scispace - formally typeset
Search or ask a question
JournalISSN: 1742-4690

Retrovirology 

BioMed Central
About: Retrovirology is an academic journal published by BioMed Central. The journal publishes majorly in the area(s): Viral replication & Virus. It has an ISSN identifier of 1742-4690. It is also open access. Over the lifetime, 2985 publications have been published receiving 70960 citations.
Topics: Viral replication, Virus, Antibody, Population, T cell


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that circulating microbial products, probably derived from the gastrointestinal tract, are a cause of HIV-related systemic immune activation and increased lipopolysaccharide is bioactive in vivo and correlates with measures of innate and adaptive immune activation.
Abstract: Chronic activation of the immune system is a hallmark of progressive HIV infection and better predicts disease outcome than plasma viral load, yet its etiology remains obscure. Here, we show that circulating microbial products, likely derived from the gastrointestinal tract, are a primary cause of HIV-related systemic immune activation. Circulating lipopolysaccharide, an indicator of microbial translocation, is significantly increased in chronically HIV-infected individuals and SIV-infected rhesus macaques. We show that monocytes are chronically stimulated in vivo by increased lipopolysaccharide, which also correlates with measures of innate and adaptive immune activation. Effective antiretroviral therapy appears to reduce microbial translocation. Furthermore, in non-pathogenic SIV infection of sooty mangabeys, microbial translocation does not seem to occur. These data establish a mechanism for chronic immune activation in the context of a compromised gastrointestinal mucosal surface and provide novel directions for therapeutic interventions that modify the consequences of acute HIV infection.

1,984 citations

Journal ArticleDOI
TL;DR: The goal of this review is to recapitulate current knowledge of the functional interaction of HIV-1 and its Vif protein with the APOBEC3 subfamily of proteins and to summarize the present understanding of the mechanism of APOBec3-dependent retrovirus restriction.
Abstract: Members of the APOBEC family of cellular cytidine deaminases represent a recently identified group of proteins that provide immunity to infection by retroviruses and protect the cell from endogenous mobile retroelements. Yet, HIV-1 is largely immune to the intrinsic antiviral effects of APOBEC proteins because it encodes Vif (viral infectivity factor), an accessory protein that is critical for in vivo replication of HIV-1. In the absence of Vif, APOBEC proteins are encapsidated by budding virus particles and either cause extensive cytidine to uridine editing of negative sense single-stranded DNA during reverse transcription or restrict virus replication through deaminase-independent mechanisms. Thus, the primary function of Vif is to prevent encapsidation of APOBEC proteins into viral particles. This is in part accomplished by the ability of Vif to induce the ubiquitin-dependent degradation of some of the APOBEC proteins. However, Vif is also able to prevent encapsidation of APOBEC3G and APOBEC3F through degradation-independent mechanism(s). The goal of this review is to recapitulate current knowledge of the functional interaction of HIV-1 and its Vif protein with the APOBEC3 subfamily of proteins and to summarize our present understanding of the mechanism of APOBEC3-dependent retrovirus restriction.

343 citations

Journal ArticleDOI
TL;DR: Some of the key observations in birds and mammals that led to the discovery of ERV are recounted, and comment on their evolution, cross-species dispersion, and what remains to be elucidated.
Abstract: When endogenous retroviruses (ERV) were discovered in the late 1960s, the Mendelian inheritance of retroviral genomes by their hosts was an entirely new concept. Indeed Howard M Temin's DNA provirus hypothesis enunciated in 1964 was not generally accepted, and reverse transcriptase was yet to be discovered. Nonetheless, the evidence that we accrued in the pre-molecular era has stood the test of time, and our hypothesis on ERV, which one reviewer described as 'impossible', proved to be correct. Here I recount some of the key observations in birds and mammals that led to the discovery of ERV, and comment on their evolution, cross-species dispersion, and what remains to be elucidated.

342 citations

Journal ArticleDOI
TL;DR: This work presents the most comprehensive and accurate catalog of all full-length and partial HML-2 proviruses, as well as solo LTR elements, within the published human genome to date, and provides evidence for preferential maintenance of proviral elements on gene-rich chromosomes of the human genome and in proximity to gene regions.
Abstract: Background Integration of retroviral DNA into a germ cell may lead to a provirus that is transmitted vertically to that host's offspring as an endogenous retrovirus (ERV). In humans, ERVs (HERVs) comprise about 8% of the genome, the vast majority of which are truncated and/or highly mutated and no longer encode functional genes. The most recently active retroviruses that integrated into the human germ line are members of the Betaretrovirus-like HERV-K (HML-2) group, many of which contain intact open reading frames (ORFs) in some or all genes, sometimes encoding functional proteins that are expressed in various tissues. Interestingly, this expression is upregulated in many tumors ranging from breast and ovarian tissues to lymphomas and melanomas, as well as schizophrenia, rheumatoid arthritis, and other disorders.

342 citations

Journal ArticleDOI
TL;DR: This review summarizes current knowledge of this viral system, which is important as a model for leukemogenesis and cast light onto novel prospects for therapies of HTLV induced diseases, for which no satisfactory treatment exists so far.
Abstract: In 1871, the observation of yellowish nodules in the enlarged spleen of a cow was considered to be the first reported case of bovine leukemia. The etiological agent of this lymphoproliferative disease, bovine leukemia virus (BLV), belongs to the deltaretrovirus genus which also includes the related human T-lymphotropic virus type 1 (HTLV-1). This review summarizes current knowledge of this viral system, which is important as a model for leukemogenesis. Recently, the BLV model has also cast light onto novel prospects for therapies of HTLV induced diseases, for which no satisfactory treatment exists so far.

320 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
20231
202133
202035
201944
201878
201757