scispace - formally typeset
Search or ask a question

Showing papers in "Reports on Progress in Physics in 2006"


Journal ArticleDOI
TL;DR: In this article, a review of the development of high-k gate oxides such as hafnium oxide (HFO) and high-K oxides is presented, with the focus on the work function control in metal gate electrodes.
Abstract: The scaling of complementary metal oxide semiconductor transistors has led to the silicon dioxide layer, used as a gate dielectric, being so thin (14?nm) that its leakage current is too large It is necessary to replace the SiO2 with a physically thicker layer of oxides of higher dielectric constant (?) or 'high K' gate oxides such as hafnium oxide and hafnium silicate These oxides had not been extensively studied like SiO2, and they were found to have inferior properties compared with SiO2, such as a tendency to crystallize and a high density of electronic defects Intensive research was needed to develop these oxides as high quality electronic materials This review covers both scientific and technological issues?the choice of oxides, their deposition, their structural and metallurgical behaviour, atomic diffusion, interface structure and reactions, their electronic structure, bonding, band offsets, electronic defects, charge trapping and conduction mechanisms, mobility degradation and flat band voltage shifts The oxygen vacancy is the dominant electron trap It is turning out that the oxides must be implemented in conjunction with metal gate electrodes, the development of which is further behind Issues about work function control in metal gate electrodes are discussed

1,520 citations


Journal ArticleDOI
TL;DR: In this article, the interplay between these observations and theoretical models of the prompt gamma-ray burst and its afterglow is reviewed, and a model of the burst's origin and mechanism is proposed.
Abstract: Gamma-ray bursts are the most luminous explosions in the Universe, and their origin and mechanism are the focus of intense research and debate. More than three decades after their discovery, and after pioneering breakthroughs from space and ground experiments, their study is entering a new phase with the recently launched Swift satellite. The interplay between these observations and theoretical models of the prompt gamma-ray burst and its afterglow is reviewed.

1,294 citations


Journal ArticleDOI
TL;DR: In this paper, the phase separation phenomenon on various time-scales (from static to dynamic) and the enhanced phase fluctuation with anomalous reduction in the transition temperatures of the competing phases (and hence in the bicritical-point temperature).
Abstract: Colossal magnetoresistance (CMR) phenomena are observed in the perovskite-type hole-doped manganites in which the double-exchange ferromagnetic metal phase and the charge–orbital ordered antiferromagnetic phase compete with each other. The quenched disorder arising from the inherent chemical randomness or the intentional impurity doping may cause major modifications in the electronic phase diagram as well as in the magnetoelectronic properties near the bicritical point that is formed by such a competition of the two phases. One is the phase separation phenomenon on various time-scales (from static to dynamic) and on various length-scales (from glass-like nano to grain-like micron). The other is the enhanced phase fluctuation with anomalous reduction in the transition temperatures of the competing phases (and hence in the bicritical-point temperature). The highly effective suppression of such a phase fluctuation by an external magnetic field is assigned here to the most essential ingredient of the CMR physics. Such profound and dramatic features as appearing in the bicritical region are extensively discussed in this paper with ample examples of the material systems specially designed for this purpose. The unconventional phase-controls over the competing phases in terms of magnetic/electric fields and photo-excitations are also exemplified.

1,166 citations


Journal ArticleDOI
TL;DR: In this article, a review of the cavity electrodynamics of free atoms is presented, with a focus on the one-atom maser and a survey of the entire field using free atoms.
Abstract: This paper reviews the work on cavity quantum electrodynamics of free atoms. In recent years, cavity experiments have also been conducted on a variety of solid-state systems resulting in many interesting applications, of which microlasers, photon bandgap structures and quantum dot structures in cavities are outstanding examples. Although these phenomena and systems are very interesting, discussion is limited here to free atoms and mostly single atoms because these systems exhibit clean quantum phenomena and are not disturbed by a variety of other effects. At the centre of our review is the work on the one-atom maser, but we also give a survey of the entire field, using free atoms in order to show the large variety of problems dealt with. The cavity interaction can be separated into two main regimes: the weak coupling in cavity or cavity-like structures with low quality factors Q and the strong coupling when high-Q cavities are involved. The weak coupling leads to modification of spontaneous transitions and level shifts, whereas the strong coupling enables one to observe a periodic exchange of photons between atoms and the radiation field. In this case, atoms and photons are entangled, this being the basis for a variety of phenomena observed, some of them leading to interesting applications in quantum information processing. The cavity experiments with free atoms reached a new domain with the advent of experiments in the visible spectral region. A review on recent achievements in this area is also given.

