scispace - formally typeset
Search or ask a question

Showing papers in "Reports on Progress in Physics in 2008"


Journal ArticleDOI
TL;DR: A review of the fundamental and technological aspects of these subjects can be found in this article, where the focus is mainly on surface tension effects, which result from the cohesive properties of liquids Paradoxically, cohesive forces promote the breakup of jets, widely encountered in nature, technology and basic science.
Abstract: Jets, ie collimated streams of matter, occur from the microscale up to the large-scale structure of the universe Our focus will be mostly on surface tension effects, which result from the cohesive properties of liquids Paradoxically, cohesive forces promote the breakup of jets, widely encountered in nature, technology and basic science, for example in nuclear fission, DNA sampling, medical diagnostics, sprays, agricultural irrigation and jet engine technology Liquid jets thus serve as a paradigm for free-surface motion, hydrodynamic instability and singularity formation leading to drop breakup In addition to their practical usefulness, jets are an ideal probe for liquid properties, such as surface tension, viscosity or non-Newtonian rheology They also arise from the last but one topology change of liquid masses bursting into sprays Jet dynamics are sensitive to the turbulent or thermal excitation of the fluid, as well as to the surrounding gas or fluid medium The aim of this review is to provide a unified description of the fundamental and the technological aspects of these subjects

1,583 citations


Journal ArticleDOI
TL;DR: Metadynamics is a powerful algorithm that can be used both for reconstructing the free energy and for accelerating rare events in systems described by complex Hamiltonians, at the classical or at the quantum level as discussed by the authors.
Abstract: Metadynamics is a powerful algorithm that can be used both for reconstructing the free energy and for accelerating rare events in systems described by complex Hamiltonians, at the classical or at the quantum level. In the algorithm the normal evolution of the system is biased by a history-dependent potential constructed as a sum of Gaussians centered along the trajectory followed by a suitably chosen set of collective variables. The sum of Gaussians is exploited for reconstructing iteratively an estimator of the free energy and forcing the system to escape from local minima. This review is intended to provide a comprehensive description of the algorithm, with a focus on the practical aspects that need to be addressed when one attempts to apply metadynamics to a new system: (i) the choice of the appropriate set of collective variables; (ii) the optimal choice of the metadynamics parameters and (iii) how to control the error and ensure convergence of the algorithm.

1,369 citations


Journal ArticleDOI
TL;DR: Structural colors are deeply connected with recent rapidly growing fields of photonics and have been extensively studied to clarify their peculiar optical phenomena as mentioned in this paper, which differs considerably from the ordinary coloration mechanisms such as in pigments, dyes and metals, where the colors are produced by virtue of the energy consumption of light.
Abstract: In recent years, structural colors have attracted great attention in a wide variety of research fields. This is because they are originated from complex interaction between light and sophisticated nanostructures generated in the natural world. In addition, their inherent regular structures are one of the most conspicuous examples of non-equilibrium order formation. Structural colors are deeply connected with recent rapidly growing fields of photonics and have been extensively studied to clarify their peculiar optical phenomena. Their mechanisms are, in principle, of a purely physical origin, which differs considerably from the ordinary coloration mechanisms such as in pigments, dyes and metals, where the colors are produced by virtue of the energy consumption of light. It is generally recognized that structural colors are mainly based on several elementary optical processes including thin-layer interference, diffraction grating, light scattering, photonic crystals and so on. However, in nature, these processes are somehow mixed together to produce complex optical phenomena. In many cases, they are combined with the irregularity of the structure to produce the diffusive nature of the reflected light, while in some cases they are accompanied by large-scale structures to generate the macroscopic effect on the coloration. Further, it is well known that structural colors cooperate with pigmentary colors to enhance or to reduce the brilliancy and to produce special effects. Thus, structure-based optical phenomena in nature appear to be quite multi-functional, the variety of which is far beyond our understanding. In this article, we overview these phenomena appearing particularly in the diversity of the animal world, to shed light on this rapidly developing research field.

748 citations


Journal ArticleDOI
TL;DR: A comprehensive review on the role that polarity plays at oxide surfaces, interfaces and in nano-objects can be found in this article, with special emphasis on ternary compound surfaces and on polarity effects in ultra-thin films.
Abstract: Whenever a compound crystal is cut normal to a randomly chosen direction, there is an overwhelming probability that the resulting surface corresponds to a polar termination and is highly unstable. Indeed, polar oxide surfaces are subject to complex stabilization processes that ultimately determine their physical and chemical properties. However, owing to recent advances in their preparation under controlled conditions and to improvements in the experimental techniques for their characterization, an impressive variety of structures have been investigated in the last few years. Recent progress in the fabrication of oxide nano-objects, which have been largely stimulated by a growing demand for new materials for applications ranging from micro-electronics to heterogeneous catalysis, also offer interesting examples of exotic polar structures. At odds with polar orientations of macroscopic samples, some smaller size polar nano-structures turn out to be perfectly stable. Others are subject to unusual processes of stabilization, which are absent or not effective in their extended counterparts. In this context, a thorough and comprehensive reflexion on the role that polarity plays at oxide surfaces, interfaces and in nano-objects seems timely.This review includes a first section which presents the theoretical concepts at the root of the polar electrostatic instability and its compensation and introduces a rigorous definition of polar terminations that encompasses previous theoretical treatments; a second section devoted to a summary of all experimental and theoretical results obtained since the first review paper by Noguera (2000 J. Phys.: Condens. Matter 12 R367); and finally a discussion section focusing on the relative strength of the stabilization mechanisms, with special emphasis on ternary compound surfaces and on polarity effects in ultra-thin films.

