scispace - formally typeset
Search or ask a question
JournalISSN: 0257-0130

Queueing Systems 

Springer Science+Business Media
About: Queueing Systems is an academic journal published by Springer Science+Business Media. The journal publishes majorly in the area(s): Queueing theory & Queue. It has an ISSN identifier of 0257-0130. Over the lifetime, 1820 publications have been published receiving 48546 citations.


Papers
More filters
Journal ArticleDOI
B. Doshi1
TL;DR: This survey gives an overview of some general decomposition results and the methodology used to obtain these results for two vacation models and attempts to provide a methodological overview to illustrate how the seemingly diverse mix of problems is closely related in structure and can be understood in a common framework.
Abstract: Queueing systems in which the server works on primary and secondary (vacation) customers arise in many computer, communication, production and other stochastic systems. These systems can frequently be modeled as queueing systems with vacations. In this survey, we give an overview of some general decomposition results and the methodology used to obtain these results for two vacation models. We also show how other related models can be solved in terms of the results for these basic models. We attempt to provide a methodological overview with the objective of illustrating how the seemingly diverse mix of problems is closely related in structure and can be understood in a common framework.

1,136 citations

Journal ArticleDOI
TL;DR: A relation coupling together the storage requirement, the achievable utilization and the output rate is derived and a lower bound for the complementary distribution function of the storage level is given.
Abstract: A storage model with self-similar input process is studied. A relation coupling together the storage requirement, the achievable utilization and the output rate is derived. A lower bound for the complementary distribution function of the storage level is given.

917 citations

Journal ArticleDOI
TL;DR: The most important models and results of the manufacturing flow line literature are described and exact and approximate methods for obtaining quantitative measures of performance are reviewed.
Abstract: The most important models and results of the manufacturing flow line literature are described. These include the major classes of models (asynchronous, synchronous, and continuous); the major features (blocking, processing times, failures and repairs); the major properties (conservation of flow, flow rate-idle time, reversibility, and others); and the relationships among different models. Exact and approximate methods for obtaining quantitative measures of performance are also reviewed. The exact methods are appropriate for small systems. The approximate methods, which are the only means available for large systems, are generally based on decomposition, and make use of the exact methods for small systems. Extensions are briefly discussed. Directions for future research are suggested.

787 citations

Journal ArticleDOI
Joseph Abate, Ward Whitt1
TL;DR: This paper reviews the Fourier-series method for calculating cumulative distribution functions (cdf's) and probability mass functions (pmf's) by numerically inverting characteristic functions, Laplace transforms and generating functions and describes two methods for inverting Laplace transform based on the Post-Widder inversion formula.
Abstract: This paper reviews the Fourier-series method for calculating cumulative distribution functions (cdf's) and probability mass functions (pmf's) by numerically inverting characteristic functions, Laplace transforms and generating functions. Some variants of the Fourier-series method are remarkably easy to use, requiring programs of less than fifty lines. The Fourier-series method can be interpreted as numerically integrating a standard inversion integral by means of the trapezoidal rule. The same formula is obtained by using the Fourier series of an associated periodic function constructed by aliasing; this explains the name of the method. This Fourier analysis applies to the inversion problem because the Fourier coefficients are just values of the transform. The mathematical centerpiece of the Fourier-series method is the Poisson summation formula, which identifies the discretization error associated with the trapezoidal rule and thus helps bound it. The greatest difficulty is approximately calculating the infinite series obtained from the inversion integral. Within this framework, lattice cdf's can be calculated from generating functions by finite sums without truncation. For other cdf's, an appropriate truncation of the infinite series can be determined from the transform based on estimates or bounds. For Laplace transforms, the numerical integration can be made to produce a nearly alternating series, so that the convergence can be accelerated by techniques such as Euler summation. Alternatively, the cdf can be perturbed slightly by convolution smoothing or windowing to produce a truncation error bound independent of the original cdf. Although error bounds can be determined, an effective approach is to use two different methods without elaborate error analysis. For this purpose, we also describe two methods for inverting Laplace transforms based on the Post-Widder inversion formula. The overall procedure is illustrated by several queueing examples.

726 citations

Journal ArticleDOI
TL;DR: A dynamic control algorithm, which is introduced, which the authors call Greedy Primal-Dual (GPD) algorithm, and prove its asymptotic optimality, and shows that it can accommodate a wide range of applications.
Abstract: We study a model of controlled queueing network, which operates and makes control decisions in discrete time. An underlying random network mode determines the set of available controls in each time slot. Each control decision "produces" a certain vector of "commodities"; it also has associated "traditional" queueing control effect, i.e., it determines traffic (customer) arrival rates, service rates at the nodes, and random routing of processed customers among the nodes. The problem is to find a dynamic control strategy which maximizes a concave utility function H(X), where X is the average value of commodity vector, subject to the constraint that network queues remain stable. We introduce a dynamic control algorithm, which we call Greedy Primal-Dual (GPD) algorithm, and prove its asymptotic optimality. We show that our network model and GPD algorithm accommodate a wide range of applications. As one example, we consider the problem of congestion control of networks where both traffic sources and network processing nodes may be randomly time-varying and interdependent. We also discuss a variety of resource allocation problems in wireless networks, which in particular involve average power consumption constraints and/or optimization, as well as traffic rate constraints.

539 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202310
2022164
202138
202043
201939
201837