scispace - formally typeset
Search or ask a question

Showing papers in "Renewable & Sustainable Energy Reviews in 2010"


Journal ArticleDOI
TL;DR: The various aspects associated with the design of microalgae production units are described, giving an overview of the current state of development of algae cultivation systems (photo-bioreactors and open ponds).
Abstract: Sustainable production of renewable energy is being hotly debated globally since it is increasingly understood that first generation biofuels, primarily produced from food crops and mostly oil seeds are limited in their ability to achieve targets for biofuel production, climate change mitigation and economic growth. These concerns have increased the interest in developing second generation biofuels produced from non-food feedstocks such as microalgae, which potentially offer greatest opportunities in the longer term. This paper reviews the current status of microalgae use for biodiesel production, including their cultivation, harvesting, and processing. The microalgae species most used for biodiesel production are presented and their main advantages described in comparison with other available biodiesel feedstocks. The various aspects associated with the design of microalgae production units are described, giving an overview of the current state of development of algae cultivation systems (photo-bioreactors and open ponds). Other potential applications and products from microalgae are also presented such as for biological sequestration of CO 2 , wastewater treatment, in human health, as food additive, and for aquaculture.

5,158 citations


Journal ArticleDOI
TL;DR: In this article, the authors reviewed the technologies underpinning microalgae-to-bio-fuels systems, focusing on the biomass production, harvesting, conversion technologies, and the extraction of useful co-products.
Abstract: Sustainability is a key principle in natural resource management, and it involves operational efficiency, minimisation of environmental impact and socio-economic considerations; all of which are interdependent. It has become increasingly obvious that continued reliance on fossil fuel energy resources is unsustainable, owing to both depleting world reserves and the green house gas emissions associated with their use. Therefore, there are vigorous research initiatives aimed at developing alternative renewable and potentially carbon neutral solid, liquid and gaseous biofuels as alternative energy resources. However, alternate energy resources akin to first generation biofuels derived from terrestrial crops such as sugarcane, sugar beet, maize and rapeseed place an enormous strain on world food markets, contribute to water shortages and precipitate the destruction of the world's forests. Second generation biofuels derived from lignocellulosic agriculture and forest residues and from non-food crop feedstocks address some of the above problems; however there is concern over competing land use or required land use changes. Therefore, based on current knowledge and technology projections, third generation biofuels specifically derived from microalgae are considered to be a technically viable alternative energy resource that is devoid of the major drawbacks associated with first and second generation biofuels. Microalgae are photosynthetic microorganisms with simple growing requirements (light, sugars, CO 2 , N, P, and K) that can produce lipids, proteins and carbohydrates in large amounts over short periods of time. These products can be processed into both biofuels and valuable co-products. This study reviewed the technologies underpinning microalgae-to-biofuels systems, focusing on the biomass production, harvesting, conversion technologies, and the extraction of useful co-products. It also reviewed the synergistic coupling of microalgae propagation with carbon sequestration and wastewater treatment potential for mitigation of environmental impacts associated with energy conversion and utilisation. It was found that, whereas there are outstanding issues related to photosynthetic efficiencies and biomass output, microalgae-derived biofuels could progressively substitute a significant proportion of the fossil fuels required to meet the growing energy demand.

4,432 citations


Journal ArticleDOI
TL;DR: In this paper, a review of cost effective technologies and the processes to convert biomass into useful liquid bio-fuels and bioproducts, with particular focus on some biorefinery concepts based on different feedstocks aiming at the integral utilization of these feedstocks for the production of value added chemicals.
Abstract: Sustainable economic and industrial growth requires safe, sustainable resources of energy. For the future re-arrangement of a sustainable economy to biological raw materials, completely new approaches in research and development, production, and economy are necessary. The ‘first-generation’ biofuels appear unsustainable because of the potential stress that their production places on food commodities. For organic chemicals and materials these needs to follow a biorefinery model under environmentally sustainable conditions. Where these operate at present, their product range is largely limited to simple materials (i.e. cellulose, ethanol, and biofuels). Second generation biorefineries need to build on the need for sustainable chemical products through modern and proven green chemical technologies such as bioprocessing including pyrolysis, Fisher Tropsch, and other catalytic processes in order to make more complex molecules and materials on which a future sustainable society will be based. This review focus on cost effective technologies and the processes to convert biomass into useful liquid biofuels and bioproducts, with particular focus on some biorefinery concepts based on different feedstocks aiming at the integral utilization of these feedstocks for the production of value added chemicals.