628 citations


Journal ArticleDOI
TL;DR: In this article, the results of recent experimental and theoretical studies of well characterized epitaxial structures based on Fe, Co and Ni to illustrate how intrinsic fundamental properties such as the magnetic exchange interactions, magnetic moment and magnetic anisotropies change markedly in ultrathin films as compared with their bulk counterparts, and to emphasize the role of atomic scale structure, strain and crystallinity in determining the magnetic properties.
Abstract: In this paper, we review some of the key concepts in ultrathin film magnetism which underpin nanomagnetism. We survey the results of recent experimental and theoretical studies of well characterized epitaxial structures based on Fe, Co and Ni to illustrate how intrinsic fundamental properties such as the magnetic exchange interactions, magnetic moment and magnetic anisotropies change markedly in ultrathin films as compared with their bulk counterparts, and to emphasize the role of atomic scale structure, strain and crystallinity in determining the magnetic properties. After introducing the key length scales in magnetism, we describe the 2D magnetic phase transition and survey studies of the thickness dependent Curie temperature and the critical exponents which characterize the paramagnetic–ferromagnetic phase transition. We next discuss recent experimental and theoretical results on the determination of the exchange constant, followed by an overview of measurements of the magnetic moment in the elemental 3d transition metal thin films in the various crystal phases that have been successfully stabilized, thereby illustrating the sensitivity of the magnetic moment to the local symmetry and to the atomic environment. Finally, we discuss briefly the magnetic anisotropies of Fe, Co and Ni in the fcc crystalline phase, to emphasize the role of structure and the details of the interface in influencing the magnetic properties. The dramatic effect that adsorbates can have on the magnetic anisotropies of thin magnetic films is also discussed. Our survey demonstrates that the fundamental properties, namely, the magnetic moment and magnetic anisotropies of ultrathin films have dramatically different behaviour compared with those of the bulk while the comparable size of the structural and magnetic contributions to the total energy of ultrathin structures results in an exquisitely sensitive dependence of the magnetic properties on the film structure.

516 citations


Journal ArticleDOI
TL;DR: In this article, a review of a large body of experimental data which suggests a coexisting two-gap scenario is presented, i.e. superconducting gap and pseudogap, over the whole supercondensing dome.
Abstract: One of the keys to the high-temperature superconductivity puzzle is the identification of the energy scales associated with the emergence of a coherent condensate of superconducting electron pairs. These might provide a measure of the pairing strength and of the coherence of the superfluid, and ultimately reveal the nature of the elusive pairing mechanism in the superconducting cuprates. To this end, a great deal of effort has been devoted to investigating the connection between the superconducting transition temperature Tc and the normal-state pseudogap crossover temperature T*. Here we present a review of a large body of experimental data which suggests a coexisting two-gap scenario, i.e. superconducting gap and pseudogap, over the whole superconducting dome. We focus on spectroscopic data from cuprate systems characterized by , such as Bi2Sr2CaCu2O8+δ, YBa2Cu3O7−δ, Tl2Ba2CuO6+δ and HgBa2CuO4+δ, with particular emphasis on the Bi-compound which has been the most extensively studied with single-particle spectroscopies.

383 citations


Journal ArticleDOI
TL;DR: In this paper, a review of the extensive and controversial literature concerning how the cosmic magnetic fields pervading nearly all galaxies and clusters of galaxies actually got started is presented, where the authors have chosen not to consider the saturation problem of the galactic magnetic field since if the original dynamo amplification fails the saturation question does not arise.
Abstract: We review the extensive and controversial literature concerning how the cosmic magnetic fields pervading nearly all galaxies and clusters of galaxies actually got started. Some observational evidence supports a hypothesis that the field is already moderately strong at the beginning of the life of a galaxy and its disc. One argument involves the chemical abundance of the light elements Be and B, while a second one is based on the detection of strong magnetic fields in very young high red shift galaxies.Since this problem of initial amplification of cosmic magnetic fields involves important plasma problems it is obvious that one must know the plasma in which the amplification occurs. Most of this review is devoted to this basic problem and for this it is necessary to devote ourselves to reviewing studies that take place in environments in which the plasma properties are most clearly understood. For this reason the authors have chosen to restrict themselves almost completely to studies of dynamos in our Galaxy. It is true that one can get a much better idea of the grand scope of galactic fields in extragalactic systems. However, most mature galaxies share the same dilemma as ours of overcoming important plasma problems. Since the authors are both trained in plasma physics we may be biased in pursuing this approach, but we feel it is justified by the above argument. In addition we feel we can produce a better review by staying close to that which we know best.In addition we have chosen not to consider the saturation problem of the galactic magnetic field since if the original dynamo amplification fails the saturation question does not arise.It is generally accepted that seed fields, whose strength is of order 10−20 G, easily spring up in the era preceding galaxy formation. Several mechanisms have been proposed to amplify these seed magnetic fields to a coherent structure with the microgauss strengths of the currently observed galactic magnetic fields.The standard and most popular mechanism is the α–Ω mean field dynamo theory developed by a number of people in the late sixties. This theory and its application to galactic magnetic fields is discussed in considerable detail in this review. We point out certain difficulties with this theory that make it seem unlikely that this is the whole story. The main difficulty with this as the only such amplification mechanism is rooted in the fact that, on galactic scales, flux is constant and is frozen in the interstellar medium. This implies that flux must be removed from the galactic discs, as is well recognized by the standard theory.For our Galaxy this turns out to be a major problem, since unless the flux and the interstellar mass are somehow separated, some interstellar mass must also be removed from the deep galactic gravitational well. This is very difficult. It is pointed out that unless the field has a substantial field strength, much larger than that of the seed fields, this separation can hardly happen. And of course, it must if the α–Ω dynamo is to start from the ultra weak seed field. (It is our philosophy, expressed in this review, that if an origin theory is unable to create the magnetic field in our Galaxy it is essentially incomplete.)Thus, it is more reasonable for the first and largest amplification to occur before the Galaxy forms, and the matter embedded in the field is gravitationally trapped. Two such mechanisms are discussed for such a pregalactic origin; (1) they are generated in the turbulence of the protogalaxy and (2) the fields come from giant radio jets. Several arguments against a primordial origin are also discussed, as are ways around them.Our conclusion as to the most likely origin of cosmic magnetic fields is that they are first produced at moderate field strengths by primordial mechanisms and then changed and their strength increased to their present value and structure by a galactic disc dynamo. The primordial mechanisms have not yet been seriously developed, and this preliminary amplification of the magnetic fields is still very open. If a convincing case can be made that these primordial mechanisms are necessary, more effort will of course be devoted to their study.

