scispace - formally typeset
Search or ask a question

Showing papers in "Reports on Progress in Physics in 2020"


Journal ArticleDOI
TL;DR: Optomechanics is concerned with the use of light to control mechanical objects, and trapped mesoscopic particles are the paradigmatic system for studying nanoscale stochastic processes, and have already demonstrated their utility in state-of-the-art force sensing.
Abstract: Optomechanics is concerned with the use of light to control mechanical objects. As a field, it has been hugely successful in the production of precise and novel sensors, the development of low-dissipation nanomechanical devices, and the manipulation of quantum signals. Micro- and nano-particles levitated in optical fields act as nanoscale oscillators, making them excellent low-dissipation optomechanical objects, with minimal thermal contact to the environment when operating in vacuum. Levitated optomechanics is seen as the most promising route for studying high-mass quantum physics, with the promise of creating macroscopically separated superposition states at masses of 106 amu and above. Optical feedback, both using active monitoring or the passive interaction with an optical cavity, can be used to cool the centre-of-mass of levitated nanoparticles well below 1 mK, paving the way to operation in the quantum regime. In addition, trapped mesoscopic particles are the paradigmatic system for studying nanoscale stochastic processes, and have already demonstrated their utility in state-of-the-art force sensing.

189 citations


Journal ArticleDOI
TL;DR: This article reviews the most recent developments in the area of ab initio calculations of carrier mobilities of semiconductors and discusses the extension of the methodology to study spintronics and topological materials and the possibility of incorporating Berry-phase effects and many-body correlations beyond the standard Boltzmann formalism.
Abstract: One of the fundamental properties of semiconductors is their ability to support highly tunable electric currents in the presence of electric fields or carrier concentration gradients. These properties are described by transport coefficients such as electron and hole mobilities. Over the last decades, our understanding of carrier mobilities has largely been shaped by experimental investigations and empirical models. Recently, advances in electronic structure methods for real materials have made it possible to study these properties with predictive accuracy and without resorting to empirical parameters. These new developments are unlocking exciting new opportunities, from exploring carrier transport in quantum matter to in silico designing new semiconductors with tailored transport properties. In this article, we review the most recent developments in the area of ab initio calculations of carrier mobilities of semiconductors. Our aim is threefold: to make this rapidly-growing research area accessible to a broad community of condensed-matter theorists and materials scientists; to identify key challenges that need to be addressed in order to increase the predictive power of these methods; and to identify new opportunities for increasing the impact of these computational methods on the science and technology of advanced materials. The review is organized in three parts. In the first part, we offer a brief historical overview of approaches to the calculation of carrier mobilities, and we establish the conceptual framework underlying modern ab initio approaches. We summarize the Boltzmann theory of carrier transport and we discuss its scope of applicability, merits, and limitations in the broader context of many-body Green's function approaches. We discuss recent implementations of the Boltzmann formalism within the context of density functional theory and many-body perturbation theory calculations, placing an emphasis on the key computational challenges and suggested solutions. In the second part of the article, we review applications of these methods to materials of current interest, from three-dimensional semiconductors to layered and two-dimensional materials. In particular, we discuss in detail recent investigations of classic materials such as silicon, diamond, gallium arsenide, gallium nitride, gallium oxide, and lead halide perovskites as well as low-dimensional semiconductors such as graphene, silicene, phosphorene, molybdenum disulfide, and indium selenide. We also review recent efforts toward high-throughput calculations of carrier transport. In the last part, we identify important classes of materials for which an ab initio study of carrier mobilities is warranted. We discuss the extension of the methodology to study topological quantum matter and materials for spintronics and we comment on the possibility of incorporating Berry-phase effects and many-body correlations beyond the standard Boltzmann formalism.

186 citations


Journal ArticleDOI
TL;DR: Quantum annealing is a computing paradigm that has the ambitious goal of efficiently solving large-scale combinatorial optimization problems of practical importance as mentioned in this paper, however, many challenges have yet to be overcome before this goal can be reached.
Abstract: Quantum annealing is a computing paradigm that has the ambitious goal of efficiently solving large-scale combinatorial optimization problems of practical importance. However, many challenges have yet to be overcome before this goal can be reached. This perspectives article first gives a brief introduction to the concept of quantum annealing, and then highlights new pathways that may clear the way towards feasible and large scale quantum annealing. Moreover, since this field of research is to a strong degree driven by a synergy between experiment and theory, we discuss both in this work. An important focus in this article is on future perspectives, which complements other review articles, and which we hope will motivate further research.