2,814 citations


Journal ArticleDOI
TL;DR: In this article, the development of wave energy utilization since the 1970s is discussed, with a focus on the characterization of the wave energy resource; theoretical background, with especial relevance to hydrodynamics of wave absorption and control; how a large range of devices kept being proposed and studied, and how such devices can be organized into classes; the conception, design, model-testing, construction and deployment into real sea of prototypes.
Abstract: Sea wave energy is being increasingly regarded in many countries as a major and promising resource. The paper deals with the development of wave energy utilization since the 1970s. Several topics are addressed: the characterization of the wave energy resource; theoretical background, with especial relevance to hydrodynamics of wave energy absorption and control; how a large range of devices kept being proposed and studied, and how such devices can be organized into classes; the conception, design, model-testing, construction and deployment into real sea of prototypes; and the development of specific equipment (air and water turbines, high-pressure hydraulics, linear electrical generators) and mooring systems.

2,115 citations


Journal ArticleDOI
TL;DR: In this paper, the phase change problem has been formulated using pure conduction approach but the problem has moved to a different level of complexity with added convection in the melt being accounted for, which makes it difficult for comparison to be made to assess the suitability of PCMs to particular applications.
Abstract: This paper reviews the development of latent heat thermal energy storage systems studied detailing various phase change materials (PCMs) investigated over the last three decades, the heat transfer and enhancement techniques employed in PCMs to effectively charge and discharge latent heat energy and the formulation of the phase change problem. It also examines the geometry and configurations of PCM containers and a series of numerical and experimental tests undertaken to assess the effects of parameters such as the inlet temperature and the mass flow rate of the heat transfer fluid (HTF). It is concluded that most of the phase change problems have been carried out at temperature ranges between 0 °C and 60 °C suitable for domestic heating applications. In terms of problem formulation, the common approach has been the use of enthalpy formulation. Heat transfer in the phase change problem was previously formulated using pure conduction approach but the problem has moved to a different level of complexity with added convection in the melt being accounted for. There is no standard method (such as British Standards or EU standards) developed to test for PCMs, making it difficult for comparison to be made to assess the suitability of PCMs to particular applications. A unified platform such as British Standards, EU standards needs to be developed to ensure same or similar procedure and analysis (performance curves) to allow comparison and knowledge gained from one test to be applied to another.

1,630 citations


Journal ArticleDOI
TL;DR: In this article, the different storage concepts are reviewed and classified, and modellization of such systems is reviewed, and all materials considered in literature or plants are listed. But only a few plants in the world have tested high temperature thermal energy storage systems.
Abstract: Concentrated solar thermal power generation is becoming a very attractive renewable energy production system among all the different renewable options, as it has have a better potential for dispatchability. This dispatchability is inevitably linked with an efficient and cost-effective thermal storage system. Thus, of all components, thermal storage is a key one. However, it is also one of the less developed. Only a few plants in the world have tested high temperature thermal energy storage systems. In this paper, the different storage concepts are reviewed and classified. All materials considered in literature or plants are listed. And finally, modellization of such systems is reviewed.

1,445 citations


Journal ArticleDOI
TL;DR: In this paper, the authors reviewed the source of production and characterization of vegetable oils and their methyl ester as the substitute of the petroleum fuel and future possibilities of Biodiesel production.
Abstract: The world is confronted with the twin crises of fossil fuel depletion and environmental degradation. The indiscriminate extraction and consumption of fossil fuels have led to a reduction in petroleum reserves. Petroleum based fuels are obtained from limited reserves. These finite reserves are highly concentrated in certain region of the world. Therefore, those countries not having these resources are facing a foreign exchange crisis, mainly due to the import of crude petroleum oil. Hence it is necessary to look for alternative fuels, which can be produced from materials available within the country. Although vegetative oils can be fuel for diesel engines, but their high viscosities, low volatilities and poor cold flow properties have led to the investigation of its various derivatives. Among the different possible sources, fatty acid methyl esters, known as Biodiesel fuel derived from triglycerides (vegetable oil and animal fates) by transesterification with methanol, present the promising alternative substitute to diesel fuels and have received the most attention now a day. The main advantages of using Biodiesel are its renewability, better quality exhaust gas emission, its biodegradability and the organic carbon present in it is photosynthetic in origin. It does not contribute to a rise in the level of carbon dioxide in the atmosphere and consequently to the green house effect. This paper reviews the source of production and characterization of vegetable oils and their methyl ester as the substitute of the petroleum fuel and future possibilities of Biodiesel production.

