynthetic performance and yield characteristics of transgenic wheat, while the two genes showed a synergistic effect when they were transformed into the same genetic background, because the PKC lines exhibited improved photosynthesis and physiological traits.
Abstract: Using particle bombardment transformation, we introduced maize pepc cDNA encoding phosphoenolpyruvate carboxylase (PEPC) and ppdk cDNA encoding pyruvate orthophosphate dikinase (PPDK) into the C3 crop wheat to generate transgenic wheat lines carrying cDNA of pepc (PC lines), ppdk (PK lines) or both (PKC lines). The integration, transcription, and expression of the foreign genes were confirmed by Southern blot, Real-time quantitative reverse transcription PCR (Q-RT-PCR), and Western blot analysis. Q-RT-PCR results indicated that the average relative expression levels of pepc and ppdk in the PKC lines reached 10 and 4.6, respectively, compared to their expressions in untransformed plants (set to 1). The enzyme activities of PEPC and PPDK in the PKC lines were 4.3- and 2.1-fold higher, respectively, than in the untransformed control. The maximum daily net photosynthetic rates of the PKC, PC, and PK lines were enhanced by 26.4, 13.3, and 4.5%, respectively, whereas the diurnal accumulations of photosynthesis were 21.3, 13.9, and 6.9%, respectively, higher than in the control. The Fv/Fm of the transgenic plants decreased less than in the control under high temperature and high light conditions (2 weeks after anthesis), suggesting that the transgenic wheat transports more absorbed light energy into a photochemical reaction. The exogenous maize C4-specific pepc gene was more effective than ppdk at improving the photosynthetic performance and yield characteristics of transgenic wheat, while the two genes showed a synergistic effect when they were transformed into the same genetic background, because the PKC lines exhibited improved photosynthetic and physiological traits.

Journal ArticleDOI
TL;DR: The presented description of plant nucleolar morphology summarizes previous knowledge regarding the function of nucleoli as well as of their particular subdomains not only in the course of ribosome biosynthesis.
Abstract: Nucleoli are nuclear domains present in almost all eukaryotic cells. They not only specialize in the production of ribosomal subunits but also play roles in many fundamental cellular activities. Concerning ribosome biosynthesis, particular stages of this process, i.e., ribosomal DNA transcription, primary RNA transcript processing, and ribosome assembly proceed in precisely defined nucleolar subdomains. Although eukaryotic nucleoli are conservative in respect of their main function, clear morphological differences between these structures can be noticed between individual kingdoms. In most cases, a plant nucleolus shows well-ordered structure in which four main ultrastructural components can be distinguished: fibrillar centers, dense fibrillar component, granular component, and nucleolar vacuoles. Nucleolar chromatin is an additional crucial structural component of this organelle. Nucleolonema, although it is not always an unequivocally distinguished nucleolar domain, has often been described as a well-grounded morphological element, especially of plant nucleoli. The ratios and morphology of particular subcompartments of a nucleolus can change depending on its metabolic activity which in turn is correlated with the physiological state of a cell, cell type, cell cycle phase, as well as with environmental influence. Precise attribution of functions to particular nucleolar subregions in the process of ribosome biosynthesis is now possible using various approaches. The presented description of plant nucleolar morphology summarizes previous knowledge regarding the function of nucleoli as well as of their particular subdomains not only in the course of ribosome biosynthesis.

Journal ArticleDOI
TL;DR: The authors' findings clearly correlate with known microtubule drug resistance determinants and add more amino acid positions with a putative effect on drug-tubulin interaction, and the issue of micro Tubulin network properties in plant cells producing microtubules drugs is also addressed.
Abstract: Microtubule drugs such as paclitaxel, colchicine, vinblastine, trifluralin, or oryzalin form a chemically diverse group that has been reinforced by a large number of novel compounds over time. They all share the ability to change microtubule properties. The profound effects of disrupted microtubule systems on cell physiology can be used in research as well as anticancer treatment and agricultural weed control. The activity of microtubule drugs generally depends on their binding to α- and β-tubulin subunits. The microtubule drugs are often effective only in certain taxonomic groups, while other organisms remain resistant. Available information on the molecular basis of this selectivity is summarized. In addition to reviewing published data, we performed sequence data mining, searching for kingdom-specific signatures in plant, animal, fungal, and protozoan tubulin sequences. Our findings clearly correlate with known microtubule drug resistance determinants and add more amino acid positions with a putative effect on drug-tubulin interaction. The issue of microtubule network properties in plant cells producing microtubule drugs is also addressed.

