scispace - formally typeset
Search or ask a question

Showing papers in "Reproductive Sciences in 2016"


Journal ArticleDOI
TL;DR: Findings provide support for the notion that ReTIAR occurs in the endometriotic lesions, resulting in EMT and FMT, leading to SMM and ultimately fibrosis as lesions progress and cast a new light on the natural history of endometRIosis.
Abstract: We have recently shown that platelets play important roles in development of endometriosis and proposed that endometriotic lesions are essentially wounds that undergo repeated tissue injury and repair (ReTIAR). Further investigation indicated that endometriotic lesions, stimulated by platelet-derived transforming growth factor β1 (TGF-β1), activate the TGF-β1/Smad3 signaling pathway and undergo epithelial-mesenchymal transition (EMT) and fibroblast-to-myofibroblast transdifferentiation (FMT), resulting in increased cellular contractility and collagen production and increased smooth muscle metaplasia (SMM), leading to fibrosis. Using serially dissected endometriotic tissue samples from baboons with induced endometriosis, we tested the hypothesis of progressive EMT, FMT, SMM, and fibrosis through TGF-β1/Smad activation using immunohistochemistry and immunoflurescence staining analyses. We found that platelets are aggregated in endometriotic lesions, and vimentin expression was increased in the epithelial compartment of the lesions as they progressively developed. We also found that the number of smooth muscle cells (SMCs) appeared to increase with time as lesions progressed and was concomitant with the increased vimentin-positive glandular epithelial cells in the lesions. As lesion development progressed, TGF-β1 and phosphorylated-Smad3 staining was elevated and the number of α-smooth muscle actin-positive myofibroblasts and highly differentiated SMCs increased in the stromal compartment, which correlated with the increasing extent of fibrosis. These results, taken together, provide support for the notion that ReTIAR occurs in the endometriotic lesions, resulting in EMT and FMT, leading to SMM and ultimately fibrosis as lesions progress. Consequently, our data also provide corroborative evidence that platelets drive the EMT and FMT in endometriotic lesions over time, promoting SMM and resulting ultimately in fibrosis in the endometriotic lesions. These findings cast a new light on the natural history of endometriosis which so far has been elusive.

106 citations


Journal ArticleDOI
TL;DR: Genome-wide methylation analysis demonstrates that a subset of estrogen receptor (ER) response genes exhibit abnormal hypermethylation levels that are inversely correlated with their RNA expression, which will likely enhance the understanding of the crucial role epigenetics plays in the pathogenesis of uterine leiomyomas as well as point the way to novel therapeutic options.
Abstract: Uterine leiomyomas, also known as uterine fibroids, are the most common pelvic tumors, occurring in nearly 70% of all reproductive-aged women and are the leading indication for hysterectomy worldwide. The development of uterine leiomyomas involve a complex and heterogeneous constellation of hormones, growth factors, stem cells, genetic, and epigenetic abnormalities. An increasing body of evidence emphasizes the important contribution of epigenetics in the pathogenesis of leiomyomas. Genome-wide methylation analysis demonstrates that a subset of estrogen receptor (ER) response genes exhibit abnormal hypermethylation levels that are inversely correlated with their RNA expression. Several tumor suppressor genes, including Kruppel-like factor 11 (KLF11), deleted in lung and esophageal cancer 1 (DLEC1), keratin 19 (KRT19), and death-associated protein kinase 1 (DAPK1) also display higher hypermethylation levels in leiomyomas when compared to adjacent normal tissues. The important role of active DNA demethylation was recently identified with regard to the ten-eleven translocation protein 1 and ten-eleven translocation protein 3-mediated elevated levels of 5-hydroxymethylcytosine in leiomyoma. In addition, both histone deacetylase and histone methyltransferase are reported to be involved in the biology of leiomyomas. A number of deregulated microRNAs have been identified in leiomyomas, leading to an altered expression of their targets. More recently, the existence of side population (SP) cells with characteristics of tumor-initiating cells have been characterized in leiomyomas. These SP cells exhibit a tumorigenic capacity in immunodeficient mice when exposed to 17β-estradiol and progesterone, giving rise to fibroid-like tissue in vivo. These new findings will likely enhance our understanding of the crucial role epigenetics plays in the pathogenesis of uterine leiomyomas as well as point the way to novel therapeutic options.

87 citations


Journal ArticleDOI
TL;DR: Agomir-29b may act as a novel and effective therapeutic agent against IUAs and inhibited endometrial fibrosis via blockade of the Sp1-TGF-β1/Smad-CTGF pathway, in conclusion.
Abstract: Intrauterine adhesions (IUAs), which are characterized by endometrial fibrosis, increase the risk of secondary infertility and recurrent miscarriage. MicroRNA-29 (miR-29) is a potent inhibitor of TGF-β1/Smad signaling. In this study, we investigated the therapeutic potential of agomir-29b, an miR-29b mimic, in endometrial fibrosis induced by dual injury (uterine curettage and lipopolysaccharide treatment) in a rat model of IUA and explored the underlying mechanism. We found that injured rats developed endometrial fibrosis characterized by increased COL1A1 and α-smooth muscle actin expression and decreased E-cadherin expression, associated with a loss of miR-29b. Overexpression of miR-29b before injury prevented endometrial fibrosis including collagen accumulation and epithelial-mesenchymal transition. Delay of agomir-29b treatment until endometrial fibrosis was established on day 4 also halted the progression of disease. Further experiments indicated that miR-29b inhibited endometrial fibrosis via blockade of the Sp1-TGF-β1/Smad-CTGF pathway. In conclusion, agomir-29b may act as a novel and effective therapeutic agent against IUAs.