981 citations


Journal ArticleDOI
TL;DR: In this paper, the exotic physics of high magnetic field regime was discussed, where a new array of processes becomes possible and even dominant and where familiar processes acquire unusual properties, including free particles, atoms, molecules, plasma and condensed matter in strong magnetic fields, photon propagation in magnetized plasmas, freeparticle radiative processes, the physics of neutron star interiors and field evolution and decay mechanisms.
Abstract: There has recently been growing evidence for the existence of neutron stars possessing magnetic fields with strengths that exceed the quantum critical field strength of 4.4 × 1013 G, at which the cyclotron energy equals the electron rest mass. Such evidence has been provided by new discoveries of radio pulsars having very high spin-down rates and by observations of bursting gamma-ray sources termed magnetars. This paper will discuss the exotic physics of this high-field regime, where a new array of processes becomes possible and even dominant and where familiar processes acquire unusual properties. We review the physical processes that are important in neutron star interiors and magnetospheres, including the behaviour of free particles, atoms, molecules, plasma and condensed matter in strong magnetic fields, photon propagation in magnetized plasmas, free-particle radiative processes, the physics of neutron star interiors and field evolution and decay mechanisms. Application of such processes in astrophysical source models, including rotation-powered pulsars, soft gamma-ray repeaters, anomalous x-ray pulsars and accreting x-ray pulsars will also be discussed. Throughout this review, we will highlight the observational signatures of high magnetic field processes, as well as the theoretical issues that remain to be understood.

740 citations


Journal ArticleDOI
TL;DR: In this paper, the authors outline the ingredients of the powerful approach called semi-analytical modelling and contrast this method with numerical simulations of the gas dynamics of baryons, and provide a pedagogical introduction to modern theories of galaxy formation.
Abstract: Recent observational and theoretical breakthroughs make this an exciting time to be working towards understanding the physics of galaxy formation. The goal of this review is to make the principles behind the hierarchical paradigm accessible to a wide audience by providing a pedagogical introduction to modern theories of galaxy formation. I outline the ingredients of the powerful approach called semi-analytical modelling and contrast this method with numerical simulations of the gas dynamics of baryons. Semi-analytical models have enjoyed many successes, but it is the observations which the models struggle to match which mark out areas where future progress is most likely to be made; these are also reviewed.

514 citations


Journal ArticleDOI
TL;DR: Carbon nanotubes (CNTs) are among the most explored one-dimensional nanostructures and have attracted tremendous interest from fundamental science and technological perspectives as mentioned in this paper.
Abstract: Carbon nanotubes (CNTs) are amongst the most explored one-dimensional nanostructures and have attracted tremendous interest from fundamental science and technological perspectives. Albeit topologically simple, they exhibit a rich variety of intriguing electronic properties, such as metallic and semiconducting behaviour. Furthermore, these structures are atomically precise, meaning that each carbon atom is still three-fold coordinated without any dangling bonds. CNTs have been used in many laboratories to build prototype nanodevices. These devices include metallic wires, field-effect transistors, electromechanical sensors and displays. They potentially form the basis of future all-carbon electronics.This review deals with the building blocks of understanding the device physics of CNT-based nanodevices. There are many features that make CNTs different from traditional materials, including chirality-dependent electronic properties, the one-dimensional nature of electrostatic screening and the presence of several direct bandgaps. Understanding these novel properties and their impact on devices is crucial in the development and evolution of CNT applications.

505 citations


Journal ArticleDOI
TL;DR: A review paper summarizes recent advances in the field of nanoscale ferroelectrics, analyzes its current status and considers potential future developments as mentioned in this paper, and presents a brief survey of the fabrication methods of ferroelectric nanostructures and investigation of the size effects by means of scanning probe microscopy.
Abstract: This review paper summarizes recent advances in the quickly developing field of nanoscale ferroelectrics, analyses its current status and considers potential future developments. The paper presents a brief survey of the fabrication methods of ferroelectric nanostructures and investigation of the size effects by means of scanning probe microscopy. One of the focuses of the review will be the study of kinetics of nanoscale ferroelectric switching in inhomogeneous electrical and elastic fields. Another emphasis will be made on tailoring the electrical and mechanical properties of ferroelectrics with a viewpoint of fabrication of nanoscale domain structures.