335 citations


Journal ArticleDOI
TL;DR: In this paper, a review of recent experiments on tritium β-spectroscopy searching for the absolute value of the electron neutrino mass m(νe) was presented.
Abstract: This paper reviews recent experiments on tritium β-spectroscopy searching for the absolute value of the electron neutrino mass m(νe). By the use of dedicated electrostatic filters with high acceptance and resolution, the uncertainty on the observable m2(νe) has been pushed down to about 3 eV2. The new upper limit of the mass is m(νe) < 2 eV at 95% C.L. In view of erroneous and unphysical mass results obtained by some earlier experiments in β decay, particular attention is paid to systematic effects. The mass limit is discussed in the context of current neutrino research in particle- and astrophysics. A preview is given of the next generation of β-spectroscopy experiments currently under development and construction; they aim at lowering the m2(νe) uncertainty by another factor of 100, reaching a sensitivity limit m(νe) < 0.2 eV.

312 citations


Journal ArticleDOI
TL;DR: In this article, the authors present an overview of the state of the art pointing at the needs for further development and discuss the basics of coherence and interference, the implementation into a TEM, the path of rays for recording holograms as well as the limits in lateral and signal resolution.
Abstract: Despite the huge progress achieved recently by means of the corrector for aberrations, allowing now a true atomic resolution of 0.1 nm, hence making it an unrivalled tool for nanoscience, transmission electron microscopy (TEM) suffers from a severe drawback: in a conventional electron micrograph only a poor phase contrast can be achieved, i.e. phase structures are virtually invisible. Therefore, conventional TEM is nearly blind for electric and magnetic fields, which are pure phase objects. Since such fields provoked by the atomic structure, e.g. of semiconductors and ferroelectrics, largely determine the solid state properties, hence the importance for high technology applications, substantial object information is missing.Electron holography in TEM offers the solution: by superposition with a coherent reference wave, a hologram is recorded, from which the image wave can be completely reconstructed by amplitude and phase. Now the object is displayed quantitatively in two separate images: one representing the amplitude, the other the phase. From the phase image, electric and magnetic fields can be determined quantitatively in the range from micrometre down to atomic dimensions by all wave optical methods that one can think of, both in real space and in Fourier space.Electron holography is pure wave optics. Therefore, we discuss the basics of coherence and interference, the implementation into a TEM, the path of rays for recording holograms as well as the limits in lateral and signal resolution. We outline the methods of reconstructing the wave by numerical image processing and procedures for extracting the object properties of interest. Furthermore, we present a broad spectrum of applications both at mesoscopic and atomic dimensions.This paper gives an overview of the state of the art pointing at the needs for further development. It is also meant as encouragement for those who refrain from holography, thinking that it can only be performed by specialists in highly specialized laboratories. In fact, a modern TEM built for atomic resolution and equipped with a field emitter or a Schottky emitter, well aligned by a skilled operator, can deliver good holograms. Running commercially available image processing software and mathematics programs on a laptop-computer is sufficient for reconstruction of the amplitude and phase images and extracting desirable object information.

307 citations


Journal ArticleDOI
TL;DR: In this article, a theoretical review is given on high temperature superconductivity in copper oxides (cuprates) by focusing on hole doping cases based on the view that it is realized in carrier doped Mott insulators, as noted by Anderson in the initial stage.
Abstract: A theoretical review is given on high temperature superconductivity in copper oxides (cuprates) by focusing on the hole doping cases based on the view that it is realized in carrier doped Mott insulators, as noted by Anderson in the initial stage. From the detailed knowledge of electronic states deduced from experiments that showed the undoped parent case is Mott insulators (charge transfer type insulators, to be precise) and that the hole doping is mainly on oxygen sites, the t?J model, as derived by Zhang and Rice, is shown to be a canonical model for hole doped cuprates and values of various parameters of the model have been assessed. Results of many different numerical methods so far obtained for this t?J model, especially the variational Monte Carlo method, have clearly indicated the stability of the -wave superconductivity at absolute zero for the parameter region of actual experimental interest and the particular doping dependences of the condensation energy of superconductivity reflecting particular features of doped Mott insulators. For finite temperatures, on the other hand, the field theoretical slave-boson approximation based on the spin (spinons) and charge (holons) separations and the gauge fields as a glue combining them predicts qualitatively particular features of the existence of characteristic crossover temperatures of the spin singlet of the resonating valence bond (RVB) state, TRVB and the onset of Bose condensation of holons, TB, triggering coherent motion of electrons as convoluted particles of spinons and holons. The considerations based on the gauge field indicate that the onset temperature of superconductivity, Tc, is the lower one of these two, i.e. either TB (overdoped cases) or TRVB (underdoped cases), respectively. These characteristic features of the 'phase diagram' at finite temperatures are in overall agreement with various experimental observations, especially with the existence of spin-gap or pseudo-gap phases. In more detailed examinations of the underdoped region, the antiferromagnetic long-range order and superconductivity show a very intricate relationship at low temperatures depending on the system; they coexist as clarified in the inner layer of Hg-1245 but spin glass states intervene between them in La2?xSrxCuO4 (LSCO). It is argued that these differences can be attributed to the different degrees of disorder. Actually, theories based on the t?J model have also predicted the coexistence of antiferromagnetism and superconductivity in the ground state of clean systems. On the other hand, interesting experimental findings of large Nernst effect and 'Fermi arc' in LSCO and impurity effects in YBCO have prompted the necessity of theoretical investigations of electronic states of lightly doped Mott insulators in the presence of strong disorder.

