scispace - formally typeset
Search or ask a question

Showing papers in "Reports on Progress in Physics in 2014"


Journal ArticleDOI
TL;DR: The physical principles that allow for magnetic field detection with NV centres are presented and first applications of NV magnetometers that have been demonstrated in the context of nano magnetism, mesoscopic physics and the life sciences are discussed.
Abstract: The isolated electronic spin system of the nitrogen-vacancy (NV) centre in diamond offers unique possibilities to be employed as a nanoscale sensor for detection and imaging of weak magnetic fields. Magnetic imaging with nanometric resolution and field detection capabilities in the nanotesla range are enabled by the atomic-size and exceptionally long spin-coherence times of this naturally occurring defect. The exciting perspectives that ensue from these characteristics have triggered vivid experimental activities in the emerging field of 'NV magnetometry'. It is the purpose of this article to review the recent progress in high-sensitivity nanoscale NV magnetometry, generate an overview of the most pertinent results of the last years and highlight perspectives for future developments. We will present the physical principles that allow for magnetic field detection with NV centres and discuss first applications of NV magnetometers that have been demonstrated in the context of nano magnetism, mesoscopic physics and the life sciences.

1,033 citations


Journal ArticleDOI
TL;DR: Different realized and proposed techniques for creating gauge potentials-both Abelian and non-Abelian-in atomic systems and their implication in the context of quantum simulation are reviewed.
Abstract: Gauge fields are central in our modern understanding of physics at all scales. At the highest energy scales known, the microscopic universe is governed by particles interacting with each other through the exchange of gauge bosons. At the largest length scales, our Universe is ruled by gravity, whose gauge structure suggests the existence of a particle—the graviton—that mediates the gravitational force. At the mesoscopic scale, solid-state systems are subjected to gauge fields of different nature: materials can be immersed in external electromagnetic fields, but they can also feature emerging gauge fields in their low-energy description. In this review, we focus on another kind of gauge field: those engineered in systems of ultracold neutral atoms. In these setups, atoms are suitably coupled to laser fields that generate effective gauge potentials in their description. Neutral atoms ‘feeling’ laser-induced gauge potentials can potentially mimic the behavior of an electron gas subjected to a magnetic field, but also, the interaction of elementary particles with non-Abelian gauge fields. Here, we review different realized and proposed techniques for creating gauge potentials—both Abelian and non-Abelian—in atomic systems and discuss their implication in the context of quantum simulation. While most of these setups concern the realization of background and classical gauge potentials, we conclude with more exotic proposals where these synthetic fields might be made dynamical, in view of simulating interacting gauge theories with cold atoms.

960 citations


Journal ArticleDOI
TL;DR: A comprehensive and up-to-date review of the concept of quantum non-Markovianity, a central theme in the theory of open quantum systems, is presented and a detailed comparison with other definitions presented in the literature is provided.
Abstract: We present a comprehensive and up-to-date review of the concept of quantum non-Markovianity, a central theme in the theory of open quantum systems. We introduce the concept of a quantum Markovian process as a generalization of the classical definition of Markovianity via the so-called divisibility property and relate this notion to the intuitive idea that links non-Markovianity with the persistence of memory effects. A detailed comparison with other definitions presented in the literature is provided. We then discuss several existing proposals to quantify the degree of non-Markovianity of quantum dynamics and to witness non-Markovian behavior, the latter providing sufficient conditions to detect deviations from strict Markovianity. Finally, we conclude by enumerating some timely open problems in the field and provide an outlook on possible research directions.

799 citations


Journal ArticleDOI
TL;DR: It is argued here that the dynamics of multiferroic domain walls significantly contributes to the amplification of ME response, which has been revealed through the dielectric spectroscopy.
Abstract: Multiferroics, compounds with both magnetic and ferroelectric orders, are believed to be a key material system to achieve cross-control between magnetism and electricity in a solid with minute energy dissipation. Such a colossal magnetoelectric (ME) effect has been an issue of keen interest for a long time in condensed matter physics as well as a most desired function in the emerging spin-related electronics. Here we begin with the basic mechanisms to realize multiferroicity or spin-driven ferroelectricity in magnetic materials, which have recently been clarified and proved both theoretically and experimentally. According to the proposed mechanisms, many families of multiferroics have been explored, found (re-discovered), and newly developed, realizing a variety of colossal ME controls. We overview versatile multiferroics from the viewpoints of their multiferroicity mechanisms and their fundamental ME characteristics on the basis of the recent advances in exploratory materials. One of the new directions in multiferroic science is the dynamical ME effect, namely the dynamical and/or fast cross-control between electric and magnetic dipoles in a solid. We argue here that the dynamics of multiferroic domain walls significantly contributes to the amplification of ME response, which has been revealed through the dielectric spectroscopy. Another related issue is the electric-dipole-active magnetic resonance, called electromagnons. The electromagnons can provide a new stage of ME optics via resonant coupling with the external electromagnetic wave (light). Finally, we give concluding remarks on multiferroics physics in the light of a broader perspective from the emergent electromagnetism in a solid as well as from the possible application toward future dissipationless electronics.