72 citations


Journal ArticleDOI
TL;DR: The data suggest that BCL6 is a promising candidate as a single diagnostic biomarker for detection of endometriosis in women with otherwise UI and may be associated with endometrial dysfunction, including progesterone resistance.
Abstract: The objective of this study was to examine B-cell CLL/lymphoma 6 (BCL6) expression in human eutopic endometrium across the menstrual cycle in women with and without endometriosis and to establish a cutoff for future studies. This design was a series of case-control studies in tertiary University teaching hospitals. We examined BCL6 expression by messenger RNA and immunohistochemically in prospectively collected samples in both the proliferative (P) and the secretory phases. BCL6 is minimally increased in the mid-secretory phase of the menstrual cycle compared to the P phase in normal patients. BCL6 protein expression was significantly higher in the secretory phase of patients with endometriosis (n = 29) versus fertile controls without endometriosis at laparoscopy (n = 20; P < .0001). Normal fertile controls (n = 28) recruited for endometrial biopsy also had low levels of secretory phase BCL6 expression compared to women with unexplained infertility (UI; n = 119). A receiving-operator characteristic analysis of these data revealed an area under the curve of 94% (95% confidence interval 85%-100%; P < .0001) with an HSCORE cutoff of 1.4 to differentiate cases with and without endometriosis. Using this cutoff value, BCL6 was positive in 88% of cases with UI. Laparoscopic examination of a subset of 65 patients confirmed abnormalities in 98% of cases; 61 (93.8%) were found to have endometriosis, 3 (4.6%) with hydrosalpinx, and 1 (1.5%) with a normal pelvis. These data suggest that BCL6 is a promising candidate as a single diagnostic biomarker for detection of endometriosis in women with otherwise UI and may be associated with endometrial dysfunction, including progesterone resistance.

69 citations


Journal ArticleDOI
TL;DR: The eutopic endometrium in patients with adenomyosis has fundamental abnormalities that may predispose to invasion and survival beyond the myometrial interface.
Abstract: Objective:Adenomyosis is a clinical disorder defined by the presence of endometrial glands and stroma within the myometrium, the pathogenesis of which is poorly understood. We postulate that dysreg...

66 citations


Journal ArticleDOI
TL;DR: Investigating whether FSHRs are also expressed on testicular stem cells (VSELs and SSCs) and their possible modulation by FSH using intact and chemoablated mice foundChemoablated testis was a better model to study stem cell biology since quiescent stem cells survive along with the Sertoli cells in the tubules.
Abstract: Testicular spermatogonial stem cells (SSCs) are a heterogeneous population of stem cells, and definitive marker for the most primitive subset that undergoes asymmetric cell division remains to be identified. A novel subpopulation of pluripotent, very small embryonic-like stem cells (VSELs) has been reported in both human and mouse testes. Follicle-stimulating hormone (FSH) receptors (FSHRs) are expressed on Sertoli cells in testis and on granulosa cells in ovary, but recently FSHRs are reported on VSELs in ovaries, bone marrow, and cord blood. The present study was aimed to investigate whether FSHRs are also expressed on testicular stem cells (VSELs and SSCs) and their possible modulation by FSH using intact and chemoablated (25 mg/kg busulfan) mice. Chemoablated testis was a better model to study stem cell biology since quiescent stem cells survive along with the Sertoli cells in the tubules. Proliferating cell nuclear antigen-positive, small-sized cells presumed to be VSELs were clearly visualized, and flow cytometry analysis revealed an increase in LIN-/CD45-/SCA-1+ VSELs from 0.045±0.008% to 0.1±0.03% of total cells in chemoablated testis after FSH treatment. Very small embryonic-like stem cells expressing nuclear octamer-binding transcription factor 4 (OCT-4) and SSCs with cytoplasmic OCT-4 were detected. Very small embryonic-like stem cells (Oct-4A, Sca-1, Nanog), SSCs (Oct-4), and proliferation (Pcna) specific transcripts were upregulated on FSH treatment. Stem cells expressed FSHR and were stimulated by FSH, and Fshr3 was the predominant transcript maximally modulated by FSH. Nuclear OCT-4 and SCA-1 (stem cell antigen 1) positive VSELs are the most primitive stem cells in testis, and FSH stimulates them to undergo asymmetric cell division including self-renewal and give rise to SSCs, which in turn proliferate rapidly and undergo clonal expansion and further differentiation.

