scispace - formally typeset
Search or ask a question

Showing papers in "Reviews in The Neurosciences in 2016"


Journal ArticleDOI
TL;DR: The delayed effect of dopaminergic medication combined with the success of extrastriatal deep brain stimulation suggests that PI involves neurotransmitter systems other than dopamine and brain regions extending beyond the basal ganglia, further challenging the traditional view of PD as a predominantly single-system neurodegenerative disease.
Abstract: Postural instability (PI) is one of the most debilitating motor symptoms of Parkinson's disease (PD), as it is associated with an increased risk of falls and subsequent medical complications (e.g. fractures), fear of falling, decreased mobility, self-restricted physical activity, social isolation, and decreased quality of life. The pathophysiological mechanisms underlying PI in PD remain elusive. This short review provides a critical summary of the literature on PI in PD, covering the clinical features, the neural and cognitive substrates, and the effects of dopaminergic medications and deep brain stimulation. The delayed effect of dopaminergic medication combined with the success of extrastriatal deep brain stimulation suggests that PI involves neurotransmitter systems other than dopamine and brain regions extending beyond the basal ganglia, further challenging the traditional view of PD as a predominantly single-system neurodegenerative disease.

113 citations


Journal ArticleDOI
TL;DR: This review encompasses acute effects and chronic neurodegenerative consequences after TBI for a better understanding of TBI-induced neuronal death and to design therapies that will effectively treat patients in the primary or secondary progressive stages.
Abstract: Traumatic brain injury (TBI), a major global health and socioeconomic problem, is now established as a chronic disease process with a broad spectrum of pathophysiological symptoms followed by long-term disabilities. It triggers multiple and multidirectional biochemical events that lead to neurodegeneration and cognitive impairment. Recent studies have presented strong evidence that patients with TBI history have a tendency to develop proteinopathy, which is the pathophysiological feature of neurodegenerative disorders such as Alzheimer disease (AD), chronic traumatic encephalopathy (CTE), and amyotrophic lateral sclerosis (ALS). This review mainly focuses on mechanisms related to AD, CTE, and ALS that are induced after TBI and their relevance to the advancement of these neurodegenerative diseases. This review encompasses acute effects and chronic neurodegenerative consequences after TBI for a better understanding of TBI-induced neuronal death and to design therapies that will effectively treat patients in the primary or secondary progressive stages.

100 citations


Journal ArticleDOI
TL;DR: Different segmentation and machine learning techniques used for the diagnosis of AD are reviewed including thresholding, supervised and unsupervised learning, probabilistic techniques, Atlas-based approaches, and fusion of different image modalities.
Abstract: Alzheimer's disease (AD) is a common health problem in elderly people. There has been considerable research toward the diagnosis and early detection of this disease in the past decade. The sensitivity of biomarkers and the accuracy of the detection techniques have been defined to be the key to an accurate diagnosis. This paper presents a state-of-the-art review of the research performed on the diagnosis of AD based on imaging and machine learning techniques. Different segmentation and machine learning techniques used for the diagnosis of AD are reviewed including thresholding, supervised and unsupervised learning, probabilistic techniques, Atlas-based approaches, and fusion of different image modalities. More recent and powerful classification techniques such as the enhanced probabilistic neural network of Ahmadlou and Adeli should be investigated with the goal of improving the diagnosis accuracy. A combination of different image modalities can help improve the diagnosis accuracy rate. Research is needed on the combination of modalities to discover multi-modal biomarkers.