283 citations


Journal ArticleDOI
TL;DR: In this paper, the authors outline the basic principles and methods for calculating effective cluster interactions in metallic alloys and formulate criteria for the validity of the supercell approach in the calculations of properties of random alloys.
Abstract: Phase equilibria in alloys to a great extent are governed by the ordering behavior of alloy species. One of the important goals of alloy theory is therefore to be able to simulate these kinds of phenomena on the basis of first principles. Unfortunately, it is impossible, even with present day total energy software, to calculate entirely from first principles the changes in the internal energy caused by changes of the atomic configurations in systems with several thousand atoms at the rate required by statistical thermodynamics simulations. The time-honored solution to this problem that we shall review in this paper is to obtain the configurational energy needed in the simulations from an Ising-type Hamiltonian with so-called effective cluster interactions associated with specific changes in the local atomic configuration. Finding accurate and reliable effective cluster interactions, which take into consideration all relevant thermal excitations, on the basis of first-principles methods is a formidable task. However, it pays off by opening new exciting perspectives and possibilities for materials science as well as for physics itself. In this paper we outline the basic principles and methods for calculating effective cluster interactions in metallic alloys. Special attention is paid to the source of errors in different computational schemes. We briefly review first-principles methods concentrating on approximations used in density functional theory calculations, Green's function method and methods for random alloys based on the coherent potential approximation. We formulate criteria for the validity of the supercell approach in the calculations of properties of random alloys. The generalized perturbation method, which is an effective and accurate tool for obtaining cluster interactions, is described in more detail. Concentrating mostly on the methodological side we give only a few examples of applications to the real systems. In particular, we show that the ground state structure of Au3Pd alloys should be a complex long-period superstructure, which is neither DO22 nor DO23 as has been recently predicted.

Journal ArticleDOI
TL;DR: The history of ground-based gamma ray astronomy up to the current status of the field including a description of experimental techniques and highlight recent astrophysical results is summarized in this article. But the authors also discuss the potential of groundbased gamma-ray astronomy for future discoveries and describe possible directions for future instrumental developments.
Abstract: Recent advances in ground-based gamma ray astronomy have led to the discovery of more than 70 sources of very high energy (E? ? 100?GeV) gamma rays, falling into a number of source populations including pulsar wind nebulae, shell type supernova remnants, Wolf-Rayet stars, giant molecular clouds, binary systems, the Galactic Center, active galactic nuclei and 'dark' (yet unidentified) galactic objects. We summarize the history of TeV gamma ray astronomy up to the current status of the field including a description of experimental techniques and highlight recent astrophysical results. We also discuss the potential of ground-based gamma ray astronomy for future discoveries and describe possible directions for future instrumental developments.

Journal ArticleDOI
TL;DR: In this paper, an overview of the theory and observation of the global atmospheric electric circuit, with the focus on its dc aspects, and its short and long term variability is presented.
Abstract: This review is an overview of progress in understanding the theory and observation of the global atmospheric electric circuit, with the focus on its dc aspects, and its short and long term variability. The effects of the downward ionosphere-earth current density, Jz, on cloud microphysics, with its variability as an explanation for small observed changes in weather and climate, will also be reviewed. The global circuit shows responses to external as well as internal forcing. External forcing arises from changes in the distribution of conductivity due to changes in the cosmic ray flux and other energetic space particle fluxes, and at high magnetic latitudes from solar wind electric fields. Internal forcing arises from changes in the generators and changes in volcanic and anthropogenic aerosols in the troposphere and stratosphere. All these result in spatial and temporal variation in Jz.Variations in Jz affect the production of space charge in layer clouds, with the charges being transferred to droplets and aerosol particles. New observations and new analyses are consistent with non-negligible effects of the charges on the microphysics of such clouds. Observed effects are small, but of high statistical significance for cloud cover and precipitation changes, with resulting atmospheric temperature, pressure and dynamics changes. These effects are detectable on the day-to-day timescale for repeated Jz changes of order 10%, and are thus second order electrical effects. The implicit first order effects have not, as yet, been incorporated into basic cloud and aerosol physics. Long term (multidecadal through millennial) global circuit changes, due to solar activity modulating the galactic cosmic ray flux, are an order of magnitude greater at high latitudes and in the stratosphere, as can be inferred from geological cosmogenic isotope records. Proxies for climate change in the same stratified depositories show strong correlations of climate with the inferred global circuit variations.The theory for electrical effects on scavenging of aerosols in clouds is reviewed, with several microphysical processes having consequences for contact ice nucleation; effects on droplet size distributions; precipitation and cloud lifetimes. There are several pathways for resulting macroscopic cloud changes that affect atmospheric circulation; including enhanced ice production and precipitation from clouds in cyclonic storms, with latent heat release affecting cyclone vorticity; and cloud cover changes in layer clouds that affect the atmospheric radiation balance. These macroscopic consequences of global circuit variability affecting aerosols–cloud interactions provide explanations for the many observations of short term and long term changes in clouds and climate that correlate with measured or inferred Jz and cosmic ray flux changes due to external or internal forcing, and lead to predictions of additional effects.