64 citations


Journal ArticleDOI
TL;DR: It is proposed that ALT elongates telomeres across generations but does so at the cost of extensive genomic instability in preimplantation embryos.
Abstract: Implantation rate decreases and miscarriage rate increases with advancing maternal age. The oocyte must be the locus of reproductive aging because donation of oocytes from younger to older women abrogates the effects of aging on fecundity. Nuclear transfer experiments in a mouse model of reproductive aging show that the reproductive aging phenotype segregates with the nucleus rather than the cytoplasm. A number of factors within the nucleus have been hypothesized to mediate reproductive aging, including disruption of cohesions, reduced chiasma, aneuploidy, disrupted meiotic spindles, and DNA damage caused by chronic exposure to reactive oxygen species. We have proposed telomere attrition as a parsimonious way to explain these diverse effects of aging on oocyte function. Telomeres are repetitive sequences of DNA and associated proteins, which form a loop (t loop) at chromosome ends. Telomeres prevent the blunt end of DNA from triggering a DNA damage response. Previously, we showed that experimental telomere shortening phenocopies reproductive aging in mice. Telomere shortening causes reduced synapsis and chiasma, chromosome fusions, embryo arrest and fragmentation, and abnormal meiotic spindles. Telomere length of polar bodies predicts the fragmentation of human embryos. Telomerase, the reverse transcriptase capable of reconstituting shortened telomeres, is only minimally active in oocytes and preimplantation embryos. Intriguingly, during the first cell cycles following activation, telomeres robustly elongate via a DNA double-strand break mechanism called alternative lengthening of telomeres (ALTs). Alternative lengthening of telomere takes place even in telomerase-null mice. This mechanism of telomere elongation previously had been found only in cancer cells lacking telomerase activity. We propose that ALT elongates telomeres across generations but does so at the cost of extensive genomic instability in preimplantation embryos.

55 citations


Journal ArticleDOI
TL;DR: Circulating miRNAs may be useful as detection biomarkers for the early diagnosis of minimal–mild endometriosis and validated by qPCR in additional samples.
Abstract: Objective(s):The potential roles of serum microRNAs (miRNAs), as biomarkers, in noninvasive diagnosis of endometriosis have been reported by microarray analysis. However, microarray analysis cannot...

53 citations


Journal ArticleDOI
TL;DR: Taken together, the available data suggest that an increased focus on early-life events may help to identify young women at risk of severe, progressive endometriosis.
Abstract: Accumulating evidence indicates that adolescent endometriosis is common and often severe. Here we explore the possibility that seeding of naive endometrial progenitor cells into the pelvic cavity early in life, that is, at the time of neonatal uterine bleeding or soon after the menarche, results in more florid and progressive disease, characterized by highly angiogenic implants, recurrent ectopic bleeding, and endometrioma formation. We discuss the potential intergenerational risk factors associated with early-onset endometriosis and explore the molecular drivers of disease progression. Taken together, the available data suggest that an increased focus on early-life events may help to identify young women at risk of severe, progressive endometriosis.

52 citations


Journal ArticleDOI
TL;DR: Melatonin treatment during the late fetal and early neonatal period might result in a wide range of health benefits, improved quality of life, and may help limit complications during the critical periods prior to, and shortly after, delivery.
Abstract: Aim:Reactive oxygen species play an important role in the pathogenesis of several diseases during gestation and the perinatal period. During pregnancy, increased oxygen demand augments the rate of ...

51 citations


Journal ArticleDOI
TL;DR: The deterioration in oocyte quality may be caused by one or more of the following: a decrease in the antioxidant machinery by the loss of cumulus cells, the lack of scavengers for specific ROS, and/or the ability of the ROS to overcome these defenses.
Abstract: We investigated the ability of reactive oxygen species (ROS), such as hydrogen peroxide (H(2)O(2)), hydroxyl radical ((·)OH), and hypochlorous acid (HOCl), to overcome the defensive capacity of cumulus cells and elucidate the mechanism through which ROS differentially deteriorate oocyte quality. Metaphase II mouse oocytes with (n = 1634) and without cumulus cells (n = 1633) were treated with increasing concentration of ROS, and the deterioration in oocyte quality was assessed by the changes in the microtubule morphology and chromosomal alignment. Oocyte and cumulus cell viability and cumulus cell number were assessed by indirect immunofluorescence, staining of gap junction protein, and trypan blue staining. The treated oocytes showed decreased quality as a function of increasing concentrations of ROS when compared to controls. Cumulus cells show protection against H(2)O(2) and (·)OH insult at lower concentrations, but this protection was lost at higher concentrations (>50 μmol/L). At higher H(2)O(2) concentrations, treatment dramatically influenced the cumulus cell number and viability with resulting reduction in the antioxidant capacity making the oocyte more susceptible to oxidative damage. However, cumulus cells offered no significant protection against HOCl at any concentration used. In all circumstances in which cumulus cells did not offer protection to the oocyte, both cumulus cell number and viability were decreased. Therefore, the deterioration in oocyte quality may be caused by one or more of the following: a decrease in the antioxidant machinery by the loss of cumulus cells, the lack of scavengers for specific ROS, and/or the ability of the ROS to overcome these defenses.

Journal ArticleDOI
TL;DR: The increase in OS in the granulosa cell correlates with diminished expression of follicle-stimulating hormone receptor (FSHR) and a dysregulation of the FSHR signaling pathway and may be implicated in disrupted steroidogenic function and poor response to FSH in women with aging.
Abstract: Ovarian aging is associated with gradual follicular loss by atresia/apoptosis. Increased production of toxic metabolites such as reactive oxygen species (ROS) and reactive nitrogen species as well as external oxidant agents plays an important role in the process of ovarian senescence and in the pathogenesis of ovarian pathologies such as endometriosis and polycystic ovary syndrome (PCOS). This review provides a synthesis of available studies of oxidative stress (OS) in the ovary, focusing on the most recent evidence obtained in mural granulosa-lutein (GL) cells of in vitro fertilization patients. Synthesis of antioxidant enzymes such as peroxiredoxin 4, superoxide dismutase, and catalase and OS damage response proteins such as aldehyde dehydrogenase 3, member A2 decreases with aging in human GL cells, favoring an unbalance in ROS/antioxidants that mediates molecular damage and altered cellular function. The increase in OS in the granulosa cell correlates with diminished expression of follicle-stimulating hormone receptor (FSHR) and a dysregulation of the FSHR signaling pathway and may be implicated in disrupted steroidogenic function and poor response to FSH in women with aging. Women with endometriosis and PCOS have lower antioxidant production capacity that may contribute to abnormal follicular development and infertility. Further investigation of the signaling pathways involved in cellular response to OS could shed light into molecular characterization of these diseases and development of new treatment strategies to improve reproductive potential in these women.