419 citations


Journal ArticleDOI
TL;DR: In this paper, the techniques of neutron diffraction and x-ray diffraction, as applied to structural studies of liquids and glasses, are reviewed, with an emphasis on the explanation and discussion of the experimental techniques and data analysis methods, as illustrated by the results of representative experiments.
Abstract: The techniques of neutron diffraction and x-ray diffraction, as applied to structural studies of liquids and glasses, are reviewed. Emphasis is placed on the explanation and discussion of the experimental techniques and data analysis methods, as illustrated by the results of representative experiments. The disordered, isotropic nature of the structure of liquids and glasses leads to special considerations and certain difficulties when neutron and x-ray diffraction techniques are applied, especially when used in combination on the same system. Recent progress in experimental technique, as well as in data analysis and computer simulation, has motivated the writing of this review.

395 citations


Journal ArticleDOI
TL;DR: Paper is a material known to everybody as mentioned in this paper, it has a network structure consisting of wood fibres that can be mimicked by cooking a portion of spaghetti and pouring it on a plate, to form a planar assembly of fibres.
Abstract: Paper is a material known to everybody. It has a network structure consisting of wood fibres that can be mimicked by cooking a portion of spaghetti and pouring it on a plate, to form a planar assembly of fibres that lie roughly horizontal. Real paper also contains other constituents added for technical purposes.This review has two main lines of thought. First, in the introductory part, we consider the physics that one encounters when 'using' paper, an everyday material that exhibits the presence of disorder. Questions arise, for instance, as to why some papers are opaque and others translucent, some are sturdy and others sloppy, some readily absorb drops of liquid while others resist the penetration of water. The mechanical and rheological properties of paper and paperboard are also interesting. They are inherently dependent on moisture content. In humid conditions paper is ductile and soft, in dry conditions brittle and hard.In the second part we explain in more detail research problems concerned with paper. We start with paper structure. Paper is made by dewatering a suspension of fibres starting from very low content of solids. The processes of aggregation, sedimentation and clustering are familiar from statistical mechanics. Statistical growth models or packing models can simulate paper formation well and teach a lot about its structure.The second research area that we consider is the elastic and viscoelastic properties and fracture of paper and paperboard. This has traditionally been the strongest area of paper physics. There are many similarities to, but also important differences from, composite materials. Paper has proved to be convenient test material for new theories in statistical fracture mechanics. Polymer physics and memory effects are encountered when studying creep and stress relaxation in paper. Water is a 'softener' of paper. In humid conditions, the creep rate of paper is much higher than in dry conditions.The third among our topics is the interaction of paper with water. The penetration of water into paper is an interesting transport problem because wood fibres are hygroscopic and swell with water intake. The porous fibre network medium changes as the water first penetrates into the pore space between the fibres and then into the fibres. This is an area where relatively little systematic research has been done. Finally, we summarize our thoughts on paper physics.

333 citations


Journal ArticleDOI
TL;DR: In this paper, the authors describe the evolution of a new generation of sources that boost the average power available in the 1.5 GHz region by more than a millionfold, making this region routinely accessible for the first time.
Abstract: Electromagnetic waves centred at a frequency of 1 THz lie between photonics on the one hand and electronics on the other, and are very hard to generate and detect. However, since the THz part of the spectrum is energetically equivalent to many important physical, chemical and biological processes including superconducting gaps and protein dynamical processes, it is of great interest to facilitate experimental research in this region. This has stimulated major steps in the past decade for filling this gap in the usable spectrum. In this review paper we describe the evolution of a new generation of sources that boost the average power available in the THz region by more than a million-fold, making this region routinely accessible for the first time. This is achieved using two enhancement factors, namely relativistic electrons and super-radiance. We will also point to the scientific potential for discovery that is now enabled in this region.

Journal ArticleDOI
TL;DR: The role of aperiodic order in different domains of science and technology from an interdisciplinary approach is discussed in this paper, where several conceptual links between quasiperiodic crystals and the hierarchical structure of biopolymers are discussed.
Abstract: In this work we consider the role of aperiodic order in different domains of science and technology from an interdisciplinary approach. To start with, we introduce some general classification schemes for aperiodic arrangements of matter. Afterwards, we review the main physical properties and possible applications of quasiperiodic crystals. Several conceptual links between quasiperiodic crystals and the hierarchical structure of biopolymers are then discussed in connection with the charge transfer properties of both biological and synthetic DNA chains. The widespread presence of Fibonacci numbers and the golden mean in different physical contexts is also discussed. Promising technological applications of aperiodic systems are finally reviewed by considering both current and potential applications. In particular, we analyse the capability of exploiting aperiodic order in the design of novel devices based on semiconductor heterostructures and dielectric multilayers.