Journal ArticleDOI
TL;DR: This review will survey various applications of lasers in medicine including four major categories: types of lasers, laser-tissue interactions, therapeutics and diagnostics, and how the movement of an idea can truly change the medical world.
Abstract: It is hard to imagine that a narrow, one-way, coherent, moving, amplified beam of light fired by excited atoms is powerful enough to slice through steel. In 1917, Albert Einstein speculated that under certain conditions atoms could absorb light and be stimulated to shed their borrowed energy. Charles Townes coined the term laser (light amplification by stimulated emission of radiation) in 1951. Theodore Maiman investigated the glare of a flash lamp in a rod of synthetic ruby, creating the first human-made laser in 1960. The laser involves exciting atoms and passing them through a medium such as crystal, gas or liquid. As the cascade of photon energy sweeps through the medium, bouncing off mirrors, it is reflected back and forth, and gains energy to produce a high wattage beam of light. Although lasers are today used by a large variety of professions, one of the most meaningful applications of laser technology has been through its use in medicine. Being faster and less invasive with a high precision, lasers have penetrated into most medical disciplines during the last half century including dermatology, ophthalmology, dentistry, otolaryngology, gastroenterology, urology, gynaecology, cardiology, neurosurgery and orthopaedics. In many ways the laser has revolutionized the diagnosis and treatment of a disease. As a surgical tool the laser is capable of three basic functions. When focused on a point it can cauterize deeply as it cuts, reducing the surgical trauma caused by a knife. It can vaporize the surface of a tissue. Or, through optical fibres, it can permit a doctor to see inside the body. Lasers have also become an indispensable tool in biological applications from high-resolution microscopy to subcellular nanosurgery. Indeed, medical lasers are a prime example of how the movement of an idea can truly change the medical world. This review will survey various applications of lasers in medicine including four major categories: types of lasers, laser-tissue interactions, therapeutics and diagnostics.

Journal ArticleDOI
TL;DR: In this article, the authors review methods and applications of the phase field technique in computational materials science, one of the fastest-growing areas in computational material science, and present several applications of phase field techniques.
Abstract: This paper reviews methods and applications of the phase field technique, one of the fastest growing areas in computational materials science. The phase field method is used as a theory and computa ...

Journal ArticleDOI
TL;DR: In this paper, the authors focus on the most important features of the 40 K superconductor MgB2, including the weakly interacting multiple bands (the σ and π bands) and the distinct multiple superconducting energy gaps.
Abstract: This review focuses on the most important features of the 40 K superconductor MgB2—the weakly interacting multiple bands (the σ and π bands) and the distinct multiple superconducting energy gaps (the σ and π gaps). Even though the pairing mechanism of superconductor MgB2 is the conventional electron–phonon coupling, the prominent influence of the two bands and two gaps on its properties sets it apart from other superconductors. It leads to markedly different behaviors in upper critical field, vortex structure, magnetoresistance and many other superconducting and normal-state properties in MgB2 from single-band superconductors. Further, it gives rise to new physics that does not exist in single-band superconductors, such as the internal Josephson effects between the two order parameters. These unique phenomena depend sensitively on scattering inside and between the two bands, and the intraband and interband scattering can be modified by chemical substitution and irradiation. MgB2 has brought unprecedented attention to two-band superconductivity, which has been found to exist in other old and new superconductors. The legacy of MgB2 will be long lasting because of this, as well as the lessons it teaches in terms of the search for new phonon-mediated higher Tc superconductors.

Journal ArticleDOI
TL;DR: In this article, the interplay of topographic and electrical information, and the role of surface states in determining a material's electrical response at the nanoscale, is considered, and a suite of techniques has been developed to allow the determination of properties such as resistivity, surface potential and capacitance simultaneously with topographic information.
Abstract: Atomic force microscopy (AFM) is a key tool for nanotechnology research and finds its principal application in the determination of surface topography. However, the use of the AFM tip as a probe of electrical properties allows enormous insights into material functionality at the nanoscale. Hence, a burgeoning suite of techniques has been developed to allow the determination of properties such as resistivity, surface potential and capacitance simultaneously with topographic information. This has required the development of new instrumentation, of novel probes and of advanced sample preparation techniques. In order to understand and quantify the results of AFM-based electrical measurements, it has proved important to consider the interplay of topographic and electrical information, and the role of surface states in determining a material's electrical response at the nanoscale. Despite these challenges, AFM-based techniques provide unique insights into the electrical characteristics of ever-shrinking semiconductor devices and also allow us to probe the electrical properties of defects and self-assembled nanostructures.