Journal ArticleDOI
TL;DR: It is found that EESCs secrete thrombin and TXA2 and induce platelet activation and aggregation in a density-dependent fashion and establishes that endometriotic lesions and platelets engage active cross-talks in the development ofendometriosis, highlighting the importance of lesion microenvironment in endometRIosis.
Abstract: Platelets have been recently revealed to play important roles in the development of endometriosis. However, it is unclear whether endometriotic lesions can secrete any platelet inducers outside the menstruation window. Hence, this study was undertaken to see whether endometriosis-derived stromal cells secrete platelet activators and cause platelet activation. We employed in vitro experimentation using primary ectopic endometrial stromal cells (EESCs) and platelets from healthy male volunteers and evaluated the extent of platelet aggregation by aggregometer and the platelet activation rate by flow cytometry using supernatants harvested from EESCs of different cell densities. We also measured the concentration of thromboxane B2 (TXB2), a metabolite of thromboxane A2 (TXA2), and thrombin activity in supernatants harvested from EESCs of different densities and evaluated the extent of platelet aggregation after treatment of EESCs with hirudin, Ozagrel, and apyrase. Finally, the concentration of TXB2, thrombin, and transforming growth factor β1 (TGF-β1) in platelets cocultured with different densities of EESCs is measured by enzyme-linked immunosorbent assay. We found that EESCs secrete thrombin and TXA2 and induce platelet activation and aggregation in a density-dependent fashion. Treatment of platelets with EESCs resulted in increased concentration of TXB2, thrombin, and TGF-β1 in a density-dependent manner. Treatment of EESCs with hirudin and Ozagrel, but not apyrase, resulted in significant suppression of platelet aggregation. Thus, given recently reported effects of activated platelets on the cell behaviors of EESCs and endometriotic lesions in general, our findings establish that endometriotic lesions and platelets engage active cross-talks in the development of endometriosis, highlighting the importance of lesion microenvironment in endometriosis.

Journal ArticleDOI
N. Zhihong1, Feng Yun1, Z. Pinggui1, Z. Sulian1, Aijun Zhang1 
TL;DR: Within the implantation window of ovarian stimulation cycles, macrophages,IL-6, IL-10, and MCP-1 are expressed differently in the endometrium of women with adenomyosis, which may correlate with compromised endometrial receptivity.
Abstract: In this study, we aimed to clarify the inflammatory cytokine profile of endometrium in patients with adenomyosis during the implantation window after ovarian stimulation. Eighteen patients with adenomyosis and 24 control patients undergoing in vitro fertilization treatment were included in this prospective case-control study. Regular gonadotropin-releasing hormone antagonist protocol was used for ovarian stimulation. Endometrial samples were obtained 7 days after human chorionic gonadotropin (hCG) injection (hCG + 7). Cytokine levels in endometrium secretions from women with and without adenomyosis were assayed by multiplex immunoassay, levels of interleukin (IL) 6 (25.9 ± 6.6 vs 12.4 ± 3.4 pg/mL; P = .001), IL-10 (10.4 ± 2.9 vs 15.6 ± 4.2 pg/mL; P = .001), IL-17 (11.9 ± 3.0 vs 14.2 ± 3.9 pg/mL; P = .046), interferon-γ (11.7 ± 3.5 vs 8.0 ± 3.4 pg/mL; P = .001), and monocyte chemoattractant protein-1 (MCP-1; 37.1 ± 6.5 vs 16.4 ± 3.2 pg/mL; P = .001) were significantly different between patients with adenomyosis and control groups, respectively. Immunohistochemistry and quantitative real-time polymerase chain reaction showed that CD-68+, IL-6, and MCP-1 expression were higher and IL-10 was lower in adenomyosis endometrium epithelia compared to controls. In conclusion, within the implantation window of ovarian stimulation cycles, macrophages, IL-6, IL-10, and MCP-1 are expressed differently in the endometrium of women with adenomyosis, which may correlate with compromised endometrium receptivity. We postulated that cytokines of endometrial secretions expressed differently in patients with adenomyosis may contribute to impaired endometrium receptivity in these patients.

Journal ArticleDOI
TL;DR: Adult stem cells have a major role in endometrial physiology, remodeling, and repair, but they also have a critical role in the development and progression of endometriosis, and understanding molecular mechanisms regulating cell mobility and engraftment in endometricriosis may reveal new targets for treatment.
Abstract: Adult stem cells have a major role in endometrial physiology, remodeling, and repair, but they also have a critical role in the development and progression of endometriosis. Bone marrow-derived stem cells (BMDSCs) engraft eutopic endometrium and endometriotic lesions, showing stromal and epithelial fate. Nevertheless, circulating BMDSCs are in limited supply, and the presence of endometriosis depletes stem cells from the blood circulation, preventing their homing in the uterus. Furthermore, stem cells migrate from endometriotic lesion into the uterus, leading to a dysfunctional endometrium. Stem cell trafficking is a central feature of endometriosis. Understanding molecular mechanisms regulating cell mobility and engraftment in endometriosis may reveal new targets for treatment.