117 citations


Journal ArticleDOI
TL;DR: This review article presents the progress made over the last decade, since the introduction of effective field theories (EFTs) into post-Newtonian (PN) Gravity, in the context of gravitational waves (GWs) from the compact binary inspiral.
Abstract: This review article presents the progress made over the last decade, since the introduction of effective field theories (EFTs) into post-Newtonian (PN) gravity. These have been put forward in the context of gravitational waves (GWs) from the compact binary inspiral. The mature development of this interdisciplinary field has resulted in significant advances of wide interest to physics at several levels serving various purposes. The field has firmly demonstrated, that seemingly disparate physical domains, such as quantum field theory and classical gravity, are related, and that the EFT framework is a universal one, where it has been proven to supply a robust methodology to boost progress in the development of PN theory. In this review emphasis was put on an accessible pedagogic presentation of the field theoretic aspects of the subject, with the view, that these are in fact common across the whole of theoretical physics, rather than in their original narrow quantum context. The review is aimed at a broad audience, from general readers new to the field, to specialists and experts in related subjects. The review begins with an overview of the introduction of EFTs into classical gravity and their development. Then, the basic ideas, which form the conceptual foundation of EFTs, are provided, and the strategy of a multi-stage EFT framework, which is utilized for the PN binary inspiral problem, is outlined. The main body of the review is then dedicated to presenting in detail the study of each of the effective theories at each of the intermediate scales in the problem, up to the actual GW observables. First, the EFT for a single compact object is considered, from which one proceeds to the EFT of a compact binary system, viewed as a composite particle with internal binding interactions. Finally, one arrives at the effective theory of the time-dependent multipole moments of the radiating system. The review is concluded with the multiple prospects of building on the progress in the field, and using further modern field theory insights and tools, to specifically address the study of GWs, as well as to broadly expand our fundamental understanding of gauge and gravity theories across the classical and quantum regimes.

113 citations


Journal ArticleDOI
TL;DR: A review of the status and perspectives of these new avenues for the exploration of lattice gauge theories can be found in this article, where a number of possible alternatives have been put forward, based on quantum information ideas, which could potentially open the access to areas of research that have so far eluded more standard methods.
Abstract: Formulating gauge theories on a lattice offers a genuinely non-perturbative way of studying quantum field theories, and has led to impressive achievements. In particular, it significantly deepened our understanding of quantum chromodynamics. Yet, some very relevant problems remain inherently challenging, such as real time evolution, or the presence of a chemical potential, cases in which Monte Carlo simulations are hindered by a sign problem. In the last few years, a number of possible alternatives have been put forward, based on quantum information ideas, which could potentially open the access to areas of research that have so far eluded more standard methods. They include tensor network calculations, quantum simulations with different physical platforms and quantum computations, and constitute nowadays a vibrant research area. Experts from different fields, including experimental and theoretical high energy physics, condensed matter, and quantum information, are turning their attention to these interdisciplinary possibilities, and driving the progress of the field. The aim of this article is to review the status and perspectives of these new avenues for the exploration of lattice gauge theories.

108 citations


Journal ArticleDOI
TL;DR: In this article, the authors present a theoretical model used to study interfacial flows arising in droplet-based microfluidics, paying attention to three elements commonly present in applications: viscoelasticity, electric fields and surfactants.
Abstract: Dripping, jetting and tip streaming have been studied up to a certain point separately by both fluid mechanics and microfluidics communities, the former focusing on fundamental aspects while the latter on applications. Here, we intend to review this field from a global perspective by considering and linking the two sides of the problem. First, we present the theoretical model used to study interfacial flows arising in droplet-based microfluidics, paying attention to three elements commonly present in applications: viscoelasticity, electric fields and surfactants. We review both classical and current results of the stability of jets affected by these elements. Mechanisms leading to the breakup of jets to produce drops are reviewed as well, including some recent advances in this field. We also consider the relatively scarce theoretical studies on the emergence and stability of tip streaming in open systems. Second, we focus on axisymmetric microfluidic configurations which can operate on the dripping and jetting modes either in a direct (standard) way or via tip streaming. We present the dimensionless parameters characterizing these configurations, the scaling laws which allow predicting the size of the resulting droplets and bubbles, as well as those delimiting the parameter windows where tip streaming can be found. Special attention is paid to electrospray and flow focusing, two of the techniques more frequently used in continuous drop production microfluidics. We aim to connect experimental observations described in this section of topics with fundamental and general aspects described in the first part of the review. This work closes with some prospects at both fundamental and practical levels.