706 citations


Journal ArticleDOI
TL;DR: This review discusses the common physical properties of systems exhibiting shear thickening, and different mechanisms and models proposed to describe it, and suggests how these mechanisms may be related and generalized, and proposes a general phase diagram for shear Thickening systems.
Abstract: Shear thickening is a type of non-Newtonian behavior in which the stress required to shear a fluid increases faster than linearly with shear rate. Many concentrated suspensions of particles exhibit an especially dramatic version, known as Discontinuous Shear Thickening (DST), in which the stress suddenly jumps with increasing shear rate and produces solid-like behavior. The best known example of such counter-intuitive response to applied stresses occurs in mixtures of cornstarch in water. Over the last several years, this shear-induced solid-like behavior together with a variety of other unusual fluid phenomena has generated considerable interest in the physics of densely packed suspensions. In this review, we discuss the common physical properties of systems exhibiting shear thickening, and different mechanisms and models proposed to describe it. We then suggest how these mechanisms may be related and generalized, and propose a general phase diagram for shear thickening systems. We also discuss how recent work has related the physics of shear thickening to that of granular materials and jammed systems. Since DST is described by models that require only simple generic interactions between particles, we outline the broader context of other concentrated many-particle systems such as foams and emulsions, and explain why DST is restricted to the parameter regime of hard-particle suspensions. Finally, we discuss some of the outstanding problems and emerging opportunities.

461 citations


Journal ArticleDOI
TL;DR: This work addresses concerns about the applicability of research-based PER practices in physics education, and identifies future studies required to overcome the gap between research and practice.
Abstract: Physics faculty, experts in evidence-based research, often rely on anecdotal experience to guide their teaching practices. Adoption of research-based instructional strategies is surprisingly low, despite the large body of physics education research (PER) and strong dissemination effort of PER researchers and innovators. Evidence-based PER has validated specific non-traditional teaching practices, but many faculty raise valuable concerns toward their applicability. We address these concerns and identify future studies required to overcome the gap between research and practice.

415 citations


Journal ArticleDOI
TL;DR: This short review covers the recent progress in understanding mechanisms and effects of fluctuations in biological systems of different scales and the basic approaches to their mathematical modeling.
Abstract: Noise permeates biology on all levels, from the most basic molecular, sub-cellular processes to the dynamics of tissues, organs, organisms and populations. The functional roles of noise in biological processes can vary greatly. Along with standard, entropy-increasing effects of producing random mutations, diversifying phenotypes in isogenic populations, limiting information capacity of signaling relays, it occasionally plays more surprising constructive roles by accelerating the pace of evolution, providing selective advantage in dynamic environments, enhancing intracellular transport of biomolecules and increasing information capacity of signaling pathways. This short review covers the recent progress in understanding mechanisms and effects of fluctuations in biological systems of different scales and the basic approaches to their mathematical modeling.

391 citations


Journal ArticleDOI
TL;DR: The technical and conceptual developments of this method in nuclear physics, and the results of coupled-cluster calculations for nucleonic matter, and for exotic isotopes of helium, oxygen, calcium, and some of their neighbors are reviewed.
Abstract: In the past decade, coupled-cluster theory has seen a renaissance in nuclear physics, with computations of neutron-rich and medium-mass nuclei. The method is efficient for nuclei with product-state references, and it describes many aspects of weakly bound and unbound nuclei. This report reviews the technical and conceptual developments of this method in nuclear physics, and the results of coupled-cluster calculations for nucleonic matter, and for exotic isotopes of helium, oxygen, calcium, and some of their neighbors.