Journal ArticleDOI
TL;DR: It is suggested that adiposity-related inflammation does not override the iron-mediated signals that regulate hepcidin production during pregnancy, and in this adolescent cohort, there is no strong evidence for a detrimental effect of maternal obesity and excessive weight gain on iron status in the offspring at birth.
Abstract: Objective:To assess the impact of maternal obesity and excessive gestational weight gain (GWG) on maternal and neonatal iron status and to explore the possible mediating role of inflammation on hepcidin.Methods:This analysis included 230 pregnant adolescents (13-18 years) enrolled in either a longitudinal or a cross-sectional study. Prepregnancy body mass index (ppBMI) and GWG were obtained from medical records. Maternal iron status (hemoglobin, serum iron, ferritin, transferrin receptor, total body iron, and hepcidin) and inflammation (interleukin-6 [IL-6] and leptin) were assessed at midgestation (26.2 ± 3.3 weeks) in the longitudinal cohort and at delivery (39.8 ± 1.3 weeks) in both study cohorts. Cord blood was collected in both studies and analyzed for iron indicators.Results:Approximately 40% of the adolescents entered pregnancy overweight or obese. Multivariate analysis identified ppBMI as a negative predictor of serum iron at midgestation (P = .009) and a positive predictor of serum hepcidin at de...

Journal ArticleDOI
TL;DR: The differences in methylation patterns of HOXA10 gene in uterine myomas, endometriosis, uterine septum, Asherman syndrome, or uterine polyps of women undergoing hysteroscopic surgery are described.
Abstract: HomeoboxA10 (HOXA10) is a transcription factor that is crucial for the development and patterning of the uterus during embryogenesis. In the adult endometrium, HOXA10 expression is regulated by steroid hormones and embryonic signals. Expression of sufficient HOXA10 messenger RNA is essential to endometrial receptivity and embryo implantation. Aberrant methylation is believed to alter the expression of HOXA10. Methylation of this gene may be associated with decreased fertility, implantation defects, and/or reproductive wastage seen in certain disease states that affect the female reproductive tract. This study describes the differences in methylation patterns of HOXA10 gene in uterine myomas, endometriosis, uterine septum, Asherman syndrome, or uterine polyps of women undergoing hysteroscopic surgery. In the endometrium of uteri with polyps, submucosal myomas, and intramural myomas, there were CpG sites within the HOXA10 gene that were highly methylated compared to controls. The HOXA10 gene in women with endometriosis was hypomethylated compared to controls. DNA methylation may be a common molecular mechanism that results in reproductive dysfunction seen in gynecologic disease.

Journal ArticleDOI
TL;DR: The normal reference ranges for serum AMH levels in a large population-based sample of healthy Chinese women are determined and relationship between AMH and other variables remain unchanged except for PRL, which was not significantly correlated with AMH Levels after controlling for both age and BMI.
Abstract: Background:The increasing use of anti-Mullerian hormone (AMH) in clinic has raised concerns regarding the reliable reference range for this test. However, the reference range for AMH in normal Chin...

Journal ArticleDOI
TL;DR: This contribution summarizes the pivotal role of the ovarian renin–angiotensin system (OVRAS) in ovarian physiology and disease, with particular emphasis on human clinical implications and established translational applications.
Abstract: This contribution summarizes the pivotal role of the ovarian renin-angiotensin system (OVRAS) in ovarian physiology and disease, with particular emphasis on human clinical implications and established translational applications. The presence of a complete OVRAS in all studied species has been known for decades. The OVRAS has major effects on follicle development/atresia and ovulation and steroid hormone secretion, that is, it is necessary for normal reproduction. It is well established that OVRAS activity is regulated by gonadotropins and depends on activation of proteases in the area of growing follicles. Angiotensin and angiotensin receptors are widely distributed in the ovarian follicle, preovulatory theca and granulosa cells, and postovulatory mural granulosa-lutein cells and regulate steroidogenesis. Molecular blockade of the OVRAS inhibits oocyte maturation and ovulation. Pathologically abnormal OVRAS function has been associated with infertility, polycystic ovarian syndrome (PCOS), ovarian hyperstimulation syndrome (OHSS), and ovarian cancer. Both hyperandrogenism in PCOS and third space fluid accumulation in OHSS have been convincingly linked to overexpression of renin and angiotensin. Blockade of angiotensin receptors is under study for the treatment of gynecologic cancer, OHSS, and PCOS. However, a full understanding of the OVRAS and translational applications is lacking. In part, this is due to the discovery in recent years of previously unknown renin-angiotensin system (RAS) components and novel functions of "classical" RAS components that remain to be integrated into translational studies; newer, more specific agents to block RAS components are available only now for such research and treatment. The need for further studies is evident.

