scispace - formally typeset

JournalISSN: 0960-1481

Renewable Energy 

About: Renewable Energy is an academic journal. The journal publishes majorly in the area(s): Wind power & Renewable energy. It has an ISSN identifier of 0960-1481. Over the lifetime, 16556 publication(s) have been published receiving 558479 citation(s).
Papers
More filters

Journal ArticleDOI
M. Götz1, J. Lefebvre1, Friedemann Mörs1, Amy McDaniel Koch1  +4 moreInstitutions (1)
Abstract: The Power-to-Gas (PtG) process chain could play a significant role in the future energy system. Renewable electric energy can be transformed into storable methane via electrolysis and subsequent methanation. This article compares the available electrolysis and methanation technologies with respect to the stringent requirements of the PtG chain such as low CAPEX, high efficiency, and high flexibility. Three water electrolysis technologies are considered: alkaline electrolysis, PEM electrolysis, and solid oxide electrolysis. Alkaline electrolysis is currently the cheapest technology; however, in the future PEM electrolysis could be better suited for the PtG process chain. Solid oxide electrolysis could also be an option in future, especially if heat sources are available. Several different reactor concepts can be used for the methanation reaction. For catalytic methanation, typically fixed-bed reactors are used; however, novel reactor concepts such as three-phase methanation and micro reactors are currently under development. Another approach is the biochemical conversion. The bioprocess takes place in aqueous solutions and close to ambient temperatures. Finally, the whole process chain is discussed. Critical aspects of the PtG process are the availability of CO 2 sources, the dynamic behaviour of the individual process steps, and especially the economics as well as the efficiency.

1,361 citations


Journal ArticleDOI
Abstract: Due to rapid growth in population and industrialization, worldwide ethanol demand is increasing continuously. Conventional crops such as corn and sugarcane are unable to meet the global demand of bioethanol production due to their primary value of food and feed. Therefore, lignocellulosic substances such as agricultural wastes are attractive feedstocks for bioethanol production. Agricultural wastes are cost effective, renewable and abundant. Bioethanol from agricultural waste could be a promising technology though the process has several challenges and limitations such as biomass transport and handling, and efficient pretreatment methods for total delignification of lignocellulosics. Proper pretreatment methods can increase concentrations of fermentable sugars after enzymatic saccharification, thereby improving the efficiency of the whole process. Conversion of glucose as well as xylose to ethanol needs some new fermentation technologies, to make the whole process cost effective. In this review, available technologies for bioethanol production from agricultural wastes are discussed.

1,233 citations


Journal ArticleDOI
Xin Meng1, Jianming Yang1, Xin Xin Xu1, Lei Zhang1  +2 moreInstitutions (2)
TL;DR: Regulation mechanism of oil accumulation in microorganism and approach of making microbial diesel economically competitive with petrodiesel are discussed in this review.
Abstract: High energy prices, energy and environment security, concerns about petroleum supplies are drawing considerable attention to find a renewable biofuels. Biodiesel, a mixture of fatty acid methyl esters (FAMEs) derived from animal fats or vegetable oils, is rapidly moving towards the mainstream as an alternative source of energy. However, biodiesel derived from conventional petrol or from oilseeds or animal fat cannot meet realistic need, and can only be used for a small fraction of existing demand for transport fuels. In addition, expensive large acreages for sufficient production of oilseed crops or cost to feed animals are needed for raw oil production. Therefore, oleaginous microorganisms are available for substituting conventional oil in biodiesel production. Most of the oleaginous microorganisms like microalgae, bacillus, fungi and yeast are all available for biodiesel production. Regulation mechanism of oil accumulation in microorganism and approach of making microbial diesel economically competitive with petrodiesel are discussed in this review.

1,054 citations


Journal ArticleDOI
Abstract: Wind power generation differs from conventional thermal generation due to the stochastic nature of wind. Thus wind power forecasting plays a key role in dealing with the challenges of balancing supply and demand in any electricity system, given the uncertainty associated with the wind farm power output. Accurate wind power forecasting reduces the need for additional balancing energy and reserve power to integrate wind power. Wind power forecasting tools enable better dispatch, scheduling and unit commitment of thermal generators, hydro plant and energy storage plant and more competitive market trading as wind power ramps up and down on the grid. This paper presents an in-depth review of the current methods and advances in wind power forecasting and prediction. Firstly, numerical wind prediction methods from global to local scales, ensemble forecasting, upscaling and downscaling processes are discussed. Next the statistical and machine learning approach methods are detailed. Then the techniques used for benchmarking and uncertainty analysis of forecasts are overviewed, and the performance of various approaches over different forecast time horizons is examined. Finally, current research activities, challenges and potential future developments are appraised.

916 citations


Journal ArticleDOI
Abstract: In the present investigation the high viscosity of the jatropha curcas oil which has been considered as a potential alternative fuel for the compression ignition (C.I.) engine was decreased by blending with diesel. The blends of varying proportions of jatropha curcas oil and diesel were prepared, analyzed and compared with diesel fuel. The effect of temperature on the viscosity of biodiesel and jatropha oil was also studied. The performance of the engine using blends and jatropha oil was evaluated in a single cylinder C.I. engine and compared with the performance obtained with diesel. Significant improvement in engine performance was observed compared to vegetable oil alone. The specific fuel consumption and the exhaust gas temperature were reduced due to decrease in viscosity of the vegetable oil. Acceptable thermal efficiencies of the engine were obtained with blends containing up to 50% volume of jatropha oil. From the properties and engine test results it has been established that 40–50% of jatropha oil can be substituted for diesel without any engine modification and preheating of the blends.

904 citations


Network Information
Related Journals (5)
Renewable & Sustainable Energy Reviews

11.3K papers, 933.2K citations

92% related
Energy

23.8K papers, 756.7K citations

92% related
Applied Energy

17.7K papers, 830.2K citations

92% related
Energy Conversion and Management

15.3K papers, 618.6K citations

92% related
Solar Energy

13.5K papers, 482.2K citations

88% related
Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
2022269
20211,845
20202,455
20191,495
20181,059
20171,060