Journal ArticleDOI
TL;DR: In this article, the impact of solid-state lighting technology on energy consumption, the environment and on emerging application fields that make use of the controllability afforded by solid state sources is assessed.
Abstract: Solid-state light sources are in the process of profoundly changing the way humans generate light for general lighting applications. Solid-state light sources possess two highly desirable features, which set them apart from most other light sources: (i) they have the potential to create light with essentially unit power efficiency and (ii) the properties of light, such as spectral composition and temporal modulation, can be controlled to a degree that is not possible with conventional light sources such as incandescent and fluorescent lamps. The implications are enormous and, as a consequence, many positive developments are to be expected including a reduction in global energy consumption, reduction of global-warming-gas and pollutant emissions and a multitude of new functionalities benefiting numerous applications. This review will assess the impact of solid-state lighting technology on energy consumption, the environment and on emerging application fields that make use of the controllability afforded by solid-state sources. The review will also discuss technical areas that fuel continued progress in solid-state lighting. Specifically, we will review the use of novel phosphor distributions in white light-emitting diodes (LEDs) and show the strong influence of phosphor distribution on efficiency. We will also review the use of reflectors in LEDs with emphasis on 'perfect' reflectors, i.e. reflectors with highly reflective omni-directional characteristics. Finally, we will discuss a new class of thin-film materials with an unprecedented low refractive index. Such low-n materials may strongly contribute to the continuous progress in solid-state lighting.

Journal ArticleDOI
TL;DR: In this article, a review of recent progress in the study of core-collapse supernovae focusing on the explosion mechanism, supernova neutrinos and the gravitational waves is presented.
Abstract: Core-collapse supernovae are among the most energetic explosions in the universe marking the catastrophic end of massive stars. In spite of rigorous studies for several decades, we still do not understand the explosion mechanism completely. Since they are related to many astrophysical phenomena such as nucleosynthesis, gamma-ray bursts and acceleration of cosmic rays, understanding of their physics has been of wide interest to the astrophysical community.In this paper, we review recent progress in the study of core-collapse supernovae focusing on the explosion mechanism, supernova neutrinos and the gravitational waves. Regarding the explosion mechanism, we present a review paying particular attention to the roles of multidimensional aspects, such as convection, rotation and magnetic fields, on the neutrino heating mechanism.Next, we discuss supernova neutrino, which is a powerful tool to probe not only deep inside the supernovae but also the intrinsic properties of neutrinos. For this purpose, it is necessary to understand neutrino oscillation which has been established recently by many experiments. Gravitational astronomy is also now becoming a reality. We present an extensive review on the physical foundations and the emission mechanism of gravitational waves in detail and discuss the possibility of their detections.

Journal ArticleDOI
TL;DR: The magnetic field of the Sun is the underlying cause of many diverse phenomena combined under the heading of solar activity as discussed by the authors, where the authors describe the magnetic field as it threads its way from the bottom of the convection zone to the solar surface, where it manifests itself in the form of sunspots and faculae, and beyond into the outer solar atmosphere and, finally, into the heliosphere.
Abstract: The magnetic field of the Sun is the underlying cause of the many diverse phenomena combined under the heading of solar activity. Here we describe the magnetic field as it threads its way from the bottom of the convection zone, where it is built up by the solar dynamo, to the solar surface, where it manifests itself in the form of sunspots and faculae, and beyond into the outer solar atmosphere and, finally, into the heliosphere. On the way it transports energy from the surface and the subsurface layers into the solar corona, where it heats the gas and accelerates the solar wind.

Journal ArticleDOI
TL;DR: In this article, the advances in x-ray femtosecond pulse generation and the most recent discoveries in the field of ultrashort (femto-cond) xray science are presented.
Abstract: We present the advances in x-ray femtosecond pulse generation and the most recent discoveries in the field of ultrashort (femtosecond) x-ray science. Nowadays x-rays show their potential not only when it comes to resolving atomic spatial scale but also the inherent temporal scale of quantum dynamics in atoms, molecules and solids. We discuss ultrafast x-ray sources that are currently used to generate femtosecond duration pulses of soft and hard x-ray radiation. Several techniques of x-ray pulse characterization are presented along with a method to control the shape of coherent soft x-rays. A large number of experiments using femtosecond x-ray pulses have been conducted recently and we review some of them. The field of ultrafast x-ray science draws its strength from the large variety of different sources of femtosecond duration x-ray pulses that are complementary rather than competing.