91 citations


Journal ArticleDOI
Mengxi Zhou1, Feng Zhang1, Li Zhao1, Jin Qian1, Chunbo Dong1 
TL;DR: The research highlights the finding that atrophy in EC reflects the early pathological changes of AD and can be a strong predictor of prodromal AD, and the early changes in EC are a good imaging biomarker that can be used to discriminate individuals with MCI from normal control subjects.
Abstract: Entorhinal cortex (EC), thought to be the location of the earliest lesions in Alzheimer's disease (AD), has been widely studied in recent years. With the irreversible pathological changes of AD, there is an urgent need to find biomarkers that can be used to predict the presence of the disease before it is clinically expressed. The aim of this review is to summarize and analyze recent findings that are relevant to the important role of EC in the diagnosis of mild cognitive impairment (MCI) and mild AD and to describe a range of neuroimaging techniques used to define the EC boundary. A comprehensive literature search for articles published up to May 2015 was performed. Our research highlights the finding that atrophy in EC reflects the early pathological changes of AD and can be a strong predictor of prodromal AD. The early changes in EC are a good imaging biomarker that can be used to discriminate individuals with MCI from normal control subjects. A larger degree of atrophy in EC predicts increased disease severity, and the right EC in patients with mild AD exhibited greater changes than the left side. In addition, the EC seems to have an obvious advantage over the hippocampus as a biomarker when predicting future conversion to AD in individuals with MCI, and it may be of help in following the course of disease progression. In this review, we also summarize the main differences observed between the hippocampus and the EC when differentiating diseases. These findings will hopefully provide an opportunity for the effective prevention and early treatment of AD.

75 citations


Journal ArticleDOI
TL;DR: A new triadic model is opted for that has the potential to explain many observations which cannot be elucidated within the current frameworks of lateralized cognition.
Abstract: Hemispheric asymmetries are a central principle of nervous system architecture and shape the functional organization of most cognitive systems. Structural gray matter asymmetries and callosal interactions have been identified as contributing neural factors but always fell short to constitute a full explanans. Meanwhile, recent advances in in vivo white matter tractography have unrevealed the asymmetrical organization of many intrahemispheric white matter pathways, which might serve as the missing link to explain the substrate of functional lateralization. By taking into account callosal interactions, gray matter asymmetries and asymmetrical interhemispheric pathways, we opt for a new triadic model that has the potential to explain many observations which cannot be elucidated within the current frameworks of lateralized cognition.

68 citations


Journal ArticleDOI
TL;DR: Plant-derived natural products can be considered as future pharmaceutical drugs or adjuvant treatment with conventional therapeutic approaches to improve their efficacy and alleviate their psychological adverse effects in the management of PD.
Abstract: Parkinson's disease (PD) is the second most common chronic neurodegenerative disease that affects motor skills and cognitive performance. The conventional therapeutic approaches for the management of PD are just able to alleviate symptoms. Exploring for achieving novel substances with therapeutic benefits in PD patients is the focus of a wide range of current investigations. The aim of the present study is to comprehensively review phytochemicals with protective or therapeutic activities in PD and focus on their neuropsychopharmacological mechanisms. Various subgroups of polyphenols (flavonoids, phenolic acids, stilbenes, and lignanes) and terpenes are the most abundant groups of phytochemicals with well-established antiparkinsonian effects. Other phytochemical categories, such as alkaloids, cinnamates, carbohydrates, amino acids, and fatty acid amides, also have some representatives with positive effects in PD. Phytochemicals perform their antiparkinsonian effect through several mechanisms of action, including suppressing apoptosis (via the reduction of Bax/Bcl-2, caspase-3, -8, and -9, and α-synuclein accumulation), decreasing dopaminergic neuronal loss and dopamine depletion, reducing the expression of proinflammatory cytokines (such as prostaglandin E2, interleukin-6, interleukin-1β, and nuclear factor-κB), and modulating nuclear and cellular inflammatory signaling, elevation of neurotrophic factors, and improvement of antioxidant status. Plant-derived natural products can be considered as future pharmaceutical drugs or adjuvant treatment with conventional therapeutic approaches to improve their efficacy and alleviate their psychological adverse effects in the management of PD. Well-designed clinical trials are mandatory to evaluate the protective and healing benefits of phytochemicals as promising future drugs in the management of neurodegenerative diseases.