Journal ArticleDOI
TL;DR: In this paper, a rather general discussion of high temperature superconductors as an example of a strongly correlated material is given, and it is argued that the resonating valence bond picture, formulated using gauge theory with fermionic and bosonic matter fields, gives an adequate physical understanding, even though many details are beyond the powers of current calculational tools.
Abstract: This review gives a rather general discussion of high temperature superconductors as an example of a strongly correlated material. The argument is made that in view of the many examples of unconventional superconductors discovered in the past twenty years, we should no longer be surprised that superconductivity emerges as a highly competitive ground state in systems where Coulomb repulsion plays a dominant role. The physics of the cuprates is discussed, emphasizing the unusual pseudogap phase in the underdoped region. It is argued that the resonating valence bond picture, as formulated using gauge theory with fermionic and bosonic matter fields, gives an adequate physical understanding, even though many details are beyond the powers of current calculational tools. The recent discovery of quantum oscillations in a high magnetic field is discussed in this context. Meanwhile, the problem of the quantum spin liquid (a spin system with antiferromagnetic coupling which refuses to order even at zero temperature) is a somewhat simpler version of the high Tc problem where significant progress has been made recently. It is understood that the existence of matter fields can lead to deconfinement of the U(1) gauge theory in 2 + 1 dimensions, and novel new particles (called fractionalized particles), such as fermionic spinons which carry spin and no charge, and gapless gauge bosons can emerge to create a new critical state at low energies. We even have a couple of real materials where such a scenario may be realized experimentally. The paper ends with answers to questions such as: What limits Tc if pairing is driven by an electronic energy scale? Why is the high Tc problem hard? Why is there no consensus? And why is the high Tc problem important?

Journal ArticleDOI
TL;DR: In this article, Binnig et al. discussed the progress related to theoretical and experimental imaging and force spectroscopy and discussed the use of atomic force microscopy in nano-scale science and technology.
Abstract: Since it was invented by Binnig et al in 1986, atomic force microscopy (AFM) has played a crucial role in nano-scale science and technology. AFM is a microscopic technique imaging a surface topography by using attractive and repulsive interaction forces between a few atoms attached at a tip on a cantilever and a sample. In the case of attractive forces, there are three main contributions causing AFM. These are short-range chemical force, van der Waals force and electrostatic force. As the effective ranges of these forces are different, one of them is dominant depending on distance. Atomic force spectroscopy is the force-versus-distance measurement when using AFM. The atomic force can be detected by cantilever bending caused by a tip‐sample interacting force, which is called static AFM. Also, the atomic force can be detected by using the resonant properties of a cantilever, which is called dynamic AFM. Under the on-resonance condition, the frequency, amplitude or phase of the cantilever will be shifted by the interaction force. While the force can be estimated in static AFM, for dynamic AFM it requires complicated formalism to evaluate the force from measured amplitude, phase or frequency data. Recently developed techniques for ultra-high resolution imaging unveil sub-atomic features of the sample, which are facilitated by low temperature, ultra-high vacuum environments together with a stiff cantilever. In this study, progress related to theoretical and experimental imaging and force spectroscopy will be discussed. (Some figures in this article are in colour only in the electronic version)

Journal ArticleDOI
TL;DR: In this article, the applicability of the concept of classical realism is constrained by existing experiments both in the EPR-Bell setup, including recent experiments testing "nonlocal realistic" theories, and in the area of "macroscopic quantum coherence".
Abstract: I consider the extent to which the applicability of the concept of classical realism is constrained, irrespective of the validity or not of the quantum formalism, by existing experiments both in the EPR-Bell setup, including recent experiments testing “nonlocal realistic” theories, and in the area of “macroscopic quantum coherence”. Unless we are willing to sacrifice one or more other intuitively plausible notions such as the conventional “arrow of time”, it appears impossible, in either context, to maintain the classical notion of realism. [Editors note: For a video of the talk given by Prof. Leggett at the Aharonov-80 conference in 2012 at Chapman University, see quantum.chapman.edu/talk-16.]

Journal ArticleDOI
TL;DR: A wide range of tools, challenges and physical interpretations have been proposed to map the cosmological expansion as discussed by the authors, including direct measures of cosmic scales through Type Ia supernova luminosity distances, and angular distance scales of baryon acoustic oscillation and cosmic microwave background density perturbations, as well as indirect probes such as the effect of cosmic expansion on the growth of matter density fluctuations.
Abstract: The ability to map the cosmological expansion has developed enormously, spurred by the turning point one decade ago of the discovery of cosmic acceleration. The standard model of cosmology has shifted from a matter dominated, standard gravity, decelerating expansion to the present search for the origin of acceleration in the cosmic expansion. We present a wide ranging review of the tools, challenges and physical interpretations. The tools include direct measures of cosmic scales through Type Ia supernova luminosity distances, and angular distance scales of baryon acoustic oscillation and cosmic microwave background density perturbations, as well as indirect probes such as the effect of cosmic expansion on the growth of matter density fluctuations. Accurate mapping of the expansion requires understanding of systematic uncertainties in both the measurements and the theoretical framework, but the result will give important clues to the nature of the physics behind accelerating expansion and to the fate of the universe.

Journal ArticleDOI
TL;DR: The Cosmic Microwave Background fluctuations provide a powerful probe of the dark ages of the universe through the imprint of the secondary anisotropies associated with the reionization of universe and the growth of structure as discussed by the authors.
Abstract: The Cosmic Microwave Background fluctuations provide a powerful probe of the dark ages of the universe through the imprint of the secondary anisotropies associated with the reionization of the universe and the growth of structure. We review the relation between the secondary anisotropies and the primary anisotropies that are directly generated by quantum fluctuations in the very early universe. The physics of secondary fluctuations is described, with emphasis on the ionization history and the evolution of structure. We discuss the different signatures arising from the secondary effects in terms of their induced temperature fluctuations, polarization and statistics. The secondary anisotropies are being actively pursued at present, and we review the future and current observational status.