386 citations


Journal ArticleDOI
TL;DR: The latest developments in the study of a quantum spin liquid are described, focusing on the spin liquid phenomenology and the kinds of materials where such a phase might be found.
Abstract: The spin ice materials, including Ho2Ti2O7 and Dy2Ti2O7, are rare-earth pyrochlore magnets which, at low temperatures, enter a constrained paramagnetic state with an emergent gauge freedom. Spin ices provide one of very few experimentally realized examples of fractionalization because their elementary excitations can be regarded as magnetic monopoles and, over some temperature range, spin ice materials are best described as liquids of these emergent charges. In the presence of quantum fluctuations, one can obtain, in principle, a quantum spin liquid descended from the classical spin ice state characterized by emergent photon-like excitations. Whereas in classical spin ices the excitations are akin to electrostatic charges with a mutual Coulomb interaction, in the quantum spin liquid these charges interact through a dynamic and emergent electromagnetic field. In this review, we describe the latest developments in the study of such a quantum spin ice, focusing on the spin liquid phenomenology and the kinds of materials where such a phase might be found.

358 citations


Journal ArticleDOI
TL;DR: It is described how tensegrity is used at multiple size scales in the hierarchy of life to both stabilize three-dimensional form and to channel forces from the macroscale to the nanoscale, thereby facilitating mechanochemical conversion at the molecular level.
Abstract: The recent convergence between physics and biology has led many physicists to enter the fields of cell and developmental biology. One of the most exciting areas of interest has been the emerging field of mechanobiology that centers on how cells control their mechanical properties, and how physical forces regulate cellular biochemical responses, a process that is known as mechanotransduction. In this article, we review the central role that tensegrity (tensional integrity) architecture, which depends on tensile prestress for its mechanical stability, plays in biology. We describe how tensional prestress is a critical governor of cell mechanics and function, and how use of tensegrity by cells contributes to mechanotransduction. Theoretical tensegrity models are also described that predict both quantitative and qualitative behaviors of living cells, and these theoretical descriptions are placed in context of other physical models of the cell. In addition, we describe how tensegrity is used at multiple size scales in the hierarchy of life—from individual molecules to whole living organisms—to both stabilize three-dimensional form and to channel forces from the macroscale to the nanoscale, thereby facilitating mechanochemical conversion at the molecular level.

351 citations


Journal ArticleDOI
TL;DR: In contrast to the spatial Bell's inequalities which probe entanglement between spatially separated systems, the Leggett?Garg inequalities test the correlations of a single system measured at different times as mentioned in this paper.
Abstract: In contrast to the spatial Bell's inequalities which probe entanglement between spatially separated systems, the Leggett?Garg inequalities test the correlations of a single system measured at different times. Violation of a genuine Leggett?Garg test implies either the absence of a realistic description of the system or the impossibility of measuring the system without disturbing it. Quantum mechanics violates the inequalities on both accounts and the original motivation for these inequalities was as a test for quantum coherence in macroscopic systems. The last few years has seen a number of experimental tests and violations of these inequalities in a variety of microscopic systems such as superconducting qubits, nuclear spins, and photons. In this article, we provide an introduction to the Leggett?Garg inequalities and review these latest experimental developments. We discuss important topics such as the significance of the non-invasive measurability assumption, the clumsiness loophole, and the role of weak measurements. Also covered are some recent theoretical proposals for the application of Leggett?Garg inequalities in quantum transport, quantum biology and nano-mechanical systems.

Journal ArticleDOI
TL;DR: In this article, the Fermi polaron problem is applied to the study of itinerant ferromagnetism, a long-standing problem in quantum mechanics, and it is shown that the polaron problems can be used to model the phase diagram of strongly interacting population-imbalanced quantum mixtures.
Abstract: In this review, we discuss the properties of a few impurity atoms immersed in a gas of ultracold fermions--the so-called Fermi polaron problem. On one hand, this many-body system is appealing because it can be described almost exactly with simple diagrammatic and/or variational theoretical approaches. On the other, it provides a quantitatively reliable insight into the phase diagram of strongly interacting population-imbalanced quantum mixtures. In particular, we show that the polaron problem can be applied to the study of itinerant ferromagnetism, a long-standing problem in quantum mechanics.