60 citations


Journal ArticleDOI
TL;DR: This review summarizes the research progress and unresolved issues of remote ischemic conditioning (pre-, per-, and post-conditioning) in treating acute ischeic stroke, with the hope of advancing the understanding of this promising neuroprotective strategy for isChemic stroke in the near future.
Abstract: Stroke is a leading cause of disability with high morbidity and mortality worldwide. Of all strokes, 87% are ischemic. The only approved treatments for acute ischemic stroke are intravenous thrombolysis with alteplase within 4.5 h and thrombectomy within 8 h after symptom onset, which can be applied to just a few patients. During the past decades, ischemic preconditioning has been widely studied to confirm its neuroprotection against subsequent ischemia/reperfusion injury in the brain, including preconditioning in situ or in a remote organ (such as a limb) before onset of brain ischemia, the latter of which is termed as remote ischemic preconditioning. Because acute stroke is unpredicted, ischemic preconditioning is actually not suitable for clinical application. So remote ischemic conditioning performed during or after the ischemic duration of the brain was then designed to study its neuroprotection alone or in combination with alteplase in animals and patients, which is named as remote ischemic perconditioning or remote ischemic postconditioning. As expected, animal experiments and clinical trials both showed exciting results, indicating that an evolution in the treatment for acute ischemic stroke may not be far away. However, some problems or disputes still exist. This review summarizes the research progress and unresolved issues of remote ischemic conditioning (pre-, per-, and post-conditioning) in treating acute ischemic stroke, with the hope of advancing our understanding of this promising neuroprotective strategy for ischemic stroke in the near future.

51 citations


Journal ArticleDOI
TL;DR: The role of LRP-1 in regulating BBB integrity by modulating tight junction proteins, endothelial cells and the remodeling of ECM is briefly discussed.
Abstract: The blood-brain barrier (BBB) is a protective structure that helps maintaining the homeostasis in cerebral microenvironment by limiting the passage of molecules into the brain. BBB is formed by closely conjugated endothelial cells, with astrocytic endfeet surrounded and extracellular matrix (ECM) consolidated. Numerous neurological diseases can cause disturbance of BBB, leading to brain edema and neurological dysfunctions. The low-density lipoprotein (LDL) receptor-related protein 1 (LRP-1), a member of the LDL receptor gene family, is involved in a lot of important processes in the brain under both physiological and pathological conditions. As a membrane receptor, LRP-1 interacts with a variety of ligands and mediates the internalization of several important substances. LRP-1 is found responsible for inducing the opening of BBB following ischemic attack. It has also been reported that LRP-1 regulates several tight junction proteins and mediates the clearance of major ECM-degrading proteinases. In this review, we briefly discussed the role of LRP-1 in regulating BBB integrity by modulating tight junction proteins, endothelial cells and the remodeling of ECM.

50 citations


Journal ArticleDOI
TL;DR: The recent development of the roles and mechanisms of CXCL12/CXCR4 axis in the pathogenesis of chronic pain by sciatic nerve injury, human immunodeficiency virus-associated sensory neuropathy, diabetic Neuropathy, spinal cord injury, bone cancer, opioid tolerance, or opioid-induced hyperalgesia is summarized.
Abstract: The roles of chemokine C-X-C motif ligand 12 (CXCL12) and its receptor chemokine C-X-C motif receptor 4 (CXCR4) reveal this chemokine axis as an emerging neuromodulator in the nervous system. In the peripheral and central nervous systems, both CXCL12 and CXCR4 are expressed in various kinds of nociceptive structures, and CXCL12/CXCR4 axis possesses pronociceptive property. Recent studies have demonstrated its critical roles in the development and maintenance of pathological pain, and both neuronal and glial mechanisms are involved in this CXCL12/CXCR4 axis-mediated pain processing. In this review, we summarize the recent development of the roles and mechanisms of CXCL12/CXCR4 axis in the pathogenesis of chronic pain by sciatic nerve injury, human immunodeficiency virus-associated sensory neuropathy, diabetic neuropathy, spinal cord injury, bone cancer, opioid tolerance, or opioid-induced hyperalgesia. The potential targeting of CXCL12/CXCR4 axis as an effective and broad-spectrum pharmacological approach for chronic pain therapy was also discussed.