Journal ArticleDOI
TL;DR: In this paper, a review summarizes the present knowledge on ultrafast dynamics in isolated molecules and molecular clusters evolving after excitation with femtosecond pulses as studied by pump-probe analysis in real time.
Abstract: During the past decade the understanding of photo-induced ultrafast dynamics in molecular systems has improved at an unforeseen speed and a wealth of detailed insight into the fundamental processes has been obtained.This review summarizes our present knowledge on ultrafast dynamics in isolated molecules and molecular clusters evolving after excitation with femtosecond pulses as studied by pump–probe analysis in real time. Experimental tools and methods as well as theoretical models are described which have been developed to glean information on primary, ultrafast processes in photophysics, photochemistry and photobiology. The relevant processes are explained by way of example—from wave packet dynamics in systems with a few atoms all the way to internal conversion via conical intersections in bio-chromophores. A systematic overview on characteristic systems follows, starting with diatomic and including larger organic molecules as well as various types of molecular clusters, such as micro-solvated chromophore molecules. For conciseness the focus is on molecular systems which remain unperturbed by the laser pulses—apart from the excitation and detection processes as such. Thus, only some aspects of controlling and manipulating molecular reactions by shaped and/or very intense laser pulses are discussed briefly for particularly instructive examples, illustrating the perspectives of this prospering field.The material presented in this review comprises some prototypical examples from earlier pioneering work but emphasizes studies from recent years and covers the most important and latest developments until January 2006.

Journal ArticleDOI
TL;DR: In this article, the observations of extrasolar planets, ongoing developments in theories of planet formation, orbital migration and the evolution of multi-planetary systems are reviewed, and a review of the current state of the art is presented.
Abstract: We review the observations of extrasolar planets, ongoing developments in theories of planet formation, orbital migration and the evolution of multiplanet systems.

Journal ArticleDOI
TL;DR: A review of recent advances in the science and technology of composites utilizing carbon nanostructures is presented in this article, including experimental results and modelling studies of composite properties and processing.
Abstract: Recent advances in the science and technology of composites utilizing carbon nanostructures are reviewed, including experimental results and modelling studies of composite properties and processing. Carbon nanotubes are emphasized, with other carbon nanostructures such as fullerenes, ultradispersed diamond clusters and diamond nanorods also being discussed.

Journal ArticleDOI
TL;DR: Results are presented which support the MEE model as an explanation of MNR and verified predictions of reasonable values of attempt frequencies and cross sections in kinetic processes, which initially appear unreasonable.
Abstract: This review concerns the concept of multi-excitation entropy (MEE) and its consequences When a fluctuation involving a large number of excitations occurs, for example, when a large activation barrier is overcome, there must be a large entropy associated with this fluctuation First, the concepts of free energy and entropy, of activated processes and the Arrhenius and Eyring equations are reviewed The tendency to neglect entropy, whose value is difficult to determine, in modelling kinetic processes, is briefly discussed We then present a review of the experimental observations of the phenomenon which is variously known as the Compensation Law, the Isokinetic Rule and the Meyer–Neldel Rule (MNR) These observations include examples from chemistry, condensed matter physics, biology and geology Arguments are then presented for the importance of entropy and particularly of MEE in both kinetics and thermodynamics, when activation energies are large After a discussion of non-entropic models of compensation, we present results which support the MEE model as an explanation of MNR The behaviour of systems with low activation energies, or at high temperatures, to which the MEE model does not apply, is then discussedSeveral consequences of MEE, including applications to the interpretation of experimental data, particularly the unification of models of dc and ac electrical properties of materials are considered The high temperature behaviour of systems which obey the MNR at low temperature is then explained, and the idea of a total entropy, of which the MEE is a part, is introduced, as is the correlation between the two empirical parameters encountered in MNR Finally, these ideas lead to verified predictions of reasonable values of attempt frequencies and cross sections in kinetic processes, which initially appear unreasonable