Journal ArticleDOI
TL;DR: The overall data point out that the heterogeneity of the disease reflects differences in expression levels of genes associated with hypoxia and angiogenesis, suggesting that such conditions may have an active role in the development of the Disease.
Abstract: Endometriosis is associated with local angiogenic and hypoxic mechanisms. Indeed, peritoneal fluid of women with endometriosis generates a specific microenvironment to support the growth and development of ectopic endometrial tissues. The association between proangiogenic markers and hypoxic processes in different endometriosis phenotypes was investigated in the present study, analyzing the expression of several genes, related to hypoxic signaling pathway and involved in angiogenic processes, in nonpregnant women with different forms of endometriosis. Samples of ovarian endometrioma (OMA; n = 16) or deep infiltrating endometriosis (DIE; n = 11) were collected, and in addition, control endometrium was collected from healthy women by hysteroscopy. The gene expression of the hypoxia-inducible factors (HIF) 1/2α, protease-activated receptors (PARs) ¼, and vascular endothelial growth factor (VEGF) A was evaluated by quantitative reverse-transcription polymerase chain reaction. Ovarian endometrioma expresses high levels of HIF-1/2α, PAR-1/4, and VEGF-A, while DIE did not show significantly different gene expression compared to endometrium from unaffected women. A positive correlation between the expression of HIF-1/2α and VEGF-A mRNA was observed in OMA. The overall data point out that the heterogeneity of the disease reflects differences in expression levels of genes associated with hypoxia and angiogenesis, suggesting that such conditions may have an active role in the development of the disease.

Journal ArticleDOI
TL;DR: HU-MSC transplantation may be extremely beneficial for PE therapy, and its effects on reversing preeclampsia symptoms in a lipopolysaccharide (LPS)-induced rat PE model are tested.
Abstract: Objective:To test the effects of human umbilical cord mesenchymal stem cell (HU-MSC) transplantation on reversing preeclampsia (PE) symptoms in a lipopolysaccharide (LPS)-induced rat PE model.Methods:Human umbilical cord MSCs were detected, isolated, and cultured. Human umbilical cord MSC transplantation was conducted. Expressions of inflammatory cytokines in serum and placental tissue were measured by enzyme-linked immunosorbent assay. Changes in inflammatory cytokines, peroxisome proliferator-activated receptor γ (PPARγ), laminin receptor 1 (LR1), matrix metalloproteinase (MMP) 2, and MMP-9 messenger RNA (mRNA) levels in placental tissue were recorded by quantitative real-time polymerase chain reaction. Immunohistochemistry and Western blotting were performed for PPARγ detection.Results:The LPS group exhibited increased blood pressure and proteinuria and decreased fetal weight compared to the normal pregnancy (NP) group (all P < .05). The LPS + MSC group presented lowered blood pressure and higher fetal...

Journal ArticleDOI
TL;DR: Progressive resistance training had positive effects on the hormonal and physical characteristics of women with PCOS and controls, but telomere content was reduced and homocysteine level increased in all participants.
Abstract: Background:Physical activity is known to relieve the metabolic complications of polycystic ovary syndrome (PCOS), and exercise is also associated with telomere biology. We investigated the changes ...

Journal ArticleDOI
TL;DR: A conserved final common mechanism involving macrophages and inflammation may characterize the transition to a ripe cervix before birth at term and in advance of premature birth.
Abstract: Remodeling of the cervix occurs in advance of labor both at term and at preterm birth. Morphological characteristics associated with remodeling in rodents were assessed in cervix biopsies from women at term (39 weeks' gestation) and preterm (<33 weeks' gestation). Collagen I and III messenger RNA and hydroxyproline concentrations declined in cervix biopsies from women in labor at term and preterm compared to that in the cervix from nonlaboring women. Extracellular collagen was more degraded in sections of cervix from women at term, based on optical density of picrosirius red stain, versus that in biopsies from nonpregnant women. However, collagen structure was unchanged in the cervix from women at preterm labor versus the nonpregnant group. As an indication of inflammation, cell nuclei density was decreased in cervix biopsies from pregnant women irrespective of labor compared to the nonpregnant group. Moreover, CD68-stained macrophages increased to an equivalent extent in cervix subepithelium and stroma from groups in labor, both at term and preterm, as well as in women not in labor at term. Evidence for a similar inflammatory process in the remodeled cervix of women at term and preterm birth parallels results in rodent models. Thus, a conserved final common mechanism involving macrophages and inflammation may characterize the transition to a ripe cervix before birth at term and in advance of premature birth.

Journal ArticleDOI
TL;DR: The hypothesis that inflammatory processes in the prepartum cervix that include residency of macrophages, cellular hypertrophy, and extracellular collagen structure are regulated by genomic actions of PR in a final common mechanism both at term and with induced preterm birth is supported.
Abstract: This study determined whether a progesterone (P) receptor (PR)-mediated mechanism regulates morphological characteristics associated with prepartum cervix remodeling at term and with preterm birth. With focus on the transition from a soft to ripe cervix, the cervix stroma of untreated controls had reduced cell nuclei density/area and less organized extracellular collagen, while the density of macrophages/area, but not neutrophils, increased just 2 days before birth (day 17 vs day 15 or 16.5 postbreeding). Preterm birth was induced within 24 hours of treatment on day 16 postbreeding with PR antagonist or ovariectomy (Ovx). Pure or mixed PR antagonists increased the density of macrophages in the cervix within 8 hours (day 16.5 postbreeding), in advance of preterm birth. However, neither PR antagonists nor P withdrawal after Ovx affected the densities of cell nuclei and neutrophils or extracellular collagen compared to the same day controls-an indication that the cervix was sufficiently remodeled for birth to occur. To block the effect of systemic P withdrawal, Ovx pregnant mice were given a PR agonist, either pure or mixed. These treatments forestalled preterm birth and prevented further morphological remodeling of the cervix. The resulting increase in macrophage density in cervix stroma following Ovx was only blocked by a pure PR agonist. These findings support the hypothesis that inflammatory processes in the prepartum cervix that include residency of macrophages, cellular hypertrophy, and extracellular collagen structure are regulated by genomic actions of PR in a final common mechanism both at term and with induced preterm birth.