49 citations


Journal ArticleDOI
TL;DR: The hippocampal GABAergic parvalbumin-positive interneurons represent an especially vulnerable population of neurons in chronic stress, which may be of key importance in the development of mood disorders.
Abstract: The hippocampus is a brain structure involved in the regulation of hypothalamic-pituitary-adrenal (HPA) axis and stress response. It plays an important role in the formation of declarative, spatial and contextual memory, as well as in the processing of emotional information. As a part of the limbic system, it is a very susceptible structure towards the effects of various stressors. The molecular mechanisms of structural and functional alternations that occur in the hippocampus under chronic stress imply an increased level of circulating glucocorticoids (GCs), which is an HPA axis response to stress. Certain data show that changes induced by chronic stress may be independent from the GCs levels, opening the possibility of existence of other poorly explored mechanisms and pathways through which stressors act. The hippocampal GABAergic parvalbumin-positive (PV+) interneurons represent an especially vulnerable population of neurons in chronic stress, which may be of key importance in the development of mood disorders. However, cellular and molecular hippocampal changes that arise as a consequence of chronic stress still represent a large and unexplored area. This review discusses the current knowledge about the PV+ interneurons of the hippocampus and the influence of chronic stress on this intriguing population of neurons.

47 citations


Journal ArticleDOI
TL;DR: It is suggested that glutamate transporters act effectively in outward direction in a non-pathological manner, and this process is thermodynamically synchronized with uptake and provides effective outward glutamate current, thereby establishing and maintaining permanent and dynamic glutamatein/glutamateout gradient and turnover across the plasma membrane.
Abstract: Mechanisms for maintenance of the extracellular level of glutamate in brain tissue and its regulation still remain almost unclear, and criticism of the current paradigm of glutamate transport and homeostasis has recently appeared. The main premise for this study is the existence of a definite and non-negligible concentration of ambient glutamate between the episodes of exocytotic release in our experiments with rat brain nerve terminals (synaptosomes), despite the existence of a very potent Na+-dependent glutamate uptake. Glutamate transporter reversal is considered as the main mechanisms of glutamate release under special conditions of energy deprivation, hypoxia, hypoglycemia, brain trauma, and stroke, underlying an increase in the ambient glutamate concentration and development of excitotoxicity. In the present study, a new vision on transporter-mediated release of glutamate as one of the main mechanisms involved in the maintenance of definite concentration of ambient glutamate under normal energetical status of nerve terminals is forwarded. It has been suggested that glutamate transporters act effectively in outward direction in a non-pathological manner, and this process is thermodynamically synchronized with uptake and provides effective outward glutamate current, thereby establishing and maintaining permanent and dynamic glutamatein/glutamate(out) gradient and turnover across the plasma membrane. In this context, non-transporter tonic glutamate release by diffusion, spontaneous exocytosis, cystine-glutamate exchanger, and leakage through anion channels can be considered as a permanently added 'new' exogenous substrate using two-substrate kinetic model calculations. Permanent glutamate turnover is of value for tonic activation of post/presynaptic glutamate receptors, long-term potentiation, memory formation, etc. Counterarguments against this mechanism are also considered.