Journal ArticleDOI
Per Helander1
TL;DR: The mathematical apparatus to describe stellarator plasmas is developed from first principles and basic elements underlying confinement optimization are introduced.
Abstract: The theory of plasma confinement by non-axisymmetric magnetic fields is reviewed. Such fields are used to confine fusion plasmas in stellarators, where in contrast to tokamaks and reversed-field pinches the magnetic field generally does not possess any continuous symmetry. The discussion is focussed on magnetohydrodynamic equilibrium conditions, collisionless particle orbits, and the kinetic theory of equilbrium and transport. Each of these topics is fundamentally affected by the absence of symmetry in the magnetic field: the field lines need not trace out nested flux surfaces, the particle orbits may not be confined, and the cross-field transport can be very large. Nevertheless, by tailoring the magnetic field appropriately, well-behaved equilibria with good confinement can be constructed, potentially offering an attractive route to magnetic fusion. In this article, the mathematical apparatus to describe stellarator plasmas is developed from first principles and basic elements underlying confinement optimization are introduced.

Journal ArticleDOI
TL;DR: Pro and contra of the hypothesis that generic polymer properties of topological constraints are behind many aspects of chromatin folding in eukaryotic cells are reviewed, as well as recent experimental discoveries related to genome folding.
Abstract: We review pro and contra of the hypothesis that generic polymer properties of topological constraints are behind many aspects of chromatin folding in eukaryotic cells. For that purpose, we review, first, recent theoretical and computational findings in polymer physics related to concentrated, topologically simple (unknotted and unlinked) chains or a system of chains. Second, we review recent experimental discoveries related to genome folding. Understanding in these fields is far from complete, but we show how looking at them in parallel sheds new light on both.

Journal ArticleDOI
TL;DR: In this article, an overview of the observational properties of the Crab and its current understanding of pulsars and their nebulae is given, together with a review of the intriguing and suggestive developments.
Abstract: The Crab nebula and its pulsar (referred to together as 'the Crab') have historically played a central role in astrophysics. True to this legacy, several unique discoveries have been made recently. The Crab was found to emit gamma-ray pulsations up to energies of 400 GeV, beyond what was previously expected from pulsars. Strong gamma-ray flares, of durations of a few days, were discovered from within the nebula, while the source was previously expected to be stable in flux on these time scales. Here we review these intriguing and suggestive developments. In this context we give an overview of the observational properties of the Crab and our current understanding of pulsars and their nebulae.

Journal ArticleDOI
TL;DR: Recent experimental and theoretical progress on ultracold alkaline-earth Fermi gases with emergent SU(N) symmetry is reviewed and some of the challenges that lie ahead for the realization of such phases such as reaching the temperature scale required to observe magnetic and more exotic quantum orders are discussed.
Abstract: We review recent experimental and theoretical progress on ultracold alkaline-earth Fermi gases with emergent SU(N) symmetry. Emphasis is placed on describing the ground-breaking experimental achievements of recent years. The latter include (1) the cooling to below quantum degeneracy of various isotopes of ytterbium and strontium, (2) the demonstration of optical Feshbach resonances and the optical Stern?Gerlach effect, (3) the realization of a Mott insulator of 173Yb atoms, (4) the creation of various kinds of Fermi?Bose mixtures and (5) the observation of many-body physics in optical lattice clocks. On the theory side, we survey the zoo of phases that have been predicted for both gases in a trap and loaded into an optical lattice, focusing on two and three dimensional systems. We also discuss some of the challenges that lie ahead for the realization of such phases such as reaching the temperature scale required to observe magnetic and more exotic quantum orders. The challenge of dealing with collisional relaxation of excited electronic levels is also discussed.

Journal ArticleDOI
TL;DR: The role of the Ising model of phase transitions to model social and financial systems is reviewed, with the concepts of random utilities and the logit model as the analog of the Boltzmann factor in statistical physics.
Abstract: This short review presents a selected history of the mutual fertilization between physics and economics—from Isaac Newton and Adam Smith to the present. The fundamentally different perspectives embraced in theories developed in financial economics compared with physics are dissected with the examples of the volatility smile and of the excess volatility puzzle. The role of the Ising model of phase transitions to model social and financial systems is reviewed, with the concepts of random utilities and the logit model as the analog of the Boltzmann factor in statistical physics. Recent extensions in terms of quantum decision theory are also covered. A wealth of models are discussed briefly that build on the Ising model and generalize it to account for the many stylized facts of financial markets. A summary of the relevance of the Ising model and its extensions is provided to account for financial bubbles and crashes. The review would be incomplete if it did not cover the dynamical field of agent-based models (ABMs), also known as computational economic models, of which the Ising-type models are just special ABM implementations. We formulate the ‘Emerging Intelligence Market Hypothesis’ to reconcile the pervasive presence of ‘noise traders’ with the near efficiency of financial markets. Finally, we note that evolutionary biology, more than physics, is now playing a growing role to inspire models of financial markets.

