scispace - formally typeset
Search or ask a question
JournalISSN: 1042-9832

Random Structures and Algorithms 

Wiley-Blackwell
About: Random Structures and Algorithms is an academic journal published by Wiley-Blackwell. The journal publishes majorly in the area(s): Random graph & Random regular graph. It has an ISSN identifier of 1042-9832. Over the lifetime, 2534 publications have been published receiving 64099 citations. The journal is also known as: Random structures and algorithms.


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that if Σ i(i - 2)λi > 0, then such graphs almost surely have a giant component, while if λ0, λ1… which sum to 1, then almost surely all components in such graphs are small.
Abstract: Given a sequence of nonnegative real numbers λ0, λ1… which sum to 1, we consider random graphs having approximately λi n vertices of degree i. Essentially, we show that if Σ i(i - 2)λi > 0, then such graphs almost surely have a giant component, while if Σ i(i -2)λ. < 0, then almost surely all components in such graphs are small. We can apply these results to Gn,p,Gn.M, and other well-known models of random graphs. There are also applications related to the chromatic number of sparse random graphs. © 1995 Wiley Periodicals, Inc.

2,494 citations

Journal ArticleDOI
TL;DR: In this paper, a variant of the ergodic aperiodic Markov chain sampling method is proposed, which runs from a distant point in the past up to the present, where the distance into the past that one needs to go is determined during the running of the algorithm itself.
Abstract: For many applications it is useful to sample from a finite set of objects in accordance with some particular distribution. One approach is to run an ergodic (i.e., irreducible aperiodic) Markov chain whose stationary distribution is the desired distribution on this set; after the Markov chain has run for M steps, with M sufficiently large, the distribution governing the state of the chain approximates the desired distribution. Unfortunately, it can be difficult to determine how large M needs to be. We describe a simple variant of this method that determines on its own when to stop and that outputs samples in exact accordance with the desired distribution. The method uses couplings which have also played a role in other sampling schemes; however, rather than running the coupled chains from the present into the future, one runs from a distant point in the past up until the present, where the distance into the past that one needs to go is determined during the running of the algorithm itself. If the state space has a partial order that is preserved under the moves of the Markov chain, then the coupling is often particularly efficient. Using our approach, one can sample from the Gibbs distributions associated with various statistical mechanics models (including Ising, random-cluster, ice, and dimer) or choose uniformly at random from the elements of a finite distributive lattice. © 1996 John Wiley & Sons, Inc.

1,235 citations

Journal ArticleDOI
TL;DR: A result of Johnson and Lindenstrauss shows that a set of n points in high dimensional Euclidean space can be mapped into an O(log n/e2)-dimensional Euclidesan space such that the distance between any two points changes by only a factor of (1 ± e).
Abstract: A result of Johnson and Lindenstrauss [13] shows that a set of n points in high dimensional Euclidean space can be mapped into an O(log n/e2)-dimensional Euclidean space such that the distance between any two points changes by only a factor of (1 ± e). In this note, we prove this theorem using elementary probabilistic techniques.

1,036 citations

Journal ArticleDOI
TL;DR: Here the authors obtain P(d) asymptotically for all d≤n1/15, where n is the number of vertices, proving as a consequence that γ=3.9±0.1 is obtained.
Abstract: Recently, Barabasi and Albert [2] suggested modeling complex real-world networks such as the worldwide web as follows: consider a random graph process in which vertices are added to the graph one at a time and joined to a fixed number of earlier vertices, selected with probabilities proportional to their degrees. In [2] and, with Jeong, in [3], Barabasi and Albert suggested that after many steps the proportion P(d) of vertices with degree d should obey a power law P(d)αd−γ. They obtained γ=2.9±0.1 by experiment and gave a simple heuristic argument suggesting that γ=3. Here we obtain P(d) asymptotically for all d≤n1/15, where n is the number of vertices, proving as a consequence that γ=3. © 2001 John Wiley & Sons, Inc. Random Struct. Alg., 18, 279–290, 2001

891 citations

Journal IssueDOI
TL;DR: A very general model of an inhomogeneous random graph with (conditional) independence between the edges is introduced, which scales so that the number of edges is linear in thenumber of vertices.
Abstract: The “classical” random graph models, in particular G(n,p), are “homogeneous,” in the sense that the degrees (for example) tend to be concentrated around a typical value. Many graphs arising in the real world do not have this property, having, for example, power-law degree distributions. Thus there has been a lot of recent interest in defining and studying “inhomogeneous” random graph models. One of the most studied properties of these new models is their “robustness”, or, equivalently, the “phase transition” as an edge density parameter is varied. For G(n,p), p = c/n, the phase transition at c = 1 has been a central topic in the study of random graphs for well over 40 years. Many of the new inhomogeneous models are rather complicated; although there are exceptions, in most cases precise questions such as determining exactly the critical point of the phase transition are approachable only when there is independence between the edges. Fortunately, some models studied have this property already, and others can be approximated by models with independence. Here we introduce a very general model of an inhomogeneous random graph with (conditional) independence between the edges, which scales so that the number of edges is linear in the number of vertices. This scaling corresponds to the p = c/n scaling for G(n,p) used to study the phase transition; also, it seems to be a property of many large real-world graphs. Our model includes as special cases many models previously studied. We show that, under one very weak assumption (that the expected number of edges is “what it should be”), many properties of the model can be determined, in particular the critical point of the phase transition, and the size of the giant component above the transition. We do this by relating our random graphs to branching processes, which are much easier to analyze. We also consider other properties of the model, showing, for example, that when there is a giant component, it is “stable”: for a typical random graph, no matter how we add or delete o(n) edges, the size of the giant component does not change by more than o(n). © 2007 Wiley Periodicals, Inc. Random Struct. Alg., 31, 3–122, 2007

759 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202327
202254
202185
2020111
2019118
2018106