81 citations


Journal ArticleDOI
TL;DR: The review concludes with a discussion of how the studies of knots in liquid crystals and colloids can offer insights into topologically related structures in other branches of physics, with answers to many open questions, as well as how these experimentally observable knots hold a strong potential for providing new inspirations to the mathematical knot theory.
Abstract: Humankind has been obsessed with knots in religion, culture and daily life for millennia while physicists like Gauss, Kelvin and Maxwell involved them in models already centuries ago. Nowadays, colloidal particle can be fabricated to have shapes of knots and links with arbitrary complexity. In liquid crystals, closed loops of singular vortex lines can be knotted by using colloidal particles and laser tweezers, as well as by confining nematic fluids into micrometer-sized droplets with complex topology. Knotted and linked colloidal particles induce knots and links of singular defects, which can be inter-linked (or not) with colloidal particle knots, revealing diversity of interactions between topologies of knotted fields and topologically nontrivial surfaces of colloidal objects. Even more diverse knotted structures emerge in nonsingular molecular alignment and magnetization fields in liquid crystals and colloidal ferromagnets. The topological solitons include hopfions, skyrmions, heliknotons, torons and other spatially localized continuous structures, which are classified based on homotopy theory, characterized by integer-valued topological invariants and often contain knotted or linked preimages, nonsingular regions of space corresponding to single points of the order parameter space. A zoo of topological solitons in liquid crystals, colloids and ferromagnets promises new breeds of information displays and a plethora of data storage, electro-optic and photonic applications. Their particle-like collective dynamics echoes coherent motions in active matter, ranging from crowds of people to schools of fish. This review discusses the state of the art in the field, as well as highlights recent developments and open questions in physics of knotted soft matter. We systematically overview knotted field configurations, the allowed transformations between them, their physical stability, and how one can use one form of knotted fields to model, create and imprint other forms. The large variety of symmetries accessible to liquid crystals and colloids offer insights on stability, transformation and emergent dynamics of fully nonsingular and singular knotted fields of fundamental and applied importance. The common thread of this review is the ability to experimentally visualize these knots in real space. The review concludes with a discussion of how the studies of knots in liquid crystals and colloids can offer insights into topologically related structures in other branches of physics, with answers to many open questions, as well as how these experimentally observable knots hold a strong potential for providing new inspirations to the mathematical knot theory.

78 citations


Journal ArticleDOI
TL;DR: This review presents a survey of, and guide to, New Materials Physics research that begins with an overview of the goals and presents important ideas and techniques for the design and growth of new materials.
Abstract: This review presents a survey of, and guide to, New Materials Physics research. It begins with an overview of the goals of New Materials Physics and then presents important ideas and techniques for the design and growth of new materials. An emphasis is placed on the use of compositional phase diagrams to inform and motivate solution growth of single crystals. The second half of this review focuses on the vital process of generating actionable ideas for the growth and discovery of new materials and ground states. Motivations ranging from (1) wanting a specific compound, to (2) wanting a specific ground state to (3) wanting to explore for known and unknown unknowns, will be discussed and illustrated with abundant examples. The goal of this review is to inform, inspire, an even entertain, as many practitioners of this field as possible.

69 citations


Journal ArticleDOI
TL;DR: A review of the current theory landscape theory in neutrino experiments in two selected areas of the BSM topics - dark matter and neutRino related BSM - and summarizes the current results from existing neutrinos experiments for benchmark.
Abstract: The combination of the high intensity proton beam facilities and massive detectors for precision measurements of neutrino oscillation parameters including the charge-parity violating (CPV) phase will open the door to help make beyond the standard model (BSM) physics reachable even in low energy regimes in the accelerator-based experiments. Large-mass detectors with highly precise tracking and energy measurements, excellent timing resolution, and low energy thresholds will enable the searches for BSM phenomena from cosmogenic origin, as well. Therefore, it is also conceivable that BSM topics in the next-generation neutrino experiments could be the dominant physics topics in the foreseeable future, as the precision of the neutrino oscillation parameter and CPV measurements continue to improve.This paper provides a review of the current landscape of BSM theory in neutrino experiments in two selected areas of the BSM topics-dark matter and neutrino related BSM-and summarizes the current results from existing neutrino experiments to set benchmarks for both theory and experiment. This paper then provides a review of upcoming neutrino experiments throughout the next 10 to 15 year time scale and their capabilities to set the foundation for potential reach in BSM physics in the two aforementioned themes. An important outcome of this paper is to ensure theoretical and simulation tools exist to carry out studies of these new areas of physics, from the first day of the experiments, such as Deep Underground Neutrino Experiment in the U.S. and Hyper-Kamiokande Experiment in Japan.

67 citations


Journal ArticleDOI
TL;DR: This review provides a comprehensive roadmap of microscopy, the fundamental principles, advantages, and drawbacks of existing imaging techniques, and the significant roles that FPM plays in the development of science.
Abstract: Fourier ptychographic microscopy (FPM) is a promising and fast-growing computational imaging technique with high resolution, wide field-of-view (FOV) and quantitative phase recovery, which effectively tackles the problems of phase loss, aberration-introduced artifacts, narrow depth-of-field and the trade-off between resolution and FOV in conventional microscopy simultaneously. In this review, we provide a comprehensive roadmap of microscopy, the fundamental principles, advantages, and drawbacks of existing imaging techniques, and the significant roles that FPM plays in the development of science. Since FPM is an optimization problem in nature, we discuss the framework and related work. We also reveal the connection of Euler's formula between FPM and structured illumination microscopy. We review recent advances in FPM, including the implementation of high-precision quantitative phase imaging, high-throughput imaging, high-speed imaging, three-dimensional imaging, mixed-state decoupling, and introduce the prosperous biomedical applications. We conclude by discussing the challenging problems and future applications. FPM can be extended to a kind of framework to tackle the phase loss and system limits in the imaging system. This insight can be used easily in speckle imaging, incoherent imaging for retina imaging, large-FOV fluorescence imaging, etc.