Journal ArticleDOI
TL;DR: The mission concept and its theoretical background are presented, the data are discussed, and an overview of the major advances GRACE has provided in Earth science is given, with a focus on hydrology, solid Earth sciences, glaciology and oceanography.
Abstract: Continuous observations of temporal variations in the Earth's gravity field have recently become available at an unprecedented resolution of a few hundreds of kilometers. The gravity field is a product of the Earth's mass distribution, and these data—provided by the satellites of the Gravity Recovery And Climate Experiment (GRACE)—can be used to study the exchange of mass both within the Earth and at its surface. Since the launch of the mission in 2002, GRACE data has evolved from being an experimental measurement needing validation from ground truth, to a respected tool for Earth scientists representing a fixed bound on the total change and is now an important tool to help unravel the complex dynamics of the Earth system and climate change. In this review, we present the mission concept and its theoretical background, discuss the data and give an overview of the major advances GRACE has provided in Earth science, with a focus on hydrology, solid Earth sciences, glaciology and oceanography.

Journal ArticleDOI
TL;DR: It is shown how, on the one hand, recent experiments performed on straight cracks propagating in soft brittle materials have quantitatively confirmed the predictions of this theory to an unprecedented degree, and how this breakdown naturally leads to a new theoretical framework coined 'weakly nonlinear fracture mechanics', where weak elastic nonlinearities are incorporated.
Abstract: The failure of materials and interfaces is mediated by cracks, almost singular dissipative structures that propagate at velocities approaching the speed of sound. Crack initiation and subsequent propagation-the dynamic process of fracture-couples a wide range of time and length scales. Crack dynamics challenge our understanding of the fundamental physics processes that take place in the extreme conditions within the almost singular region where material failure occurs. Here, we first briefly review the classic approach to dynamic fracture, namely linear elastic fracture mechanics (LEFM), and discuss its successes and limitations. We show how, on the one hand, recent experiments performed on straight cracks propagating in soft brittle materials have quantitatively confirmed the predictions of this theory to an unprecedented degree. On the other hand, these experiments show how LEFM breaks down as the singular region at the tip of a crack is approached. This breakdown naturally leads to a new theoretical framework coined 'weakly nonlinear fracture mechanics', where weak elastic nonlinearities are incorporated. The stronger singularity predicted by this theory gives rise to a new and intrinsic length scale, lnl. These predictions are verified in detail through direct measurements. We then theoretically and experimentally review how the emergence of lnl is linked to a new equation for crack motion, which predicts the existence of a high-speed oscillatory crack instability whose wavelength is determined by lnl. We conclude by delineating outstanding challenges in the field.

Journal ArticleDOI
TL;DR: The present status of three indirect techniques that are used to determine reaction rates for stellar burning processes, asymptotic normalization coefficients, the Trojan Horse method and Coulomb dissociation are discussed.
Abstract: In this review, we discuss the present status of three indirect techniques that are used to determine reaction rates for stellar burning processes, asymptotic normalization coefficients, the Trojan Horse method and Coulomb dissociation. A comprehensive review of the theory behind each of these techniques is presented. This is followed by an overview of the experiments that have been carried out using these indirect approaches.

Journal ArticleDOI
Jay D. Tasson1
TL;DR: This work reviews the key concepts associated with Lorentz and CPT symmetry, the structure of the SME framework, and some recent experimental and theoretical results.
Abstract: The realization that Planck-scale physics can be tested with existing technology through the search for spacetime-symmetry violation brought about the development of a comprehensive framework, known as the gravitational standard-model extension (SME), for studying deviations from exact Lorentz and CPT symmetry in nature. The development of this framework and its motivation led to an explosion of new tests of Lorentz symmetry over the past decade and to considerable theoretical interest in the subject. This work reviews the key concepts associated with Lorentz and CPT symmetry, the structure of the SME framework, and some recent experimental and theoretical results.