Journal ArticleDOI
TL;DR: In this article, a transport theory involving resistivity and the Hall coefficient on the basis of the microscopic Fermi liquid theory was proposed, where the current due to these excitations is called a current vertex correction (CVC).
Abstract: In this paper, we present recent developments in the theory of transport phenomena based on the Fermi liquid theory. In conventional metals, various transport coefficients are scaled according to the quasiparticles relaxation time, τ, which implies that the relaxation time approximation (RTA) holds well. However, such a simple scaling does not hold in many strongly correlated electron systems. The most famous example would be high-Tc superconductors (HTSCs), where almost all the transport coefficients exhibit a significant deviation from the RTA results. This issue has been one of the most significant unresolved problems in HTSCs for a long time. Similar anomalous transport phenomena have been observed in metals near their antiferromagnetic (AF) quantum critical point (QCP). The main goal of this study is to demonstrate whether the anomalous transport phenomena in HTSC is evidence of a non-Fermi liquid ground state, or just RTA violation in strongly correlated Fermi liquids. Another goal is to establish a unified theory of anomalous transport phenomena in metals with strong magnetic fluctuations. For these purposes, we develop a method for calculating various transport coefficients beyond the RTA by employing field theoretical techniques.In a Fermi liquid, an excited quasiparticle induces other excited quasiparticles by collision, and current due to these excitations is called a current vertex correction (CVC). Landau noticed the existence of CVC first, which is indispensable for calculating transport coefficients in accord with the conservation laws. Here, we develop a transport theory involving resistivity and the Hall coefficient on the basis of the microscopic Fermi liquid theory, by considering the CVC. In nearly AF Fermi liquids, we find that the strong backward scattering due to AF fluctuations induces the CVC with prominent momentum dependence. This feature of the CVC can account for the significant enhancement in the Hall coefficient, magnetoresistance, thermoelectric power, and Nernst coefficient in nearly AF metals. According to the present numerical study, aspects of anomalous transport phenomena in HTSC are explained in a unified way by considering the CVC, without introducing any fitting parameters; this strongly supports the idea that HTSCs are Fermi liquids with strong AF fluctuations. Further, the present theory also explains very similar anomalous transport phenomena occurring in CeMIn5 (M = Co or Rh), which is a heavy-fermion system near the AF-QCP, and in the organic superconductor κ-(BEDT-TTF).In addition, the striking ω-dependence of the ac-Hall coefficient and the remarkable effects of impurities on the transport coefficients in HTSCs appear to fit naturally into the present theory. Many aspects of the present theory are in accord with the anomalous transport phenomena in HTSCs, organic superconductors and heavy-fermion systems near their AF-QCPs. We discuss some of the open questions for future work.

Journal ArticleDOI
TL;DR: In this article, the experimental results which led to the discovery of two-proton radioactivity are examined, and an outlook on future experimental studies and theoretical developments are discussed, together with a review of the modern theory of twoproton nuclear radioactivity.
Abstract: In the first part of this review, experimental results which lead to the discovery of two-proton radioactivity are examined. Beyond two-proton emission from nuclear ground states, we also discuss experimental studies of two-proton emission from excited states populated either by nuclear β decay or by inelastic reactions. In the second part, we review the modern theory of two-proton radioactivity. An outlook on future experimental studies and theoretical developments will conclude this review.

Journal ArticleDOI
TL;DR: The Energetic Gamma Ray Experiment Telescope (EGRET) as discussed by the authors was the predecessor mission of the Compton Gamma Ray Observatory (CGO) and studied high-energy photons in the 100 MeV energy range.
Abstract: Cosmic gamma rays provide insight into some of the most dynamic processes in the Universe. At the dawn of a new generation of gamma-ray telescopes, this review summarizes results from the Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory, the principal predecessor mission studying high-energy photons in the 100 MeV energy range. EGRET viewed a gamma-ray sky dominated by prominent emission from the Milky Way, but featuring an array of other sources, including quasars, pulsars, gamma-ray bursts and many sources that remain unidentified. A central feature of the EGRET results was the high degree of variability seen in many gamma-ray sources, indicative of the powerful forces at work in objects visible to gamma-ray telescopes.

Journal ArticleDOI
A M Bratkovsky1
TL;DR: In this paper, a microscopic description of spin tunneling through oxide and modified Schottky barriers between a ferromagnet (FM) and a semiconductor (S) is given, and it is shown that in such FM-S junctions electrons with a certain spin projection can be efficiently injected into S, while electrons with the opposite spin can accumulate in S near the interface.
Abstract: Spintronics is a rapidly growing field focusing on phenomena and related devices essentially dependent on spin transport. Some of them are already an established part of microelectronics. We review recent theoretical and experimental advances in achieving large spin injection efficiency (polarization of current) and accumulated spin polarization. These include tunnel and giant magnetoresistance, spin-torque and spin–orbit effects on electron transport in various heterostructures. We give a microscopic description of spin tunneling through oxide and modified Schottky barriers between a ferromagnet (FM) and a semiconductor (S). It is shown that in such FM–S junctions electrons with a certain spin projection can be efficiently injected into (or extracted from) S, while electrons with the opposite spin can accumulate in S near the interface. The criterion for efficient injection is opposite to a known Rashba criterion, since the barrier should be rather transparent. In degenerate semiconductors, extraction of spin can proceed at low temperatures. We mention a few novel spin-valve ultrafast devices with small dissipated power: a magnetic sensor, a spin transistor, an amplifier, a frequency multiplier, a square-law detector and a source of polarized radiation. We also discuss effects related to spin–orbital interactions, such as the spin Hall effect (SHE) and a recently predicted positive magnetoresistance accompanying SHE. Some esoteric devices such as 'spinFET', interacting spin logic and spin-based quantum computing are discussed and problems with their realization are highlighted. We demonstrate that the so-called 'ferroelectric tunnel junctions' are unlikely to provide additional functionality because in all realistic situations the ferroelectric barrier would be split into domains by the depolarizing field.