62 citations


Journal ArticleDOI
TL;DR: In this article, an organizational effort towards unifying the literature on photoelectron holography is presented. And a broad discussion of the theoretical methods employed, and of the key challenges and future possibilities are discussed.
Abstract: Photoelectron holography constitutes a powerful tool for the ultrafast imaging of matter, as it combines high electron currents with subfemtosecond resolution, and gives information about transition amplitudes and phase shifts. Similarly to light holography, it uses the phase difference between the probe and the reference waves associated with qualitatively different ionization events for the reconstruction of the target and for ascertaining any changes that may occur. These are major advantages over other attosecond imaging techniques, which require elaborate interferometric schemes in order to extract phase differences. For that reason, ultrafast photoelectron holography has experienced a huge growth in activity, which has led to a vast, but fragmented landscape. The present review is an organizational effort towards unifying this landscape. This includes a historic account in which a connection with laser-induced electron diffraction is established, a summary of the main holographic structures encountered and their underlying physical mechanisms, a broad discussion of the theoretical methods employed, and of the key challenges and future possibilities. We delve deeper in our own work, and place a strong emphasis on quantum interference, and on the residual Coulomb potential.

Journal ArticleDOI
TL;DR: In this article, the authors summarized progress made in understanding properties such as zero-phononon-line energies, emission and absorption polarizations, electronphon couplings, strain tuning and hyperfine coupling of single photon emitters in hexagonal boron nitride.
Abstract: This report summarizes progress made in understanding properties such as zero-phonon-line energies, emission and absorption polarizations, electron-phonon couplings, strain tuning and hyperfine coupling of single photon emitters in hexagonal boron nitride. The primary aims of this research are to discover the chemical nature of the emitting centres and to facilitate deployment in device applications. Critical analyses of the experimental literature and data interpretation, as well as theoretical approaches used to predict properties, are made. In particular, computational and theoretical limitations and challenges are discussed, with a range of suggestions made to overcome these limitations, striving to achieve realistic predictions concerning the nature of emitting centers. A symbiotic relationship is required in which calculations focus on properties that can easily be measured, whilst experiments deliver results in a form facilitating mass-produced calculations.

Journal ArticleDOI
TL;DR: This review provides an easy-to-grasp introduction to the field of memory technology for materials scientists and provides an overview about the development and architecture of memories as part of a computer and point out some basic limitations that all memories are subject to.
Abstract: From our own experience, we know that there is a gap to bridge between the scientists focused on basic material research and their counterparts in a close-to-application community focused on identifying and solving final technological and engineering challenges. In this review, we try to provide an easy-to-grasp introduction to the field of memory technology for materials scientists. An understanding of the big picture is vital, so we first provide an overview of the development and architecture of memories as part of a computer and call attention to some basic limitations that all memories are subject to. As any new technology has to compete with mature existing solutions on the market, today's mainstream memories are explained, and the need for future solutions is highlighted. The most prominent contenders in the field of emerging memories are introduced and major challenges on their way to commercialization are elucidated. Based on these discussions, we derive some predictions for the memory market to conclude the paper.

Journal ArticleDOI
TL;DR: In this article, a review of recent developments on the extraction of proton and nuclear transverse geometry with event-by-event fluctuations from collider experiments at high energy is presented.
Abstract: Determining the inner structure of protons and nuclei in terms of their fundamental constituents has been one of the main tasks of high energy nuclear and particle physics experiments. This quest started as a mapping of the (average) parton densities as a function of longitudinal momentum fraction and resolution scale. Recently, the field has progressed to more differential imaging, where one important development is the description of the event-by-event quantum fluctuations in the wave function of the colliding hadron. In this review, recent developments on the extraction of proton and nuclear transverse geometry with event-by-event fluctuations from collider experiments at high energy is presented. The importance of this fundamentally interesting physics in other collider experiments like in studies of the properties of the quark gluon plasma is also illustrated.