1,250 citations


Journal ArticleDOI
TL;DR: In this paper, a review of the organic Rankine cycle and supercritical Rankine Cycle for the conversion of low-grade heat into electrical power, as well as selection criteria of potential working fluids, screening of 35 working fluids for the two cycles and analyses of the influence of fluid properties on cycle performance are presented.
Abstract: This paper presents a review of the organic Rankine cycle and supercritical Rankine cycle for the conversion of low-grade heat into electrical power, as well as selection criteria of potential working fluids, screening of 35 working fluids for the two cycles and analyses of the influence of fluid properties on cycle performance. The thermodynamic and physical properties, stability, environmental impacts, safety and compatibility, and availability and cost are among the important considerations when selecting a working fluid. The paper discusses the types of working fluids, influence of latent heat, density and specific heat, and the effectiveness of superheating. A discussion of the 35 screened working fluids is also presented.

1,215 citations


Journal ArticleDOI
TL;DR: In this article, the state of the art in investigations and developments of high-temperature phase change materials perspective for storage thermal and a solar energy in the range of temperatures from 120 to 1000 °C.
Abstract: The development of energy saving technologies is very actual issue of present day. One of perspective directions in developing these technologies is the thermal energy storage in various industry branches. The review considers the modern state of art in investigations and developments of high-temperature phase change materials perspective for storage thermal and a solar energy in the range of temperatures from 120 to 1000 °C. The considerable quantity of mixes and compositions on the basis of fluorides, chlorides, hydroxides, nitrates, carbonates, vanadates, molybdates and other salts, and also metal alloys is given. Thermophysical properties of potential heat storage salt compositions and metal alloys are presented. Compatibility of heat storage materials (HSM) and constructional materials have found its reflection in the present work. Data on long-term characteristics of some HSMs in the course of repeated cycles of fusion and solidification are analyzed. Article considers also other problems which should be solved for creation of commercial high-temperature heat storage devices with use of phase change materials.

933 citations


Journal ArticleDOI
TL;DR: In this paper, the importance of grid-connected PV system regarding the intermittent nature of renewable generation, and the characterization of PV generation with regard to grid code compliance is investigated and emphasized.
Abstract: Traditional electric power systems are designed in large part to utilize large baseload power plants, with limited ability to rapidly ramp output or reduce output below a certain level. The increase in demand variability created by intermittent sources such as photovoltaic (PV) presents new challenges to increase system flexibility. This paper aims to investigate and emphasize the importance of the grid-connected PV system regarding the intermittent nature of renewable generation, and the characterization of PV generation with regard to grid code compliance. The investigation was conducted to critically review the literature on expected potential problems associated with high penetration levels and islanding prevention methods of grid tied PV. According to the survey, PV grid connection inverters have fairly good performance. They have high conversion efficiency and power factor exceeding 90% for wide operating range, while maintaining current harmonics THD less than 5%. Numerous large-scale projects are currently being commissioned, with more planned for the near future. Prices of both PV and balance of system components (BOS) are decreasing which will lead to further increase in use. The technical requirements from the utility power system side need to be satisfied to ensure the safety of the PV installer and the reliability of the utility grid. Identifying the technical requirements for grid interconnection and solving the interconnect problems such as islanding detection, harmonic distortion requirements and electromagnetic interference are therefore very important issues for widespread application of PV systems. The control circuit also provides sufficient control and protection functions like maximum power tracking, inverter current control and power factor control. Reliability, life span and maintenance needs should be certified through the long-term operation of PV system. Further reduction of cost, size and weight is required for more utilization of PV systems. Using PV inverters with a variable power factor at high penetration levels may increase the number of balanced conditions and subsequently increase the probability of islanding. It is strongly recommended that PV inverters should be operated at unity power factor.