Journal ArticleDOI
TL;DR: A theoretical background of FLIM as well as FRET-FLIM analysis is provided and two cases in which advanced microscopy applications revealed many new insights of cellular processes in living plant cells aswell as in whole plants are shown.
Abstract: A hallmark of cellular processes is the spatio-temporally regulated interplay of biochemical components. Assessing spatial information of molecular interactions within living cells is difficult using traditional biochemical methods. Developments in green fluorescent protein technology in combination with advances in fluorescence microscopy have revolutionised this field of research by providing the genetic tools to investigate the spatio-temporal dynamics of biomolecules in live cells. In particular, fluorescence lifetime imaging microscopy (FLIM) has become an inevitable technique for spatially resolving cellular processes and physical interactions of cellular components in real time based on the detection of Forster resonance energy transfer (FRET). In this review, we provide a theoretical background of FLIM as well as FRET-FLIM analysis. Furthermore, we show two cases in which advanced microscopy applications revealed many new insights of cellular processes in living plant cells as well as in whole plants.

Journal ArticleDOI
TL;DR: Differences in timing and sensitivity to either the lanthanoid Gd or exogenous calcium provide evidence for an adaptive role of early sodium uptake through non-selective cation channels acting upstream of Ca2+ and H+ fluxes, and a correlation of salt sensitivity with unconstrained jasmonate (JA) signalling is found.
Abstract: Understanding the mechanism by which plants sense, signal and respond to salinity stress is of great interest to plant biologists. In stress signalling, often the same mole- cules are involved in both damage-related and adaptive events. To dissect this complexity, we compared the salinity responses of two grapevine cell lines differing in their salinity tolerance.Wefollowedrapidchangesinthecellularcontent of sodium and calcium, apoplastic alkalinisation and slower responses in the levels of jasmonic acid, its active isoleucine conjugate and abscisic acid, as well as of stilbenes. Differences in timing and sensitivity to either the lanthanoid Gd or exogenous calcium provide evidence for an adaptive role of early sodium uptake through non-selective cation channels acting upstream of Ca 2+ and H + fluxes. We find a correlation of salt sensitivity with unconstrained jasmonate (JA) signalling, whereas salt adaptation correlates with tight control of jasmonic acid and its isoleucine conjugate, accom- panied by accumulation of abscisic acid and suppression of stilbenes that trigger defence-related cell death. The data are discussed by a model where efficient fine-tuning of JA sig- nalling determines whether cells will progress towards adap- tation or programme cell death.

Journal ArticleDOI
TL;DR: This review introduces the FRAP methodology, including some theoretical background, describes challenges and pitfalls, and presents some recent advanced applications.
Abstract: Intracellular molecular transport and localization are crucial for cells (plant cells as much as mammalian cells) to proliferate and to adapt to diverse environmental conditions. Here, some aspects of the microscopy-based method of fluorescence recovery after photobleaching (FRAP) are introduced. In the course of the last years, this has become a very powerful tool to study dynamic processes in living cells and tissue, and it is expected to experience further increasing demand because quantitative information on biological systems becomes more and more important. This review introduces the FRAP methodology, including some theoretical background, describes challenges and pitfalls, and presents some recent advanced applications.

Journal ArticleDOI
TL;DR: An efficient and reproducible Agrobacterium-mediated in planta transformation and grafting based multiplication of J. curcas was established and genetic stability of the grafted plants was evaluated by using randomly amplified polymorphic DNA (RAPD), marker which showed 100 % genetic stability between mother and grafted Plants.
Abstract: An efficient and reproducible Agrobacterium-mediated in planta transformation was developed in Jatropha curcas. The various factors affecting J. curcas in planta transformation were optimized, including decapitation, Agrobacterium strain, pin-pricking, vacuum infiltration duration and vacuum pressure. Simple vegetative in vivo cleft grafting method was adopted in the multiplication of transformants without the aid of tissue culture. Among the various parameters evaluated, decapitated plants on pin-pricking and vacuum infiltrated at 250 mmHg for 3 min with the Agrobacterium strain EHA 105 harbouring the binary vector pGA 492 was proved to be efficient in all terms with a transformation efficiency of 62.66 %. Transgene integration was evinced by the GUS histochemical analysis, and the GUS positive plants were subjected to grafting. Putatively transformed J. curcas served as "Scion" and the wild type J. curcas plant severed as "Stock". There was no occurrence of graft rejection and the plants were then confirmed by GUS histochemical analysis, polymerase chain reaction (PCR) and Southern hybridization. Genetic stability of the grafted plants was evaluated by using randomly amplified polymorphic DNA (RAPD), marker which showed 100 % genetic stability between mother and grafted plants. Thus, an efficient in planta transformation and grafting based multiplication of J. curcas was established.