Journal ArticleDOI
TL;DR: The role of tetra-rings and the local symmetry breaking on the structural, electronic and optical properties of the graphene system areicate and future directions to be explored to make the synthesis of T-graphene and its various derivatives/allotropes viable for verification of theoretical predictions are suggested.
Abstract: Inspired by the success of graphene, various two-dimensional (2D) non-hexagonal graphene allotropes having sp2-bonded tetragonal rings in free-standing (hypothetical) form and on different substrates have been proposed recently. These systems have also been fabricated after modifying the topology of graphene by chemical processes. In this review, we would like to indicate the role of tetra-rings and the local symmetry breaking on the structural, electronic and optical properties of the graphene system. First-principles computations have demonstrated that the tetragonal graphene (TG) allotrope exhibits appreciable thermodynamic stability. The band structure of the TG nanoribbons (TGNRs) strongly depends on the size and edge geometry. This fact has been supported by the transport properties of TGNRs. The optical properties and Raman modes of this graphene allotrope have been well explored for characterisation purposes. Recently, a tight-binding model was used to unravel the metal-to-semiconductor transition under the influence of external magnetic fluxes. Even the introduction of transition metal atoms into this non-hexagonal network can control the magnetic response of the TG sheet. Furthermore, the collective effect of B-N doping and confinement effect on the structural and electronic properties of TG systems has been investigated. We also suggest future directions to be explored to make the synthesis of T graphene and its various derivatives/allotropes viable for the verification of theoretical predictions. It is observed that these doped systems act as a potential candidate for carbon monoxide gas sensing and current rectification devices. Therefore, all these experimental, numerical and analytical studies related to non-hexagonal TG systems are extremely important from a basic science point of view as well as for applications in sensing, optoelectronic and photonic devices.

Journal ArticleDOI
TL;DR: In this paper, the authors focus on exciton-plasmon interactions, and particularly on the idea of calculating the number of excitons involved in the coupling, and argue that the source of such contradictions is the question itself, which disregards the true nature of the coupled components, has no meaning and often not even any practical importance.
Abstract: Rooted in quantum optics and benefiting from its well-established foundations, strong coupling in nanophotonics has experienced increasing popularity in recent years. With nanophotonics being an experiment-driven field, the absence of appropriate theoretical methods to describe ground-breaking advances has often emerged as an important issue. To address this problem, the temptation to directly transfer and extend concepts already available from quantum optics is strong, even if a rigorous justification is not always available. In this review we discuss situations where, in our view, this strategy has indeed overstepped its bounds. We focus on exciton-plasmon interactions, and particularly on the idea of calculating the number of excitons involved in the coupling. We analyse how, starting from an unfounded interpretation of the term N/V that appears in theoretical descriptions at different levels of complexity, one might be tempted to make independent assumptions for what the number N and the volume V are, and attempt to calculate them separately. Such an approach can lead to different, often contradictory results, depending on the initial assumptions (e.g. through different treatments of V as the-ambiguous in plasmonics-mode volume). We argue that the source of such contradictions is the question itself-How many excitons are coupled?, which disregards the true nature of the coupled components of the system, has no meaning and often not even any practical importance. If one is interested in validating the quantum nature of the system-which appears to be the motivation driving the pursuit of strong coupling with small N-one could instead focus on quantities such as the photon emission rate or the second-order correlation function. While many of the issues discussed here may appear straightforward to specialists, our target audience is predominantly newcomers to the field, either students or scientists specialised in different disciplines. We have thus tried to minimise the occurrence of proofs and overly-technical details, and instead provide a qualitative discussion of analyses that should be avoided, hoping to facilitate further growth of this promising area.

Journal ArticleDOI
TL;DR: This review comprehensively surveys state-of-the-art single-shot coded-aperture optical imaging and provides two representative examples of active-encoded and passive-encoding approaches, with a particular emphasis on their methodology and applications as well as their advantages and challenges.
Abstract: Single-shot coded-aperture optical imaging physically captures a code-aperture-modulated optical signal in one exposure and then recovers the scene via computational image reconstruction. Recent years have witnessed dazzling advances in various modalities in this hybrid imaging scheme in concomitant technical improvement and widespread applications in physical, chemical and biological sciences. This review comprehensively surveys state-of-the-art single-shot coded-aperture optical imaging. Based on the detected photon tags, this field is divided into six categories: planar imaging, depth imaging, light-field imaging, temporal imaging, spectral imaging, and polarization imaging. In each category, we start with a general description of the available techniques and design principles, then provide two representative examples of active-encoding and passive-encoding approaches, with a particular emphasis on their methodology and applications as well as their advantages and challenges. Finally, we envision prospects for further technical advancement in this field.