Journal ArticleDOI
TL;DR: The association of increased circulating AEA and 2-AG with decreased local CB1 expression in endometriosis suggests a negative feedback loop regulation, which may impair the capability of these mediators to control pain.
Abstract: Cannabinoids and modulators of the endocannabinoid system affect specific mechanisms that are critical to the establishment and development of endometriosis. The aim of this study was to measure the systemic levels of endocannabinoids and related mediators in women with and without endometriosis and to investigate whether such levels correlated with endometriosis-associated pain. Plasma and endometrial biopsies were obtained from women with a laparoscopic diagnosis of endometriosis (n = 27) and no endometrial pathology (n = 29). Plasma levels of endocannabinoids (N-arachidonoylethanolamine [AEA] and 2-arachidonoylglycerol [2-AG]) and related mediators (N-oleoylethanolamine [OEA] and N-palmitoylethanolamine [PEA]), messenger RNA expression of some of their receptors (cannabinoid receptor type 1 [CB1], CB2, transient receptor potential vanilloid type [TRPV1]), and the enzymes involved in the synthesis (N-acyl-phosphatidylethanolamine-hydrolyzing phospholipase D [NAPE-PLD]) and degradation (fatty acid amide hydrolase 1 [FAAH]) of AEA, OEA, and PEA were evaluated in endometrial stromal cells. The systemic levels of AEA, 2-AG, and OEA were elevated in endometriosis in the secretory phase compared to controls. The expression of CB1 was higher in secretory phase endometrial stromal cells of controls versus endometriosis. Similar expression levels of CB2, TRPV1, NAPE-PLD, and FAAH were detected in controls and endometriosis. Patients with moderate-to-severe dysmenorrhea and dyspareunia showed higher AEA and PEA levels than those with low-to-moderate pain symptoms, respectively. The association of increased circulating AEA and 2-AG with decreased local CB1 expression in endometriosis suggests a negative feedback loop regulation, which may impair the capability of these mediators to control pain. These preliminary data suggest that the pharmacological manipulation of the action or levels of these mediators may offer an alternative option for the management of endometriosis-associated pain.

Journal ArticleDOI
TL;DR: A new integrated viewpoint on IVA is provided, highlighting basic science research on the aspects of follicular development and ovarian tissue transplantation which may potentially optimize future translational research onIVA.
Abstract: In vitro activation (IVA) represents a new frontier in the treatment of women with primary ovarian insufficiency as well as patients with cancer desiring fertility preservation. Here, we review the biological basis of IVA and the recent translation of IVA to humans by targeting Hippo and Akt-signaling pathways. We then provide a new integrated viewpoint on IVA, highlighting basic science research on the aspects of follicular development and ovarian tissue transplantation which may potentially optimize future translational research on IVA. Specific topics discussed include cryopreservation techniques, additional IVA pathway targets, the roles of actin polymerization, paracrine and endocrine factors, and the role of mechanical signaling and associated tissue rigidity in controlling ovarian follicular activation. Further research and improved understanding is needed to optimize success of IVA.

Journal ArticleDOI
TL;DR: Based on the results, an association between the FSH-R polymorphisms and a “hyporesponse” to exogenous FSH is hypothesized.
Abstract: It has been reported that 10% to 15% of young normogonadotrophic women show suboptimal response to standard gonadotropin-releasing hormone—a long protocol. These patients require higher doses of exogenous follicle-stimulating hormone (FSH). This phenomenon could be associated with genetic characteristics. In this study, FSH receptor polymorphism was retrospectively evaluated in 42 normoresponder young women undergoing an in vitro fertilization/intracytoplasmic sperm injection cycle; patients were stratified according to recombinant human FSH (r-hFSH) consumption. We selected 17 normoresponder young patients who required a cumulative dose of recombinant FSH (rFSH) >2500 UI (group A). A control group was randomly selected among patients who required a cumulative dose of rFSH <2500 UI (group B). Follicle-stimulating hormone receptor (FSH-R) 307Ala and 680Ser variants were analyzed in all our patients. Our results show that the mean number of rFSH vials (36.3 ± 7.5 vs 28.6 ± 4.5, P = .0001) and days of stimulation (12.7 ± 2.4 vs 10.8 ± 2.8, P = .03) were significantly lower in group B, whereas the number of oocytes retrieved (7.1 ± 1.5 vs 9.6 ± 2.4; P = .0005) and the average number of embryos transferred (2.1 ± 0.7 vs 2.7 ± 0.4; P = .001) were significantly lower in group A. Estradiol serum levels on the human chorionic gonadotrophin day were significantly lower in group A (997.8 ± 384.9 pg/mL vs 1749.1 ± 644.4; P = .0001). The incidence of the Ser/Ser genotype was higher in patients with higher r-hFSH consumption (group A; P = .02). Based on our results, we hypothesize an association between the FSH-R polymorphisms and a “hyporesponse” to exogenous FSH.