Journal ArticleDOI
W. J. Nellis1
Abstract: Dynamic high pressure is 1 GPa (10 kbar) or greater with a rise time and a duration ranging from 1 ps (10−12 s) to 1 µs (10−6 s). Today it is possible in a laboratory to achieve pressures dynamically up to ~500 GPa (5 Mbar) and greater, compressions as much as ~15-fold greater than initial density in the case of hydrogen and temperatures from ~0.1 up to several electronvolts (11 600 K). At these conditions materials are extremely condensed semiconductors or degenerate metals. Temperature can be tuned independently of pressure by a combination of shock and isentropic compression. As a result, new opportunities are now available in condensed matter physics at extreme conditions. The basic physics of the dynamic process, experimental methods of generating and diagnosing matter at these extreme conditions and a technique to recover metastable materials intact from ~100 GPa shock pressures are discussed.Results include (i) generation of pressure standards at static pressures up to ~200 GPa (2 Mbar) at 300 K, (ii) single-shock compression of small-molecular fluids, including resolution of the recent controversy over the correct shock-compression curve of liquid D2 at 100 GPa pressures, (iii) the first observations of metallization of fluid hydrogen, nitrogen and oxygen compressed quasi-isentropically at 100 GPa pressures, (iv) implications for the interiors of giant planets within our solar system, extrasolar giant planets and brown dwarfs discovered recently and the equation of state of deuterium–tritium in inertial confinement fusion (ICF) and (v) prospects of recovering novel materials from extreme conditions, such as metastable solid metallic hydrogen. Future research is suggested.

Journal ArticleDOI
TL;DR: Physical modelling techniques that can be used for simulating musical instruments are described, including some nonlinear and time-varying models and new results on the digital waveguide modelling of a nonlinear string.
Abstract: This article describes physical modelling techniques that can be used for simulating musical instruments. The methods are closely related to digital signal processing. They discretize the system with respect to time, because the aim is to run the simulation using a computer. The physics-based modelling methods can be classified as mass–spring, modal, wave digital, finite difference, digital waveguide and source–filter models. We present the basic theory and a discussion on possible extensions for each modelling technique. For some methods, a simple model example is chosen from the existing literature demonstrating a typical use of the method. For instance, in the case of the digital waveguide modelling technique a vibrating string model is discussed, and in the case of the wave digital filter technique we present a classical piano hammer model. We tackle some nonlinear and time-varying models and include new results on the digital waveguide modelling of a nonlinear string. Current trends and future directions in physical modelling of musical instruments are discussed.

Journal ArticleDOI
TL;DR: In this article, the status of the experimental limits on monopole masses is reported, as well as the limitation of the theory of magnetic charge at present, and a new interpretation of these experiments also require new developments in theory.
Abstract: The Tevatron has inspired new interest in the subject of magnetic monopoles. First there was the 1998 D0 limit on the virtual production of monopoles, based on the theory of Ginzburg and collaborators. In 2000 and 2004 results from an experiment (Fermilab E882) searching for real magnetically charged particles bound to elements from the CDF and D0 detectors were reported. The strongest direct experimental limits, from the CDF collaboration, have been reported in 2005. Less strong, but complementary, limits from the H1 collaboration at HERA were reported in the same year. Interpretation of these experiments also require new developments in theory. Earlier experimental and observational constraints on point-like (Dirac) and non-Abelian monopoles were given from the 1970s through the 1990s, with occasional short-lived positive evidence for such exotic particles reported. The status of the experimental limits on monopole masses will be reported, as well as the limitation of the theory of magnetic charge at present.

Journal ArticleDOI
TL;DR: In this article, the authors reviewed the history of electron emission from a standpoint of the work function that determines the electron emission capability and of applications in the fields of scientific instruments and displays.
Abstract: The history of electron emission is reviewed from a standpoint of the work function that determines the electron emission capability and of applications in the fields of scientific instruments and displays. For years, in thermionic emission, a great deal of effort has been devoted to the search for low work function materials with high melting temperature, while reduction of the local change in time of the work function rather than the work function itself has been the main issue of field emission investigations. High brightness and long life are the central targets of emission material investigations for scientific instrument applications, while high current density and low power consumption are the guiding principles for display applications.In most of the present day industries, thermionic emission materials are exclusively used in such fields requiring high current and high reliability as cathode ray tubes, transmission and receiving tubes, x-ray sources and various electron beam machines. Field electron emission sources, however, since applied to high resolution electron microscopes in the 1970s have recently become dominant in research and development in the fields of scientific instruments as well as in the fields of various electron tubes and beam machines.The main issue in this report is to analyse the work function on the atomic scale and thereby to understand the fundamental physics behind the work function, the change in time of the local work function leading to field emission current fluctuation and the relationship between microscopic (on atomic scale) and macroscopic work functions.Our attempt is presented here, where the work function on the atomic scale is measured by utilizing a scanning tunnelling microscopy technique, and it is made clear how far the local work function extends its influence over neighbouring sites. As a result, a simple relationship is established between microscopic and macroscopic work functions.