Journal ArticleDOI
TL;DR: This Review summarizes the photophysical properties and operating mechanisms of 2D perovskites as well as recent advances in their applications in solar cell devices, highlighting the issues of stability and toxicity that require further study to ensure commercialization.
Abstract: Metal halide perovskites having three-dimensional crystal structures are being applied successfully in various optoelectronic applications To address their most challenging issues-instability and toxicity-without losing efficiency, lower-dimensional perovskites appear to be promising alternatives Recently, two-dimensional (2D) perovskite solar cells have been developed exhibiting excellent photostability and moisture-stability, together with moderate device efficiency This review summarizes the photophysical properties and operating mechanisms of 2D perovskites as well as recent advances in their applications in solar cell devices Also presented is an agenda for the next-stage development of stable perovskite materials for solar cell applications, highlighting the issues of stability and toxicity that require further study to ensure commercialization

Journal ArticleDOI
TL;DR: In this article, the authors give an overview of recent progress in using holography to study various far-from-equilibrium condensed matter systems, including those which are spatially inhomogeneous and anisotropic.
Abstract: In this paper we give an overview of some recent progress in using holography to study various far-from-equilibrium condensed matter systems. Non-equilibrium problems are notoriously difficult to deal with, not to mention at strong coupling and including quantum effects. Remarkably, using holographic duality one can describe and follow the real time evolution of a far-from-equilibrium systems, including those which are spatially inhomogeneous and anisotropic, by solving partial differential gravity equations (PDEs). We sample developments on two broad classes of questions which are of much recent interest in the condensed matter community: non-equilibrium steady states (NESS), and quantum systems undergoing a global quench. Our discussion focuses on the main physical insights obtained from the gravity approache, rather than comprehensive treatments of each topic or detailed descriptions of gravity calculations. The paper also includes an overview of current numerical techniques, as well as the holographic Schwinger-Keldysh approach to real-time correlation functions.

Journal ArticleDOI
Ye Xu1, Huifeng Yao1, Lijiao Ma1, Jingwen Wang1, Jianhui Hou1 
TL;DR: The efficient charge generation at low Eloss values in highly efficient OSCs is discussed and the issues that should be tackled to further improve the PCEs to new levels are highlighted.
Abstract: Light absorption generates strongly bound excitons in organic solar cells (OSCs). To obtain efficient charge generation, a large driving force is required, which causes a large energy loss (Eloss) and severely hinders the improvement in the power conversion efficiencies (PCEs) of OSCs. Recently, the development of non-fullerene OSCs has seen great success, and the resulting OSCs can yield highly efficient charge generation with a negligible driving force, which raises a fundamental question about how the excitons split into free charges. From a chemical structure perspective, the molecular electrostatic potential differences between donors and acceptors may play a critical role in facilitating charge separation. Although the Eloss caused by charge generation has been suppressed, charge recombination, particularly via non-radiative pathways, severely limits further improvements in the PCEs. In OSCs with negligible driving forces, the lowest excited state, a hybrid local exciton-charge transfer state, is believed to have a strong association with the non-radiative Eloss. This review discusses the efficient charge generation at low Eloss values in highly efficient OSCs and highlights the issues that should be tackled to further improve the PCEs to new levels (~ 20%).

Journal ArticleDOI
TL;DR: This paper reviews studies on the adsorption of colloidal particles at fluid-fluid interfaces, from both thermodynamic and mechanical point of views, and discusses the differences as compared with surfactants and polymers.
Abstract: Colloidal particles can be adsorbed at fluid-fluid interfaces, a phenomenon frequently observed in particle-stabilized foams, Pickering emulsions, and bijels. Particles adsorbed at interfaces exhibit unique physical and chemical behaviors, which affect the mechanical properties of the interface. Therefore, interfacial colloidal particles are of interest in terms of both fundamental and applied research. In this paper, we review studies on the adsorption of colloidal particles at fluid-fluid interfaces, from both thermodynamic and mechanical points of view, and discuss the differences as compared with surfactants and polymers. The unique particle interactions induced by the interfaces as well as the particle dynamics including lateral diffusion and contact line relaxation will be presented. We focus on the rearrangement of the particles and the resultant interfacial viscoelasticity. Particular emphasis will be given to the effects of particle shape, size, and surface hydrophobicity on the interfacial particle assembly and the mechanical properties of the obtained particle layer. We will also summarize recent advances in interfacial jamming behavior caused by adsorption of particles at interfaces. The buckling and cracking behavior of particle layers will be discussed from a mechanical perspective. Finally, we suggest several potential directions for future research in this area.

Journal ArticleDOI
TL;DR: An optical tweezer system is developed that allows for simultaneous optical trapping and imaging technique and the potential applications are suggested to several fields, including optical pulling, longitudinal optical binding, tomographic phase microscopy and superresolution microscopy.
Abstract: Optical trapping has become a powerful tool in numerous fields such as biology, physics, chemistry, etc. In conventional optical trapping systems, trapping and imaging share the same objective lens, confining the region of observation to the focal plane. For the capture of optical trapping processes occurring in other planes, especially the axial plane (the one containing the z-axis), many methods have been proposed to achieve this goal. Here, we review the methods of acquiring the axial-plane information from which axial plane trapping is observed and discuss their advantages and limitations. To overcome the limitations existing in these methods, we developed an optical tweezers system that allows for simultaneous optical trapping and imaging in the axial plane. The versatility and usefulness of the system in axial-plane trapping and imaging are demonstrated by investigating its trapping performance with various optical fields, including Bessel, Airy, and snake-like beams. The potential applications of the reported technique are suggested to several research fields, including optical pulling, longitudinal optical binding, tomographic phase microscopy (TPM), and super-resolution microscopy.