Journal ArticleDOI
TL;DR: A snapshot of a broad range of physics phenomenology which benefits from the unique properties of responsive microgel particles is provided.
Abstract: This review collects and describes experiments that employ colloidal suspensions to probe physics in ordered and disordered solids and related complex fluids. The unifying feature of this body of work is its clever usage of poly(N-isopropylacrylamide) (PNIPAM) microgel particles. These temperature-sensitive colloidal particles provide experimenters with a 'knob' for in situ control of particle size, particle interaction and particle packing fraction that, in turn, influence the structural and dynamical behavior of the complex fluids and solids. A brief summary of PNIPAM particle synthesis and properties is given, followed by a synopsis of current activity in the field. The latter discussion describes a variety of soft matter investigations including those that explore formation and melting of crystals and clusters, and those that probe structure, rearrangement and rheology of disordered (jammed/glassy) and partially ordered matter. The review, therefore, provides a snapshot of a broad range of physics phenomenology which benefits from the unique properties of responsive microgel particles.

Journal ArticleDOI
TL;DR: The basic building blocks of infectious disease epidemiology are considered--the SIS and SIR type models--before considering the progress that has been made over the recent decades and the challenges that lie ahead.
Abstract: Modern infectious disease epidemiology has a strong history of using mathematics both for prediction and to gain a deeper understanding. However the study of infectious diseases is a highly interdisciplinary subject requiring insights from multiple disciplines, in particular a biological knowledge of the pathogen, a statistical description of the available data and a mathematical framework for prediction. Here we begin with the basic building blocks of infectious disease epidemiology—the SIS and SIR type models—before considering the progress that has been made over the recent decades and the challenges that lie ahead. Throughout we focus on the understanding that can be developed from relatively simple models, although accurate prediction will inevitably require far greater complexity beyond the scope of this review. In particular, we focus on three critical aspects of infectious disease models that we feel fundamentally shape their dynamics: heterogeneously structured populations, stochasticity and spatial structure. Throughout we relate the mathematical models and their results to a variety of real-world problems.

Journal ArticleDOI
TL;DR: The two forms of motility constitute an active process that amplifies mechanical inputs, sharpens frequency discrimination, and confers a compressive nonlinearity on responsiveness: the cochlea and the bifurcation.
Abstract: Most sounds of interest consist of complex, time-dependent admixtures of tones of diverse frequencies and variable amplitudes. To detect and process these signals, the ear employs a highly nonlinear, adaptive, real-time spectral analyzer: the cochlea. Sound excites vibration of the eardrum and the three miniscule bones of the middle ear, the last of which acts as a piston to initiate oscillatory pressure changes within the liquid-filled chambers of the cochlea. The basilar membrane, an elastic band spiraling along the cochlea between two of these chambers, responds to these pressures by conducting a largely independent traveling wave for each frequency component of the input. Because the basilar membrane is graded in mass and stiffness along its length, however, each traveling wave grows in magnitude and decreases in wavelength until it peaks at a specific, frequency-dependent position: low frequencies propagate to the cochlear apex, whereas high frequencies culminate at the base. The oscillations of the basilar membrane deflect hair bundles, the mechanically sensitive organelles of the ear's sensory receptors, the hair cells. As mechanically sensitive ion channels open and close, each hair cell responds with an electrical signal that is chemically transmitted to an afferent nerve fiber and thence into the brain. In addition to transducing mechanical inputs, hair cells amplify them by two means. Channel gating endows a hair bundle with negative stiffness, an instability that interacts with the motor protein myosin-1c to produce a mechanical amplifier and oscillator. Acting through the piezoelectric membrane protein prestin, electrical responses also cause outer hair cells to elongate and shorten, thus pumping energy into the basilar membrane's movements. The two forms of motility constitute an active process that amplifies mechanical inputs, sharpens frequency discrimination, and confers a compressive nonlinearity on responsiveness. These features arise because the active process operates near a Hopf bifurcation, the generic properties of which explain several key features of hearing. Moreover, when the gain of the active process rises sufficiently in ultraquiet circumstances, the system traverses the bifurcation and even a normal ear actually emits sound. The remarkable properties of hearing thus stem from the propagation of traveling waves on a nonlinear and excitable medium.

Journal ArticleDOI
TL;DR: The design rules and the resonant mechanisms that can lead to very efficient light-matter interactions in sub-wavelength nanostructure arrays are reviewed and the role of symmetries and free-space coupling of resonant structures is emphasized.
Abstract: Dielectric and metallic gratings have been studied for more than a century. Nevertheless, novel optical phenomena and fabrication techniques have emerged recently and have opened new perspectives for applications in the visible and infrared domains. Here, we review the design rules and the resonant mechanisms that can lead to very efficient light–matter interactions in sub-wavelength nanostructure arrays. We emphasize the role of symmetries and free-space coupling of resonant structures. We present the different scenarios for perfect optical absorption, transmission or reflection of plane waves in resonant nanostructures. We discuss the fabrication issues, experimental achievements and emerging applications of resonant nanostructure arrays.