923 citations


Journal ArticleDOI
TL;DR: An overview of the parabolic-trough collectors that have been built and marketed during the past century, as well as the prototypes currently under development can be found in this paper.
Abstract: This paper presents an overview of the parabolic-trough collectors that have been built and marketed during the past century, as well as the prototypes currently under development. It also presents a survey of systems which could incorporate this type of concentrating solar system to supply thermal energy up to 400 °C, especially steam power cycles for electricity generation, including examples of each application.

Journal ArticleDOI
TL;DR: A critical evaluation of the available information suggests that the economic viability of the process in terms of minimizing the operational and maintenance cost along with maximization of oil-rich microalgae production is the key factor, for successful commercialization ofmicroalgae-based fuels.
Abstract: Microalgae feedstocks are gaining interest in the present day energy scenario due to their fast growth potential coupled with relatively high lipid, carbohydrate and nutrients contents. All of these properties render them an excellent source for biofuels such as biodiesel, bioethanol and biomethane; as well as a number of other valuable pharmaceutical and nutraceutical products. The present review is a critical appraisal of the commercialization potential of microalgae biofuels. The available literature on various aspects of microalgae, e.g. its cultivation, life cycle assessment, and conceptualization of an algal biorefinery, has been scanned and a critical analysis has been presented. A critical evaluation of the available information suggests that the economic viability of the process in terms of minimizing the operational and maintenance cost along with maximization of oil-rich microalgae production is the key factor, for successful commercialization of microalgae-based fuels.

Journal ArticleDOI
TL;DR: In this paper, the authors discuss the technology and production platforms for development and creation of different valuable consumer products from microalgal biomass, including triglycerides which can be converted into biodiesel.
Abstract: Microalgae biotechnology has recently emerged into the lime light owing to numerous consumer products that can be harnessed from microalgae. Product portfolio stretches from straightforward biomass production for food and animal feed to valuable products extracted from microalgal biomass, including triglycerides which can be converted into biodiesel. For most of these applications, the production process is moderately economically viable and the market is developing. Considering the enormous biodiversity of microalgae and recent developments in genetic and metabolic engineering, this group of organisms represents one of the most promising sources for new products and applications. With the development of detailed culture and screening techniques, microalgal biotechnology can meet the high demands of food, energy and pharmaceutical industries. This review article discusses the technology and production platforms for development and creation of different valuable consumer products from microalgal biomass.

Journal ArticleDOI
TL;DR: In this article, the authors examined the long run and causal relationship issues between economic growth, carbon emissions, energy consumption and employment ratio in Turkey by using autoregressive distributed lag bounds testing approach of cointegration.
Abstract: This paper examines the long run and causal relationship issues between economic growth, carbon emissions, energy consumption and employment ratio in Turkey by using autoregressive distributed lag bounds testing approach of cointegration. Empirical results for Turkey over the period 1968–2005 suggest an evidence of a long-run relationship between the variables at 5% significance level in Turkey. The estimated income elasticity of carbon emissions per capita is −0.606 and the income elasticity of energy consumption per capita is 1.375. Results for the existence and direction of Granger causality show that neither carbon emissions per capita nor energy consumption per capita cause real GDP per capita, but employment ratio causes real GDP per capita in the short run. In addition, EKC hypothesis at causal framework by using a linear logarithmic model is not valid in Turkish case. The overall results indicates that energy conservation policies, such as rationing energy consumption and controlling carbon dioxide emissions, are likely to have no adverse effect on the real output growth of Turkey.