Journal ArticleDOI
TL;DR: Using a rich database of data on the atomic arrangement and mineral properties, further steps became appropriate and possible, into the directions of more advanced knowledge frontiers, including modularity, complexity, aperiodicity, and matter organization at not conventional levels.
Abstract: Through the years, mineralogical studies have produced a tremendous amount of data on the atomic arrangement and mineral properties. Quite often, structural analysis has led to elucidate the role played by minor components, giving interesting insights into the physico-chemical conditions of mineral crystallization and allowing the description of unpredictable structures that represented a body of knowledge critical for assessing their technological potentialities. Using such a rich database, containing many basic acquisitions, further steps became appropriate and possible, into the directions of more advanced knowledge frontiers. Some of these frontiers assume the name of modularity, complexity, aperiodicity, and matter organization at not conventional levels, and will be discussed in this review.

Journal ArticleDOI
TL;DR: This review presents a comprehensive overview of bioinspired artificial eyes and photonic devices that mimic functions of natural eyes, and briefly introduces visual systems in nature, focusing on mammal eyes and compound eyes.
Abstract: Natural visual systems have inspired scientists and engineers to mimic their intriguing features for the development of advanced photonic devices that can provide better solutions than conventional ones. Among various kinds of natural eyes, researchers have had intensive interest in mammal eyes and compound eyes due to their advantages in optical properties such as focal length tunability, high-resolution imaging, light intensity modulation, wide field of view, high light sensitivity, and efficient light management. A variety of different approaches in the broad field of science and technology have been tried and succeeded to duplicate the functions of natural eyes and develop bioinspired photonic devices for various applications. In this review, we present a comprehensive overview of bioinspired artificial eyes and photonic devices that mimic functions of natural eyes. After we briefly introduce visual systems in nature, we discuss optical components inspired by the mammal eyes, including tunable lenses actuated with different mechanisms, curved image sensors with low aberration, and light intensity modulators. Next, compound eye inspired photonic devices are presented, such as microlenses and micromirror arrays, imaging sensor arrays on curved surfaces, self-written waveguides with microlens arrays, and antireflective nanostructures (ARS). Subsequently, compound eyes with focal length tunability, photosensitivity enhancers, and polarization imaging sensors are described.

Journal ArticleDOI
TL;DR: A review of the most significant recent achievements in the field of HAXPES (HArd X-ray PhotoElectron Spectroscopy) on isolated atoms and molecules, and related spectroscopies.
Abstract: We present here a review of the most significant recent achievements in the field of HAXPES (HArd X-ray PhotoElectron Spectroscopy) on isolated atoms and molecules, and related spectroscopies. The possibility of conducting hard x-ray photoexcitation and photoionization experiments under state-of-the art conditions in terms of photon and electron kinetic energy resolution has become available only in the last few years. HAXPES has then produced structural and dynamical information at the level of detail already reached in the VUV and soft-x-ray ranges. The much improved experimental conditions have allowed extending to the hard x-ray range some methods well established in soft x-ray spectroscopies. Investigations of electron and nuclear dynamics in the femtosecond (fs, 10-15 sec) and even attosecond (as, 10-18 sec) regime have become feasible. Complex relaxation phenomena following deep-core ionization can now be enlightened in great detail. Other phenomena like e.g. recoil-induced effects are much more important in fast photoelectron emission, which can be induced by hard x-rays. Furthermore, a new kind of ionic states with double core holes can be observed by x-ray single-photon absorption. Future perspectives are also discussed.

Journal ArticleDOI
TL;DR: In this paper, the binding and energy level alignment of π-conjugated systems on metals has been studied in the literature, and the fundamental concepts as well as the experimental techniques and typical case studies are discussed.
Abstract: We review the binding and energy level alignment of π-conjugated systems on metals, a field which during the last two decades has seen tremendous progress both in terms of experimental characterization as well as in the depth of theoretical understanding. Precise measurements of vertical adsorption distances and the electronic structure together with ab initio calculations have shown that most of the molecular systems have to be considered as intermediate cases between weak physisorption and strong chemisorption. In this regime, the subtle interplay of different effects such as covalent bonding, charge transfer, electrostatic and van der Waals interactions yields a complex situation with different adsorption mechanisms. In order to establish a better understanding of the binding and the electronic level alignment of π-conjugated molecules on metals, we provide an up-to-date overview of the literature, explain the fundamental concepts as well as the experimental techniques and discuss typical case studies. Thereby, we relate the geometric with the electronic structure in a consistent picture and cover the entire range from weak to strong coupling.