Journal ArticleDOI
TL;DR: In this paper, the authors outline a systematic strategy that should help in this decade to identify new physics beyond the standard model (SM) by means of quark flavour violating processes, and thereby extend the picture of short distance physics down to scales as short as 10−20 m and even shorter distance scales corresponding to energies of 100 TeV.
Abstract: We outline a systematic strategy that should help in this decade to identify new physics (NP) beyond the standard model (SM) by means of quark flavour violating processes, and thereby extend the picture of short distance physics down to scales as short as 10−20 m and even shorter distance scales corresponding to energies of 100 TeV. Rather than using all of the possible flavour-violating observables that will be measured in the coming years at the LHC, SuperKEKB and in Kaon physics dedicated experiments at CERN, J-PARC and Fermilab, we concentrate on those observables that are theoretically clean and very sensitive to NP. Assuming that the data on the selected observables will be very precise, we stress the importance of correlations between these observables as well as of future precise calculations of non-perturbative parameters by means of lattice QCD simulations with dynamical fermions. Our strategy consists of twelve steps, which we will discuss in detail while illustrating the possible outcomes with the help of the SM, models with constrained minimal flavour violation (CMFV), MFV at large and models with tree-level flavour changing neutral currents mediated by neutral gauge bosons and scalars. We will also briefly summarize the status of a number of concrete models. We propose DNA charts that exhibit correlations between flavour observables in different NP scenarios. Models with new left-handed and/or right-handed currents and non-MFV interactions can be distinguished transparently in this manner. We emphasize the important role of the stringent CMFV relations between various observables as standard candles of flavour physics. The pattern of deviations from these relations may help in identifying the correct NP scenario. The success of this program will be very much facilitated through direct signals of NP at the LHC, even if the LHC will not be able to probe the physics at scales shorter than 4 × 10−20 m. We also emphasize the importance of lepton flavour violation, electric dipole moments, and (g − 2)e, μ in these studies.

Journal ArticleDOI
TL;DR: This work reviews both experimental and theoretical aspects of the recently discovered phenomena of 'parity effect' and 'shell effect' that lead to a strong, non-monotonic size dependence of the superconducting energy gap and associated properties in quasi-0D superconductors.
Abstract: Quantum confinement and surface effects (SEs) dramatically modify most solid state phenomena as one approaches the nanometer scale, and superconductivity is no exception. Though we may expect significant modifications from bulk superconducting properties when the system dimensions become smaller than the characteristic length scales for bulk superconductors—such as the coherence length or the penetration depth—it is now established that there is a third length scale which ultimately determines the critical size at which Cooper pairing is destroyed. In quasi-zero-dimensional (0D) superconductors (e.g. nanocrystalline materials, isolated or embedded nanoparticles), one may define a critical particle diameter below which the mean energy level spacing arising from quantum confinement becomes equal to the bulk superconducting energy gap. The so-called Anderson criterion provides a remarkably accurate estimate of the limiting size for the destabilization of superconductivity in nanosystems. This review of size effects in quasi-0D superconductors is organized as follows. A general summary of size effects in nanostructured superconductors (section 1) is followed by a brief overview of their synthesis (section 2) and characterization using a variety of techniques (section 3). Section 4 reviews the size-evolution of important superconducting parameters—the transition temperature, critical fields and critical current—as the Anderson limit is approached from above. We then discuss the effect of thermodynamic fluctuations (section 5), which become significant in confined systems. Improvements in fabrication methods and the increasing feasibility of addressing individual nanoparticles using scanning probe techniques have lately opened up new directions in the study of nanoscale superconductivity. Section 6 reviews both experimental and theoretical aspects of the recently discovered phenomena of ‘parity effect’ and ‘shell effect’ that lead to a strong, non-monotonic size dependence of the superconducting energy gap and associated properties. Finally, we discuss in section 7 the properties of ordered heterostructures (bilayers and multilayers of alternating superconducting and normal phases) and disordered heterostructures (nanocomposites consisting of superconducting and normal phases), which are primarily controlled by the proximity effect.