Journal ArticleDOI
TL;DR: It is proposed that the multicellular sporangium, a universal feature of land plants, acts as a stress–mechanical lens, focusing growth-induced stresses to create a geometrically precise mechanical singularity that can serve as an inducing developmental signal triggering the initiation of reproductive differentiation.
Abstract: The relative simplicity of plant developmental systems, having evolved within the universal constraints imposed by the plant cell wall, may allow us to outline a consistent developmental narrative that is not currently possible in the animal kingdom. In this article, I discuss three aspects of the development of the mature form in plants, approaching them in terms of the role played by the biophysics and mechanics of the cell wall during growth. First, I discuss axis extension in terms of a loss of stability-based model of cell wall stress relaxation and I introduce the possibility that cell wall stress relaxation can be modeled as a binary switch. Second, I consider meristem shape and surface conformation as a controlling element in the morphogenetic circuitry of plant organogenesis at the apex. Third, I approach the issue of reproductive differentiation and propose that the multicellular sporangium, a universal feature of land plants, acts as a stress–mechanical lens, focusing growth-induced stresses to create a geometrically precise mechanical singularity that can serve as an inducing developmental signal triggering the initiation of reproductive differentiation. Lastly, I offer these three examples of biophysically integrated control processes as entry points into a narrative that provides an independent, nongenetic context for understanding the evolution of the apoplast and the morphogenetic ontogeny of multicellular land plants.

Journal ArticleDOI
TL;DR: Culture filtrates of four endophytic fungi were tested on embryogenic cell suspensions of latex-less Papaver somniferum in dose-dependent kinetics and RT (qPCR) confirms the downregulation of sanguinarine pathway on CO2 supplementation.
Abstract: Elicitors play an important role in challenging the plant defense system through plant-environment interaction and thus altering the secondary metabolite production. Culture filtrates of four endophytic fungi, namely, Chaetomium globosum, Aspergillus niveoglaucus, Paecilomyces lilacinus, and Trichoderma harzianum were tested on embryogenic cell suspensions of latex-less Papaver somniferum in dose-dependent kinetics. Besides this, abiotic elicitors salicylic acid, hydrogen peroxide, and carbon dioxide were also applied for improved sanguinarine production. Maximum biomass accumulation (growth index (GI) = 293.50 ± 14.82) and sanguinarine production (0.090 ± 0.008 % dry wt.) were registered by addition of 3.3 % v/v T. harzanium culture filtrate. Interestingly, it was further enhanced (GI = 323.40 ± 25.30; 0.105 ± 0.008 % dry wt.) when T. harzanium culture filtrate was employed along with 50 μM shikimate. This was also supported by real-time (RT) (qPCR), where 8–9-fold increase in cheilanthifoline synthase (CFS), stylopine synthase (STS), tetrahydroprotoberberine cis-N-methyltransferase (TNMT), and protopine 6-hydroxylase (P6H) transcripts was observed. Among abiotic elicitors, while hydrogen peroxide and carbon dioxide registered low level of sanguinarine accumulation, maximum sanguinarine content was detected by 250 μM salicylic acid (0.058 ± 0.003 % dry wt.; GI = 172.75 ± 13.40). RT (qPCR) also confirms the downregulation of sanguinarine pathway on CO2 supplementation. Various parameters ranging from agitation speed (70 rpm), impeller type (marine), media volume (2 l), inoculum weight (100 g), and culture duration (9 days) were optimized during upscaling in 5-l stirred tank bioreactor to obtain maximum sanguinarine production (GI = 434.00; 0.119 ± 0.070 % dry wt.). Addition of 3.3 % v/v T. harzanium culture filtrate and 50-μM shikimate was done on the 6th day of bioreactor run.

Journal ArticleDOI
TL;DR: It is argued that the infection process can be viewed as two discrete phases occurring in markedly different environments and requiring distinct biochemical pathways and morphogenetic regulation: outside the host cell, where the appressorium develops in a nutrient-free environment, and inside the hostcell, where filamentous growth occurs in a glucose-rich, nitrogen-poor environment, at least from the perspective of the fungus.
Abstract: The rice blast fungus Magnaporthe oryzae is a global food security threat due to its destruction of cultivated rice. Of the world's rice harvest, 10-30 % is lost each year to this pathogen, and changing climates are likely to favor its spread into new areas. Insights into how the fungus might be contained could come from the wealth of molecular and cellular studies that have been undertaken in order to shed light on the biological underpinnings of blast disease, aspects of which we review herein. Infection begins when a three-celled spore lands on the surface of a leaf, germinates, and develops the specialized infection structure called the appressorium. The mature appressorium develops a high internal turgor that acts on a thin penetration peg, forcing it through the rice cuticle and into the underlying epidermal cells. Primary then invasive hyphae (IH) elaborate from the peg and grow asymptomatically from one living rice cell to another for the first few days of infection before host cells begin to die and characteristic necrotic lesions form on the surface of the leaf, from which spores are produced to continue the life cycle. To gain new insights into the biology of rice blast disease, we argue that, conceptually, the infection process can be viewed as two discrete phases occurring in markedly different environments and requiring distinct biochemical pathways and morphogenetic regulation: outside the host cell, where the appressorium develops in a nutrient-free environment, and inside the host cell, where filamentous growth occurs in a glucose-rich, nitrogen-poor environment, at least from the perspective of the fungus. Here, we review the physiological and metabolic changes that occur in M. oryzae as it transitions from the surface to the interior of the host, thus enabling us to draw lessons about the strategies that allow M. oryzae cells to thrive in rice cells.