Journal ArticleDOI
TL;DR: In the review, the operation principle of DFT is discussed and the recent progress in characterizing the ultrafast transient soliton dynamics of mode- locking lasers is summarized, including soliton explosions, soliton molecules, noise-like pulses, rogue waves, and mode-locking buildup process.
Abstract: Mode-locking lasers have not only produced huge economic benefits in industrial fields and scientific researches, but also provided an excellent platform to study diverse soliton phenomena. However, the real-time characterization of the ultrafast soliton dynamics remains challenging for the traditional electronic instruments due to their relatively little response bandwidth and slow scan rate. Consequently, it is urgent for researchers to directly observe these ultrafast evolution processes, not just indirectly understanding them from numerical simulations or averaged measurement data. Fortunately, dispersive Fourier transformation (DFT) provides a powerful real-time measurement technique to overcome the speed limitations of traditional electronic measurement devices by mapping the frequency spectrum onto the temporal waveform. In the review, the operation principle of DFT is discussed and the recent progress in characterizing the ultrafast transient soliton dynamics of mode-locking lasers is summarized, including soliton explosions, soliton molecules, noise-like pulses, rogue waves, and mode-locking buildup process.

Journal ArticleDOI
TL;DR: In this paper, a historical overview of entanglement and hidden variables models are presented to provide a classical explanation and demystify quantum entanglements, as well as some exciting manifestations of entomblement, such as N00N states and the non-separable single particle states.
Abstract: From its seemingly non-intuitive and puzzling nature, most evident in numerous EPR-like gedanken experiments to its almost ubiquitous presence in quantum technologies, entanglement is at the heart of modern quantum physics. First introduced by Erwin Schrodinger nearly a century ago, entanglement has remained one of the most fascinating ideas that came out of quantum mechanics. Here, we attempt to explain what makes entanglement fundamentally different from any classical phenomenon. To this end, we start with a historical overview of entanglement and discuss several hidden variables models that were conceived to provide a classical explanation and demystify quantum entanglement. We discuss some inequalities and bounds that are violated by quantum states thereby falsifying the existence of some of the classical hidden variables theories. We also discuss some exciting manifestations of entanglement, such as N00N states and the non-separable single particle states. We conclude by discussing some contemporary results regarding quantum correlations and present a future outlook for the research of quantum entanglement.

Journal ArticleDOI
TL;DR: In this paper, the authors present experimental and theoretical developments related to direct real photons since the 1970s, with a special emphasis on the recently emerged "direct photon puzzle", the simultaneous presence of large yields and strong azimuthal asymmetries of photons in heavy ion collisions, an observation that so far eluded full and coherent explanation.
Abstract: Direct real photons are arguably the most versatile tools to study relativistic heavy ion collisions. They are produced, by various mechanisms, during the entire space-time history of the strongly interacting system. Also, being colorless, most the time they escape without further interaction, i.e. they are penetrating probes. This makes them rich in information, but hard to decypher and interpret. This review presents the experimental and theoretical developments related to direct real photons since the 1970s, with a special emphasis on the recently emerged 'direct photon puzzle', the simultaneous presence of large yields and strong azimuthal asymmetries of photons in heavy ion collisions, an observation that so far eluded full and coherent explanation.

Journal ArticleDOI
TL;DR: It is shown that the effects of EBM transient rheology may have substantial influence on geodetic interpretations of unloading induced crustal motions even on time scales that are sub-decadal.
Abstract: The extended Burgers material (EBM) model provides a linear viscoelastic theory for interpreting a variety of rock deformation phenomena in geophysics, playing an increasingly important role in parameterizing laboratory data, providing seismic wave velocity and attenuation interpretations, and in analyses of solid planetary tidal dispersion and quality factor Q. At the heart of the EBM approach is the assumption of a distribution of relaxation spectra tied to rock grain boundary and interior granular mobility. Furthermore, the model incorporates an asymptotic long-term limiting behavior that is Maxwellian. Here we use the extensively developed linear theory of viscoelasticity to isolate those parameters of EBM that apply to both post-seismic relaxation processes involving flow of olivine rich upper mantle material and to studies of tides, where periods of forcing range from 12 h to 18.6 years. The isolated EBM parameters should also apply to theoretical and geodetic studies of glacial isostatic adjustment, especially when the initiation of continuous cryospheric surface unloading dates to the 20th or 21st century. Using analytical Laplace transformed solutions of Boussinesq's half-space load problem, we show that the effects of EBM transient rheology may have substantial influence on geodetic interpretations of unloading induced crustal motions even on time scales that are sub-decadal.