scispace - formally typeset
Search or ask a question
JournalISSN: 0960-3166

Reviews in Fish Biology and Fisheries 

Springer Science+Business Media
About: Reviews in Fish Biology and Fisheries is an academic journal published by Springer Science+Business Media. The journal publishes majorly in the area(s): Population & Fisheries management. It has an ISSN identifier of 0960-3166. Over the lifetime, 1117 publications have been published receiving 75180 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This review attempts to delineate common themes on the physiological and metabolic roles of cortisol in teleost fishes and to suggest new approaches that might overcome some of the inconsistencies on the role of this multifaceted hormone.
Abstract: Cortisol is the principal corticosteriod in teleost fishes and its plasma concentrations rise dramatically during stress. The relationship between this cortisol increase and its metabolic consequences are subject to extensive debate. Much of this debate arises from the different responses of the many species used, the diversity of approaches to manipulate cortisol levels, and the sampling techniques and duration. Given the extreme differences in experimental approach, it is not surprising that inconsistencies exist within the literature. This review attempts to delineate common themes on the physiological and metabolic roles of cortisol in teleost fishes and to suggest new approaches that might overcome some of the inconsistencies on the role of this multifaceted hormone. We detail the dynamics of cortisol, especially the exogenous and endogenous factors modulating production, clearance and tissue availability of the hormone. We focus on the mechanisms of action, the biochemical and physiological impact, and the interaction with other hormones so as to provide a conceptual framework for cortisol under resting and/or stressed states. Interpretation of interactions between cortisol and other glucoregulatory hormones is hampered by the absence of adequate hormone quantification, resulting in correlative rather than causal relationships.

2,139 citations

Journal ArticleDOI
TL;DR: Model predictions indicate that global climate change will continue even if greenhouse gas emissions decrease or cease, and proactive management strategies such as removing other stressors from natural systems will be necessary to sustain freshwater fisheries.
Abstract: Despite uncertainty in all levels of analysis, recent and long-term changes in our climate point to the distinct possibility that greenhouse gas emissions have altered mean annual temperatures, precipitation and weather patterns. Modeling efforts that use doubled atmospheric CO2 scenarios predict a 1–7°C mean global temperature increase, regional changes in precipitation patterns and storm tracks, and the possibility of “surprises” or sudden irreversible regime shifts. The general effects of climate change on freshwater systems will likely be increased water temperatures, decreased dissolved oxygen levels, and the increased toxicity of pollutants. In lotic systems, altered hydrologic regimes and increased groundwater temperatures could affect the quality of fish habitat. In lentic systems, eutrophication may be exacerbated or offset, and stratification will likely become more pronounced and stronger. This could alter food webs and change habitat availability and quality. Fish physiology is inextricably linked to temperature, and fish have evolved to cope with specific hydrologic regimes and habitat niches. Therefore, their physiology and life histories will be affected by alterations induced by climate change. Fish communities may change as range shifts will likely occur on a species level, not a community level; this will add novel biotic pressures to aquatic communities. Genetic change is also possible and is the only biological option for fish that are unable to migrate or acclimate. Endemic species, species in fragmented habitats, or those in east–west oriented systems will be less able to follow changing thermal isolines over time. Artisanal, commercial, and recreational fisheries worldwide depend upon freshwater fishes. Impacted fisheries may make it difficult for developing countries to meet their food demand, and developed countries may experience economic losses. As it strengthens over time, global climate change will become a more powerful stressor for fish living in natural or artificial systems. Furthermore, human response to climate change (e.g., increased water diversion) will exacerbate its already-detrimental effects. Model predictions indicate that global climate change will continue even if greenhouse gas emissions decrease or cease. Therefore, proactive management strategies such as removing other stressors from natural systems will be necessary to sustain our freshwater fisheries.

999 citations

Journal ArticleDOI
TL;DR: The proposed ECOSIM approach will enable a wide range of potential users to conduct fisheries policy analyses that explicitly account for ecosystem trophic interactions, without requiring the users to engage in complex modelling or information gathering much beyond that required for ECOPATH.
Abstract: The linear equations that describe trophic fluxes in mass-balance, equilibrium assessments of ecosystems (such as in the ECOPATH approach) can be re-expressed as differential equations defining trophic interactions as dynamic relationships varying with biomasses and harvest regimes. Time patterns of biomass predicted by these differential equations, and equilibrium system responses under different exploitation regimes, are found by setting the differential equations equal to zero and solving for biomasses at different levels of fishing mortality. Incorporation of our approach as the ECOSIM routine into the well-documented ECOPATH software will enable a wide range of potential users to conduct fisheries policy analyses that explicitly account for ecosystem trophic interactions, without requiring the users to engage in complex modelling or information gathering much beyond that required for ECOPATH. While the ECOSIM predictions can be expected to fail under fishing regimes very different from those leading to the ECOPATH input data, ECOSIM will at least indicate likely directions of biomass change in various trophic groups under incremental experimental policies aimed at improving overall ecosystem management. That is, ECOSIM can be a valuable tool for design of ecosystem-scale adaptive management experiments

984 citations

Journal ArticleDOI
TL;DR: This review investigates the influence of different biotic and abiotic factors (age, phylogenetic position, feeding behavior, environmental factors, oxygen, temperature, presence of xenobiotics) on antioxidant defenses in fish.
Abstract: Oxygen in its molecular state O2, is essential for many metabolic processes that are vital to aerobic life. Aerobic organisms cannot exist without oxygen, which nevertheless is inherently dangerous to their lives. Like all aerobic organisms, fish are also susceptible to the effects of reactive oxygen and have inherent and effective antioxidant defenses that are well described in the literature. This review investigates the influence of different biotic and abiotic factors (age, phylogenetic position, feeding behavior, environmental factors, oxygen, temperature, presence of xenobiotics) on antioxidant defenses in fish. Studies of antioxidant activity in fish open a number of novel research lines providing greater knowledge of fish physiology, which will benefit various aspects of fish farming and artificial production.

930 citations

Journal ArticleDOI
TL;DR: The genetic mechanisms underpinning oocyte and embryo growth and development are a priority for research and the products synthesized in ovoand the mechanisms controlling their expression are likely to play a central role in determining egg quality.
Abstract: Factors affecting egg quality are determined by the intrinsic properties of the egg itself and the environment in which the egg is fertilized and subsequently incubated. Egg quality in fish is very variable. Some of the factors affecting egg quality in fish are known, but many (probably most) are unknown. Components that do affect egg quality include the endocrine status of the female during the growth of the oocyte in the ovary, the diet of the broodfish, the complement of nutrients deposited into the oocyte, and the physiochemical conditions of the water in which the eggs are subsequently incubated. In captive broodfish, the husbandry practices to which fish are subjected are probably a major contributory factor affecting egg quality. Our knowledge of the genetic influences on egg quality is very limited indeed. We know that parental genes strongly influence both fecundity and egg quality, but almost nothing is known about gene expression and/or mRNA translation in fish oocytes/embryos. This is surprising because the products synthesized in ovoand the mechanisms controlling their expression are likely to play a central role in determining egg quality. The genetic mechanisms underpinning oocyte and embryo growth and development are a priority for research

807 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202342
202260
202164
202035
201946
201847