Journal ArticleDOI
TL;DR: In this article, the impact of dust on PV system performance and identifying challenges to further pertinent research are discussed. And a framework to understand the various factors that govern the settling/assimilation of dust and likely mitigation measures have been discussed in this paper.
Abstract: The peaking of most oil reserves and impending climate change are critically driving the adoption of solar photovoltaic's (PV) as a sustainable renewable and eco-friendly alternative. Ongoing material research has yet to find a breakthrough in significantly raising the conversion efficiency of commercial PV modules. The installation of PV systems for optimum yield is primarily dictated by its geographic location (latitude and available solar insolation) and installation design (tilt, orientation and altitude) to maximize solar exposure. However, once these parameters have been addressed appropriately, there are other depending factors that arise in determining the system performance (efficiency and output). Dust is the lesser acknowledged factor that significantly influences the performance of the PV installations. This paper provides an appraisal on the current status of research in studying the impact of dust on PV system performance and identifies challenges to further pertinent research. A framework to understand the various factors that govern the settling/assimilation of dust and likely mitigation measures have been discussed in this paper. (C) 2010 Elsevier Ltd. All rights reserved.

Journal ArticleDOI
TL;DR: In this article, real experiences with active storage systems and passive storage systems are compiled, giving detailed information of advantages and disadvantages of each one and a summary of different technologies and materials used in solar power plants with thermal storage systems existing in the world.
Abstract: Power generation systems are attracting a lot of interest from researchers and companies. Storage is becoming a component with high importance to ensure system reliability and economic profitability. A few experiences of storage components have taken place until the moment in solar power plants, most of them as research initiatives. In this paper, real experiences with active storage systems and passive storage systems are compiled, giving detailed information of advantages and disadvantages of each one. Also, a summary of different technologies and materials used in solar power plants with thermal storage systems existing in the world is presented.

Journal ArticleDOI
TL;DR: A colloidal mixture of nano-sized particles in a base fluid, called nanofluids, tremendously enhances the heat transfer characteristics of the original fluid, and is ideally suited for practical applications due to its marvelous characteristics.
Abstract: A colloidal mixture of nano-sized particles in a base fluid, called nanofluids, tremendously enhances the heat transfer characteristics of the original fluid, and is ideally suited for practical applications due to its marvelous characteristics. This article addresses the unique features of nanofluids, such as enhancement of heat transfer, improvement in thermal conductivity, increase in surface volume ratio, Brownian motion, thermophoresis, etc. In addition, the article summarizes the recent research in experimental and theoretical studies on forced and free convective heat transfer in nanofluids, their thermo-physical properties and their applications, and identifies the challenges and opportunities for future research.

Journal ArticleDOI
TL;DR: A review of the available literature in this field of active research and identifies the gaps that need further attention can be found in this article, where a number of pilot, demonstration and commercial plants processing various types of plastic wastes in Germany, Japan, USA, India, and elsewhere.
Abstract: The present rate of economic growth is unsustainable without saving of fossil energy like crude oil, natural gas or coal. Thus mankind has to rely on the alternate/renewable energy sources like biomass, hydropower, geothermal energy, wind energy, solar energy, nuclear energy, etc. On the other hand, suitable waste management strategy is another important aspect of sustainable development. The growth of welfare levels in modern society during the past decades has brought about a huge increase in the production of all kinds of commodities, which indirectly generate waste. Plastics have been one of the materials with the fastest growth because of their wide range of applications due to versatility and relatively low cost. Since the duration of life of plastic products is relatively small, there is a vast plastics waste stream that reaches each year to the final recipients creating a serious environmental problem. Again, because disposal of post consumer plastics is increasingly being constrained by legislation and escalating costs, there is considerable demand for alternatives to disposal or land filling. Advanced research in the field of green chemistry could yield biodegradable/green polymers but is too limited at this point of time to substitute the non-biodegradable plastics in different applications. Once standards are developed for degradable plastics they can be used to evaluate the specific formulations of materials which will find best application in this state as regards their performance and use characteristics. Among the alternatives available are source reduction, reuse, recycling, and recovery of the inherent energy value through waste-to-energy incineration and processed fuel applications. Production of liquid fuel would be a better alternative as the calorific value of the plastics is comparable to that of fuels, around 40 MJ/kg. Each of these options potentially reduces waste and conserves natural resources. Plastics recycling, continues to progress with a wide range of old and new technologies. Many research projects have been undertaken on chemical recycling of waste plastics to fuel and monomer. This is also reflected by a number of pilot, demonstration, and commercial plants processing various types of plastic wastes in Germany, Japan, USA, India, and elsewhere. Further investigations are required to enhance the generation of value added products (fuel) with low investments without affecting the environment. The paper reviews the available literature in this field of active research and identifies the gaps that need further attention.