Journal ArticleDOI
TL;DR: In this article, a combination of scanning tunneling microscopy, noncontact atomic force microscopy and theory is applied to a variety of oxide systems including Al2O3, NiO, ferroelectric BaTiO3 and tungstates and molybdates.
Abstract: The intersection of two fields, oxide surface science and scanning probe microscopy (SPM), has yielded considerable insight on atomic processes at surfaces. Oxide surfaces, especially those containing transition metals, offer a rich variety of structures and localized physical phenomena that are exploited in a wide range of applications. Nonlinear optics, superconductivity, ferroelectricity and chemical catalytic activity are but a few. Furthermore, the challenges and solutions associated with the chemistry of these surfaces and particularly the solutions to these problems have led to important understanding of tip–surface interactions that can inform SPM studies of all materials. Here, the development of understanding of the model systems TiO2 and SrTiO3 are considered in detail, to demonstrate the role of nonstoichiometry in surface structure evolution and the approach to interpreting structure at the atomic level. Then a combination of scanning tunneling microscopy, noncontact atomic force microscopy and theory are applied to a variety of oxide systems including Al2O3, NiO, ferroelectric BaTiO3, tungstates and molybdates. Recently developed sophisticated probes of local properties include spin-polarized tunneling, Fourier mapping of charge density waves, band gap mapping of superconductors and ultra fast imaging of atomic diffusion. The impact of these studies on our understanding of the behavior of oxides and of tip–surface interactions is summarized.

Journal ArticleDOI
TL;DR: In this paper, the authors report on the recently developed technique of magnetic-field-dependent small-angle neutron scattering (SANS), with attention to bulk ferromagnets exhibiting random magnetic anisotropy.
Abstract: We report on the recently developed technique of magnetic-field-dependent small-angle neutron scattering (SANS), with attention to bulk ferromagnets exhibiting random magnetic anisotropy. In these materials, the various magnetic anisotropy fields (magnetocrystalline, magnetoelastic, and/or magnetostatic in origin) perturb the perfectly parallel spin alignment of the idealized ferromagnetic state. By varying the applied magnetic field, one can control one of the ordering terms which competes with the above-mentioned perturbing fields. Experiments which explore the ensuing reaction of the magnetization will therefore provide information not only on the field-dependent spin structure but, importantly, on the underlying magnetic interaction terms. This strategy, which underlies conventional studies of hysteresis loops in magnetometry, is here combined with magnetic SANS. While magnetometry generally records only a single scalar quantity, the integral magnetization, SANS provides access to a vastly richer data set, the Fourier spectrum of the response of the spin system as a function of the magnitude and orientation of the wave vector. The required data-analysis procedures have recently been established, and experiments on a number of magnetic materials, mostly nanocrystalline or nanocomposite metals, have been reported. Here, we summarize the theory of magnetic-field-dependent SANS along with the underlying description of random anisotropy magnets by micromagnetic theory. We review experiments which have explored the magnetic interaction parameters, the value of the exchange-stiffness constant as well as the Fourier components of the magnetic anisotropy field and of the magnetostatic stray field. A model-independent approach, based on the experimental autocorrelation function of the spin misalignment, provides access to the characteristic length of the spin misalignment. The field dependence of this quantity is in quantitative agreement with the predictions of micromagnetic theory. Experiments on nanocomposite ferromagnets reveal that the jump of the magnetization at internal phase boundaries leads to a significant magnetostatic perturbing field, with an unusual 'clover-leaf' SANS pattern as the experimental signature. Furthermore, SANS experiments have been used to monitor the orientation of magnetic domains as well as the length scale of intradomain spin misalignment.

Journal ArticleDOI
TL;DR: The progress in the field of front propagation in recent years is reviewed, encompassing very diverse systems such as those with biased random walks, distributed delays, sequential reaction and dispersion, cohabitation models, age structure and systems with several interacting species.
Abstract: We review the progress in the field of front propagation in recent years. We survey many physical, biophysical and cross-disciplinary applications, including reduced-variable models of combustion flames, Reid's paradox of rapid forest range expansions, the European colonization of North America during the 19th century, the Neolithic transition in Europe from 13 000 to 5000 years ago, the description of subsistence boundaries, the formation of cultural boundaries, the spread of genetic mutations, theory and experiments on virus infections, models of cancer tumors, etc. Recent theoretical advances are unified in a single framework, encompassing very diverse systems such as those with biased random walks, distributed delays, sequential reaction and dispersion, cohabitation models, age structure and systems with several interacting species. Directions for future progress are outlined.

Journal ArticleDOI
TL;DR: In this paper, the authors present some of the concepts developed in the field of quantum chaos which have some application to study many-body effects in mesoscopic and nanoscopic systems.
Abstract: Experimental progresses in the miniaturisation of electronic devices have made routinely available in the laboratory small electronic systems, on the micron or sub-micron scale, which at low temperature are sufficiently well isolated from their environment to be considered as fully coherent. Some of their most important properties are dominated by the interaction between electrons. Understanding their behaviour therefore requires a description of the interplay between interference effects and interactions. The goal of this review is to address this relatively broad issue, and more specifically to address it from the perspective of the quantum chaos community. I will therefore present some of the concepts developed in the field of quantum chaos which have some application to study many-body effects in mesoscopic and nanoscopic systems. Their implementation is illustrated on a few examples of experimental relevance such as persistent currents, mesoscopic fluctuations of Kondo properties or Coulomb blockade. I will furthermore try to bring out, from the various physical illustrations, some of the specific advantages on more general grounds of the quantum chaos based approach.