Journal ArticleDOI
TL;DR: In this paper, the relativistic heavy ion collider at BNL has produced head-on collisions of two 100 A?GeV beams of fully stripped Au ions, corresponding to nucleon?nucleon centre-of-mass (cm) energy,, total cm energy 200 A?GeV.
Abstract: Experimental physics with relativistic heavy ions dates from 1992 when a beam of 197Au of energy greater than 10 A?GeV/c first became available at the Alternating Gradient Synchrotron at Brookhaven National Laboratory (BNL) soon followed in 1994 by a 208Pb beam of 158A?GeV/c at the Super Proton Synchrotron at CERN (European Center for Nuclear Research). Previous pioneering measurements at the Berkeley Bevalac (Gutbrod et al 1989 Rep. Prog. Phys. 52 1267?132) in the late 1970s and early 1980s were at much lower bombarding energies (1A?GeV/c) where nuclear breakup rather than particle production is the dominant inelastic process in A+A collisions. More recently, starting in 2000, the relativistic heavy ion collider at BNL has produced head-on collisions of two 100 A?GeV beams of fully stripped Au ions, corresponding to nucleon?nucleon centre-of-mass (cm) energy, , total cm energy 200 A?GeV. The objective of this research program is to produce nuclear matter with extreme density and temperature, possibly resulting in a state of matter where the quarks and gluons normally confined inside individual nucleons (r < 1?fm) are free to act over distances an order of magnitude larger. Progress from the period 1992 to the present will be reviewed, with reference to previous results from light ion and proton?proton collisions where appropriate. Emphasis will be placed on the measurements which formed the basis for the announcements by the two major laboratories: 'A new state of matter', by CERN on Febraury 10 2000 and 'The perfect fluid' by BNL on April 19 2005.

Journal ArticleDOI
TL;DR: In this article, the basic theory of the density functional formulation of quantum mechanics and its practical implementation through pseudopotentials is outlined, as well as the simplest way of applying first-principle modeling, namely static zero-temperature calculations.
Abstract: Atomic-scale materials modelling based on first-principles quantum mechanics is playing an important role in the science of the Earth and the other planets. We outline the basic theory of this kind of modelling and explain how it can be applied in a variety of different ways to probe the thermodynamics, structure and transport properties of both solids and liquids under extreme conditions. After a summary of the density functional formulation of quantum mechanics and its practical implementation through pseudopotentials, we outline the simplestway of applying first-principles modelling, namely static zero-temperature calculations. We show how calculations of this kind can be compared with static compression experiments to demonstrate the accuracy of first-principles modelling at pressures reached in planetary interiors. Noting that virtually all problems concerning planetary interiors require an understanding of materials at high temperatures as well as high pressures, we then describe how first-principles lattice dynamics gives a powerful way of investigating solids at temperatures not too close to the melting line. We show how such calculations have contributed to important progress, including the recent discovery of the post-perovskite phase of MgSiO3 in the D '' layer at the base of the Earth's mantle. A range of applications of first-principles molecular dynamics are then reviewed, including the properties of metallic hydrogen in Jupiter and Saturn, of water, ammonia and methane in Uranus and Neptune, and of oxides and silicates and solid and liquid iron and its alloys in the Earth's deep interior. Recognizing the importance of phase equilibria throughout the planetary sciences, we review recently developed techniques for the first- principles calculation of solid and liquid free energies, melting curves and chemical potentials of alloys. We show how such calculations have contributed to an improved understanding of the temperature distribution and the chemical composition throughout the Earth's interior. The review concludes with a summary of the present state of the field and with some ideas for future developments.