Journal ArticleDOI
TL;DR: In this paper, the authors present and analyse several gasification models based on thermodynamic equilibrium, kinetics and artificial neural networks, which are used for preliminary comparison and for process studies on the influence of the most important fuel and process parameters.
Abstract: The use of biomass as a source of energy has been further enhanced in recent years and special attention has been paid to biomass gasification. Due to the increasing interest in biomass gasification, several models have been proposed in order to explain and understand this complex process, and the design, simulation, optimisation and process analysis of gasifiers have been carried out. This paper presents and analyses several gasification models based on thermodynamic equilibrium, kinetics and artificial neural networks. The thermodynamic models are found to be a useful tool for preliminary comparison and for process studies on the influence of the most important fuel and process parameters. They have the advantage of being independent of gasifier design, but they cannot give highly accurate results for all cases. The kinetic-based models are computationally more intensive but give accurate and detailed results. However, they contain parameters that limit their applicability to different plants.

Journal ArticleDOI
TL;DR: This paper reviews the present day solar thermal technologies and performance analyses of existing designs, mathematical simulation, design and fabrication of innovative designs with suggested improvements have been discussed.
Abstract: The use of solar energy in recent years has reached a remarkable edge. The continuous research for an alternative power source due to the perceived scarcity of fuel fossils is its driving force. It has become even more popular as the cost of fossil fuel continues to rise. The earth receives in just 1 h, more energy from the sun than what we consume in the whole world for 1 year. Its application was proven to be most economical, as most systems in individual uses requires but a few kilowatt of power. This paper reviews the present day solar thermal technologies. Performance analyses of existing designs (study), mathematical simulation (design) and fabrication of innovative designs with suggested improvements (development) have been discussed in this paper.

Journal ArticleDOI
TL;DR: In this paper, a meshed, multi-terminal VSC HVDC is proposed as the best suitable technology for a supergrid, and the potential and need for such a grid is described.
Abstract: For many, the supergrid is seen as the solution that allows the massive integration of renewable energy sources in the European power system It connects different remote energy sources to the existing grid while offering additional control It offers balancing through geographic spread and allows a more diversified energy portfolio In the meanwhile it increases the security of supply However, technical limitations exist, and it is not yet possible to construct such a supergrid Several outstanding issues need to be solved This paper first describes the potential and need for a supergrid The paper focuses on a meshed, multi-terminal VSC HVDC, and it is explained why this relatively new technology is believed to be the best suitable one for such a grid The different difficulties or challenges that still exist are addressed Not only the remaining technical limitations are addressed, but also the techno-economic, control and operational issues are discussed, as well as some regulatory obstacles

Journal ArticleDOI
TL;DR: In this paper, a detailed overview of distributed energy resources technologies, and also discusses the devastating impacts of the conventional power plants feeding on fossil fuels to our environment is discussed, which justifies how DG technologies could substantially reduce greenhouse gas emissions when fully adopted; hence, reducing the public concerns over human health risks caused by the conventional method of electricity generation.
Abstract: The recently released report of the International Energy Outlook (IEO2009) projects an increase of 44% in the world energy demand from 2006 to 2030, and 77% rise in the net electricity generation worldwide in the same period. However, threatening in the said report is that 80% of the total generation in 2030 would be produced from fossil fuels. This global dependence on fossil fuels is dangerous to our environment in terms of their emissions unless specific policies and measures are put in place. Nevertheless, recent research reveals that a reduction in the emissions of these gases is possible with widespread adoption of distributed generation (DG) technologies that feed on renewable energy sources, in the generation of electric power. This paper gives a detailed overview of distributed energy resources technologies, and also discusses the devastating impacts of the conventional power plants feeding on fossil fuels to our environment. The study finally justifies how DG technologies could substantially reduce greenhouse gas emissions when fully adopted; hence, reducing the public concerns over human health risks caused by the conventional method of electricity generation.