Journal ArticleDOI
TL;DR: The results suggest that the degree that a stress damages oocytes is the product of duration × severity of the stress; RRS impaired oocyte developmental potential through cumulative effects on growing follicles; and preantral follicle were not as sensitive to stress as antral follicles were.
Abstract: Although previous studies found that I -time acute stress applied during follicle maturation impaired oocyte competence, it is unknown whether repeated chronic stress, which is known to cause animal behavioral adaptation, would damage oocytes when applied during follicle growth. In this study, female mice were exposed to repeated restraint stress (RRS) or unpredictable stress (UPS) for different days before equine chorionic gonadotropin injection to initiate oocyte prematuration development and to observe effects of different Stressors on oocytes in the growing follicles. The results showed that although oocyte pre- and postimplantation development was unaffected when mice were exposed to RRS or UPS once a day for 4 days, development was impaired when mice were exposed to RRS for 8 or more days or to UPS twice a day for 4 days (4 x 2). The 4 x 2 UPS caused more oxidative stress in oocytes and severer apoptosis in antral follicles than did the 4-day RRS. The RRS mice were stressed consistently from days I to 23 of restraint, and the stress that a mouse had 4x2 UPS was severer than that from 4-day RRS. The results suggest that (I) the degree that a stress damages oocytes is the product of duration x severity of the stress; (2) RRS impaired oocyte developmental potential through cumulative effects on growing follicles; and (3) preantral follicles were not as sensitive to stress as antral follicles were.

Journal ArticleDOI
TL;DR: The systematic review of literature clearly showed that inositol supplementation in preconceptional period and in early phase of pregnancy reduces the risk of developing GDM in patients at increased risk and continued intake during pregnancy improves the metabolic status of affected patients, but further studies are needed to confirm this end point.
Abstract: Although inositol dietary deficiency in the general population has not been demonstrated at the serum level, several findings are emerging regarding the impact of inositol supplementation in periconceptional period and in early phases of pregnancy. We are aimed to summarize all experimental (murine in vivo and in vitro murine embryo studies) and clinical (human) evidences regarding the role of inositol in the prevention and treatment of folate-resistant embryo neural tube defects (FR-NTDs) and gestational diabetes mellitus (GDM). We also collected all information regarding the effect that inositol supplementation may have in the metabolic reassessment of early and late pregnancy in order to draw evidence-based conclusions and suggest further studies defining the potential therapeutic role of this molecule in human reproduction. The systematic review of literature clearly showed that inositol supplementation in preconceptional period and in early phase of pregnancy reduces the risk of developing GDM in patients at increased risk. Furthermore, continued intake during pregnancy improves the metabolic status of affected patients, but further studies are needed to confirm this end point. All women at risk of FR-NTDs assuming inositol from the periconceptional period until late pregnancy are reported to have healthy newborns without any significant complications linked to inositol supplementation.

Journal ArticleDOI
TL;DR: The hypothesis that endothelin 1 activation has a critical role in pathophysiology of as hemolysis–elevated liver enzymes–low platelet syndrome is supported.
Abstract: Women with hypertensive forms of pregnancy such as hemolysis-elevated liver enzymes-low platelet syndrome have increased circulating endothelin 1; however, the relationship between hypertension and endothelin 1 has not been studied. Using an animal model, we sought to determine whether there was an increased activation/dysfunction of endothelin 1, the effect of endothelin 1 receptor-A blockade on hypertension and other manifestations of hemolysis, elevated liver enzymes, and low platelets syndrome. On gestational day 12, timed-pregnant rats were infused with soluble fms-like tyrosine kinase 1 (sFlt-1) and soluble endoglin (sEndoglin; 4.7 and 7 µg/kg) via mini-osmotic pumps for 8 days. A subset of rats were treated with receptor-A antagonist (ABT-627, 5mg/kg) for 8 days. Rats with hemolysis-elevated liver enzymes-low platelet syndrome had significantly increased hypertension (P = .0001), circulating endothelin 1 (P = .03), and a significant 3.3- and 7.2-fold increase in preproendothelin messenger RNA (mRNA) expression in the placenta and liver (P = .01 and .04). Urinary protein:creatinine ratio was significantly increased in these animals (P = .0007), and circulating factors from these rats stimulated a significant increase in endothelial cell secretion of endothelin 1 (P = .001) in an in vitro assay. Blockade of the endothelin 1 receptor A significantly decreased hypertension (P = .001), circulating endothelin 1, and interleukin 17 (P = .004 and .003), placental preproendothelin mRNA expression (P = .016), and urinary protein:creatinine ratio (P = .007) in rats with hemolysis-elevated liver enzymes-low platelet syndrome. Blockade of the endothelin 1 receptor A significantly decreased hemolysis (P = .009), liver enzymes (P = .011), and significantly increased platelet levels (P = .03) and decreased circulating CD4+ and CD8+ T lymphocytes (P = .0004 and .0001) in rats infused with sFlt-1 and sEndoglin. These data support the hypothesis that endothelin 1 activation has a critical role in pathophysiology of as hemolysis-elevated liver enzymes-low platelet syndrome.