Journal ArticleDOI
TL;DR: This review will present current cancer research from a biophysical point of view and will finally show how physical measurements can improve classical approaches that investigate cancer and inflammatory diseases, and how these physical insights can be integrated into classical tumor biological approaches.
Abstract: The role of mechanical properties in cancer disease and inflammation is still underinvestigated and even ignored in many oncological and immunological reviews. In particular, eight classical hallmarks of cancer have been proposed, but they still ignore the mechanics behind the processes that facilitate cancer progression. To define the malignant transformation of neoplasms and finally reveal the functional pathway that enables cancer cells to promote cancer progression, these classical hallmarks of cancer require the inclusion of specific mechanical properties of cancer cells and their microenvironment such as the extracellular matrix as well as embedded cells such as fibroblasts, macrophages or endothelial cells. Thus, this review will present current cancer research from a biophysical point of view and will therefore focus on novel physical aspects and biophysical methods to investigate the aggressiveness of cancer cells and the process of inflammation. As cancer or immune cells are embedded in a certain microenvironment such as the extracellular matrix, the mechanical properties of this microenvironment cannot be neglected, and alterations of the microenvironment may have an impact on the mechanical properties of the cancer or immune cells. Here, it is highlighted how biophysical approaches, both experimental and theoretical, have an impact on the classical hallmarks of cancer and inflammation. It is even pointed out how these biophysical approaches contribute to the understanding of the regulation of cancer disease and inflammatory responses after tissue injury through physical microenvironmental property sensing mechanisms. The recognized physical signals are transduced into biochemical signaling events that guide cellular responses, such as malignant tumor progression, after the transition of cancer cells from an epithelial to a mesenchymal phenotype or an inflammatory response due to tissue injury. Moreover, cell adaptation to mechanical alterations, in particular the understanding of mechano-coupling and mechano-regulating functions in cell invasion, appears as an important step in cancer progression and inflammatory response to injuries. This may lead to novel insights into cancer disease and inflammatory diseases and will overcome classical views on cancer and inflammation. In addition, this review will discuss how the physics of cancer and inflammation can help to reveal whether cancer cells will invade connective tissue and metastasize or how leukocytes extravasate and migrate through the tissue. In this review, the physical concepts of cancer progression, including the tissue basement membrane a cancer cell is crossing, its invasion and transendothelial migration as well as the basic physical concepts of inflammatory processes and the cellular responses to the mechanical stress of the microenvironment such as external forces and matrix stiffness, are presented and discussed. In conclusion, this review will finally show how physical measurements can improve classical approaches that investigate cancer and inflammatory diseases, and how these physical insights can be integrated into classical tumor biological approaches.

Journal ArticleDOI
TL;DR: This review examines the various physical mechanisms which may play an important role in the dynamics of extreme waves in numerical and physical wavetanks, and looks at the evidence that such mechanisms might also exist in the real ocean.
Abstract: There is much speculation that the largest and steepest waves may need to be modelled with different physics to the majority of the waves on the open ocean. This review examines the various physical mechanisms which may play an important role in the dynamics of extreme waves. We examine the evidence for these mechanisms in numerical and physical wavetanks, and look at the evidence that such mechanisms might also exist in the real ocean.

Journal ArticleDOI
TL;DR: In this article, the authors describe historical development and current status of type-II InAs/GaSb superlattice for advanced detection and imaging in the mid-infrared regime (λ = 3-5 µm).
Abstract: It has been over 200 years since people recognized the presence of infrared radiation, and developed methods to capture this signal. However, current material systems and technologies for infrared detections have not met the increasing demand for high performance infrared detectors/cameras, with each system having intrinsic drawbacks. Type-II InAs/GaSb superlattice has been recently considered as a promising candidate for the next generation of infrared detection and imaging. Type-II superlattice is a man-made crystal structure, consisting of multiple quantum wells placed next to each other in a controlled way such that adjacent quantum wells can interact. The interaction between multiple quantum wells offers an additional degree of freedom in tailoring the material's properties. Another advantage of type-II superlattice is the experimental benefit of inheriting previous research on material synthesis and device fabrication of bulk semiconductors. It is the combination of these two unique strengths of type-II superlattice--novel physics and easy manipulation--that has enabled unprecedented progress in recent years. In this review, we will describe historical development, and current status of type-II InAs/GaSb superlattice for advanced detection and imaging in the mid-infrared regime (λ = 3-5 µm).