Journal ArticleDOI
TL;DR: In this paper, the authors reviewed the technologies used for the biodiesel separation and purification, biodiesel quality, and its effects on diesel engines and found that the quality of biodiesel fuel is significant for its successful use on compression ignition engines and subsequent replacement of non-renewable fossil fuels.
Abstract: The continuous increasing demand for energy and the diminishing tendency of petroleum resources has led to the search for alternative renewable and sustainable fuel. Biodiesel is best substitute for petro-diesel and also most advantageous over petro-diesel for its environmental friendliness. The quality of biodiesel fuel was found to be significant for its successful use on compression ignition engines and subsequent replacement of non-renewable fossil fuels. Conventional biodiesel separation and purification technologies were noticed to yield lower quality biodiesel fuel with resultant excessive energy and water consumptions. Membrane technology showed more potential for effective and efficient separation and purification of biodiesel. This technology need be explored for the attainment of better quality biodiesel fuels. This paper reviews the technologies used for the biodiesel separation and purification, biodiesel quality, and its effects on diesel engines. Biodiesel biodegradability, lubricity, stability, economic importance, and gaseous emissions have been discussed.

Journal ArticleDOI
TL;DR: An overview of the human body thermoregulatory system as well as the mathematical modelling of heat exchanged between human body and its environment in the situations of both awaked and sleeping people is presented.
Abstract: This paper presents a literature review of thermal comfort. Both rational and adaptive thermal comfort approaches are presented. An overview of the human body thermoregulatory system as well as the mathematical modelling of heat exchanged between human body and its environment in the situations of both awaked and sleeping people is presented.

Journal ArticleDOI
TL;DR: In this paper, the authors highlight some of the perspectives for the biodiesel industry to thrive as an alternative fuel, while discussing benefits and limitations of biodiesel, including the improvement of the conversion technology to achieve a sustainable process at cheaper cost, environmentally benign and cleaner emissions, diversification of products derived from glycerol.
Abstract: The present global economy downturn affects every corner of the world including the vehicular fuel industry. This paper highlights some of the perspectives for the biodiesel industry to thrive as an alternative fuel, while discussing benefits and limitations of biodiesel. This includes the improvement of the conversion technology to achieve a sustainable process at cheaper cost, environmentally benign and cleaner emissions, diversification of products derived from glycerol, and policy and government incentives. More specifically, an overview is given on making the production process more economical by developing high conversion and low cost catalysts from renewable sources, and utilizing waste oil as feedstock. Further emphasis is given on the need for public education and awareness for the use and benefits of biodiesel, while promoting policies that will not only endorse the industry, but also promote effective land management.

Journal ArticleDOI
TL;DR: A review of existing and proposed pumped hydro energy storage (PHES) plant and discusses the technical and economic drivers for these developments can be found in this paper, where a lack of detailed information on PHES facilities worldwide is reviewed in the context of market and generation mix changes.
Abstract: There has been a renewed commercial and technical interest in pumped hydro energy storage (PHES) recently with the advent of increased variable renewable energy generation and the development of liberalized electricity markets. During the next 8 years over 7 GW of PHES capacity will be added to the European network while projects are also planned in the USA and Japan. This paper provides a review of existing and proposed PHES plant and discusses the technical and economic drivers for these developments. Current trends for new PHES development generally show that developers operating in liberalized markets are tending to repower, enhance projects or build ‘pump-back’ PHES rather than traditional ‘pure pumped storage’. Capital costs per kW for proposed PHES in the review region range between €470/kW and €2170/kW, however these costs are highly site and project specific. An emergence has also been observed in recent PHES developments of the use of variable speed technology. This technology, while incurring slightly higher capital costs, offers a greater range of operational flexibility and efficiency over conventional PHES. This paper has primarily been prompted by a lack of detailed information on PHES facilities worldwide and reviews current developments in the context of market and generation mix changes. The most recent large scale review of PHES faculties was undertaken by the American Society of Civil Engineers Hydro Power Task Committee on Pumped Storage in 1996. In the absence of data in the literature on new PHES plant development, this review draws primarily on publicly available information from utilities, government bodies and electricity regulators. In the same context this study is limited to a review region of the European Union, Japan and the United States as information on developments outside these areas is difficult to procure. This paper also gives a review of locations and proposed timelines for new PHES development and provides a thorough up-to-date overview of the development trends of this technology.