Journal ArticleDOI
TL;DR: In this article, a detailed review of the recent advances in the understanding of orbital ordering phenomenon in Ca2RuO4 is presented, in which a simple mechanism works for the formation of complex spin, charge and orbital ordering.
Abstract: In recent decades, novel magnetism of d- and f-electron compounds has been discussed very intensively both in experimental and theoretical research fields of condensed matter physics. It has been recognized that these material groups are in the same category of strongly correlated electron systems, while the low-energy physics of d- and f-electron compounds has been separately investigated in rather different manners. One of the common features of both d- and f-electron systems is certainly the existence of active orbital degree of freedom, but in f-electron materials, due to the strong spin?orbit interaction in rare-earth and actinide ions, the physics seems to be quite different from that of d-electron systems. In general, when the number of internal degrees of freedom and relevant interactions is increased, it is possible to obtain a rich phase diagram including large varieties of magnetic phases by using several kinds of theoretical techniques. However, we should not be simply satisfied with the reproduction of a rich phase diagram. It is believed that the more essential point is to seek a simple principle penetrating complicated phenomena in common with d- and f-electron materials, which opens the door to a new stage in orbital physics. In this sense, it is considered to be an important task of this paper to explain common features of magnetism in d- and f-electron systems from a microscopic viewpoint, using a key concept of orbital ordering, in addition to the review of the complex phase diagram of each material group. As a typical d-electron complex material exhibiting orbital order, we first focus on perovskite manganites, in which remarkable colossal magneto-resistance effect has been intensively studied. The manganites provide us with a good platform to understand that a simple mechanism works for the formation of complex spin, charge and orbital ordering. We also explain intriguing striped charge ordering on the orbital-ordered background in nickelates and the effect of orbital ordering to resolve spin frustration in geometrically frustrated eg electron systems. Note that orbital ordering phenomena are also found in t2g electron systems. Here we review recent advances in the understanding of orbital ordering phenomenon in Ca2RuO4. Next we discuss another spin?charge?orbital complex system such as the f-electron compound. After detailed explanation of the construction of microscopic models on the basis of a j?j coupling scheme, we introduce a d-electron-like scenario to understand novel magnetism in some actinide compounds with the HoCoGa5-type tetragonal crystal structure. Finally, we show that complicated multipole order can be understood from the spin?orbital model on the basis of the j?j coupling scheme. As a typical material with multipole order, we pick up NpO2 which has been believed to exhibit peculiar octupole order. Throughout this review, it is emphasized that the same orbital physics works both in d- and f-electron complex materials in spite of the difference between d and f orbitals.

Journal ArticleDOI
TL;DR: Recent work on the dynamical evolution of galactic nuclei containing supermassive black holes is reviewed and topics include galaxy structural properties, collisionless and collisional equilibria, loss-cone dynamics and dynamics of binary and multiple supermassiveblack holes.
Abstract: Recent work on the dynamical evolution of galactic nuclei containing supermassive black holes is reviewed. Topics include galaxy structural properties, collisionless and collisional equilibria, loss-cone dynamics and dynamics of binary and multiple supermassive black holes.

Journal ArticleDOI
Neil Linford1
TL;DR: A review of geophysical prospection methods can be found in this paper, where the authors provide a broad introduction to the subject area acknowledging the historical development of the discipline and discuss each of the major techniques in turn: earth resistance, magnetic and electromagnetic methods (including ground penetrating radar), together with an appreciation of more esoteric approaches, such as the use of micro-gravity survey to detect buried chambers and voids.
Abstract: The aim of this review is to combine the almost universal fascination we share for our past with the comparatively recent, in archaeological terms, application of geophysical prospection methods. For their success, each of these methods relies upon a physical contrast to exist between the buried archaeological feature and the properties of the surrounding subsoil. Understanding the archaeological origin of such physical contrasts, in terms of density, thermal conductivity, electrical resistance, magnetic or dielectric properties, remains fundamental to an appreciation of the discipline. This review provides a broad introduction to the subject area acknowledging the historical development of the discipline and discusses each of the major techniques in turn: earth resistance, magnetic and electromagnetic methods (including ground penetrating radar), together with an appreciation of more esoteric approaches, such as the use of micro-gravity survey to detect buried chambers and voids. The physical principles and field instrumentation involved for the acquisition of data with each method are considered and fully illustrated with case histories of results from the English Heritage archives.

Journal ArticleDOI
TL;DR: In this article, the time-dependent single-electron transport through quantum dots in the Coulomb blockade regime is described, and the dynamics of a single charge qubit in a double quantum dot are discussed with full one-qubit manipulation.
Abstract: We describe time-dependent single-electron transport through quantum dots in the Coulomb blockade regime. Coherent dynamics of a single charge qubit in a double quantum dot is discussed with full one-qubit manipulation. Strength of decoherence is controlled with the applied voltage, but uncontrolled decoherence arises from electron–phonon coupling and background fluctuations. Then energy-relaxation dynamics is discussed for orbital and spin degree of freedom in a quantum dot. The electron–phonon interaction and spin–orbit coupling can be investigated as the dissipation problem. Finally, charge detection measurement is presented for statistical analysis of single-electron tunnelling transitions and for a sensitive qubit read-out device.