Journal ArticleDOI
TL;DR: In this article, the authors take stock of the various sources of biomass and the possible ways in which it can be utilized for generating energy, and examine the environmental impacts, including impact vis a vis greenhouse gas emissions, of different biomass energy generation-utilization options.
Abstract: Biomass is the first-ever fuel used by humankind and is also the fuel which was the mainstay of the global fuel economy till the middle of the 18th century. Then fossil fuels took over because fossil fuels were not only more abundant and denser in their energy content, but also generated less pollution when burnt, in comparison to biomass. In recent years there is a resurgence of interest in biomass energy because biomass is perceived as a carbon-neutral source of energy unlike net carbon-emitting fossil fuels of which copious use has led to global warming and ocean acidification. The paper takes stock of the various sources of biomass and the possible ways in which it can be utilized for generating energy. It then examines the environmental impacts, including impact vis a vis greenhouse gas emissions, of different biomass energy generation–utilization options.

Journal ArticleDOI
TL;DR: In this article, the physicochemical properties of SCW and its contributions in subcritical and supercritical water reaction are also summarized, and the authors give an overview (but not an exhaustive review) on the recent investigations of CSCWG.
Abstract: Hydrogen is defined as an attractive energy carrier due to its potentially higher energy efficiency and low generation of pollutants, which can replace conventional fossil fuels in the future. The governments have invested huge funds and made great efforts on the research of hydrogen production. Among the various options, supercritical water gasification (SCWG) is a most promising method of hydrogen production from biomass. Supercritical water (SCW) has received a great deal of attention as a most suitable reaction medium for biomass gasification because it is safe, non-toxic, readily available, inexpensive and environmentally benign. However, high temperature and pressure are required to meet the minimum reaction condition. Therefore, the high operating cost has become the biggest obstacle to the development of this technology. To overcome this bottleneck, many researchers have carried out intensive research work on the catalytic supercritical water gasification (CSCWG). Based on the previous studies stated in the literature, the authors try to give an overview (but not an exhaustive review) on the recent investigations of CSCWG. Besides, the physicochemical properties of SCW and its contributions in subcritical and supercritical water reaction are also summarized.

Journal ArticleDOI
TL;DR: In this article, a comprehensive review on current control technology is given with a discussion on challenges of microgrid controls, and the research needs and roadmap for microgrid control are also described.
Abstract: The interest on microgrid has increased significantly triggered by the increasing demand of reliable, secure, efficient, clean, and sustainable electricity. More research and implementation of microgrid will be conducted in order to improve the maturity of microgrid technology. Among different aspects of microgrid, this paper focuses on controls of microgrid with energy storage. A comprehensive review on current control technology is given with a discussion on challenges of microgrid controls. Basic simulation results are also presented to enhance and support the analysis. Finally, research needs and roadmap for microgrid control are also described.

Journal ArticleDOI
TL;DR: In this paper, the authors summarize the availability, current status, major achievements and future potentials of renewable energy options in India and assesses specific policy interventions for overcoming the barriers and enhancing deployment of renewables for the future.
Abstract: Renewable energy sources and technologies have potential to provide solutions to the long-standing energy problems being faced by the developing countries. The renewable energy sources like wind energy, solar energy, geothermal energy, ocean energy, biomass energy and fuel cell technology can be used to overcome energy shortage in India. To meet the energy requirement for such a fast growing economy, India will require an assured supply of 3-4 times more energy than the total energy consumed today. The renewable energy is one of the options to meet this requirement. Today, renewable account for about 33% of India's primary energy consumptions. India is increasingly adopting responsible renewable energy techniques and taking positive steps towards carbon emissions, cleaning the air and ensuring a more sustainable future. In India, from the last two and half decades there has been a vigorous pursuit of activities relating to research, development, demonstration, production and application of a variety of renewable energy technologies for use in different sectors. In this paper, efforts have been made to summarize the availability, current status, major achievements and future potentials of renewable energy options in India. This paper also assesses specific policy interventions for overcoming the barriers and enhancing deployment of renewables for the future.