Journal ArticleDOI
TL;DR: Analysis of transport of glutamate, the major excitatory neurotransmitter in the mammalian CNS, suggests that there are two main relatively independent mechanisms at the presynaptic level that can influence the extracellular glutamate concentration, and so signaling, and its regulation.
Abstract: The main structure in the brain responsible not only for nerve signal transmission but also for its simultaneous regulation is chemical synapse, where presynaptic nerve terminals are of considerable importance providing release of neurotransmitters. Analyzing transport of glutamate, the major excitatory neurotransmitter in the mammalian CNS, the authors suggest that there are two main relatively independent mechanisms at the presynaptic level that can influence the extracellular glutamate concentration, and so signaling, and its regulation. The first one is well-known precisely regulated compound exocytosis of synaptic vesicles containing neurotransmitters stimulated by membrane depolarization, which increases significantly glutamate concentration in the synaptic cleft and initiates glutamate signaling through postsynaptic glutamate receptors. The second one is permanent glutamate turnover across the plasma membrane that occurs without stimulation and is determined by simultaneous non-pathological transporter-mediated release of glutamate thermodynamically synchronized with uptake. Permanent glutamate turnover is responsible for maintenance of dynamic glutamatein/glutamateout gradient resulting in the establishment of a flexible extracellular level of glutamate, which can be unique for each synapse because of dependence on individual presynaptic parameters. These two mechanisms, i.e. exocytosis and transporter-mediated glutamate turnover, are both precisely regulated but do not directly interfere with each other, because they have different intracellular sources of glutamate in nerve terminals for release purposes, i.e. glutamate pool of synaptic vesicles and the cytoplasm, respectively. This duality can set up a presynaptic base for memory consolidation and storage, maintenance of neural circuits, long-term potentiation, and plasticity. Arguments against this suggestion are also considered.

Journal ArticleDOI
TL;DR: Novel dual agonist peptides that activate the GIP receptor and another incretin receptor, glucagon-like peptide -1 (GLP -1), are under development that show superior effects in diabetic patients compared to single GLP-1 agonists.
Abstract: Glucose-dependent insulinotropic polypeptide (GIP) is a member of the incretin hormones and growth factors. Neurons express the GIP receptor, and GIP and its agonists can pass through the blood brain barrier and show remarkable neuroprotective effects by protecting synapse function and numbers, promoting neuronal proliferation, reducing amyloid plaques in the cortex and reducing the chronic inflammation response of the nervous system. Long-acting analogues of GIP that are protease resistant had been developed as a treatment for type 2 diabetes. It has been found that such GIP analogues show good protective effects in animal models of Alzheimer's disease. Novel dual agonist peptides that activate the GIP receptor and another incretin receptor, glucagon-like peptide -1 (GLP-1), are under development that show superior effects in diabetic patients compared to single GLP-1 agonists. The dual agonists also show great promise in treating neurodegenerative disorders, and there are currently several clinical trials ongoing, testing GLP-1 mimetics in people with Alzheimer's or Parkinson's disease.

Journal ArticleDOI
TL;DR: The cerebellar cholinergic input plays an important role in the modulation of Cerebellar functions; therefore, cholinergy abnormalities could induce physiological dysfunctions.
Abstract: The cerebellar cholinergic system belongs to the third type of afferent nerve fiber system (after the climbing and mossy fibers), and has important modulatory effects on cerebellar circuits and cerebellar-mediated functions. In this report, we review the cerebellar cholinergic system, including cholinergic origins and innervations, acetylcholine receptor expression and distributions, cholinergic modulations of neuronal firing and synaptic plasticity, the cholinergic role in cerebellar-mediated integral functions, and cholinergic changes during development and aging. Because some motor and mental disorders, such as cerebellar ataxia and autism, are accompanied with cerebellar cholinergic disorders, we also discuss the correlations between cerebellar cholinergic dysfunctions and these disorders. The cerebellar cholinergic input plays an important role in the modulation of cerebellar functions; therefore, cholinergic abnormalities could induce physiological dysfunctions.

Journal ArticleDOI
TL;DR: This review has described the currently known molecular mechanisms of EST-mediated neuroprotection and neuroregeneration in SCI and TBI, and emphasized on the recent in vitro and in vivo findings from the authors' and other laboratories, implying potential clinical benefits of EST in the treatment of SCI or TBI.
Abstract: Estrogen (EST) is a steroid hormone that exhibits several important physiological roles in the human body. During the last few decades, EST has been well recognized as an important neuroprotective agent in a variety of neurological disorders in the central nervous system (CNS), such as spinal cord injury (SCI), traumatic brain injury (TBI), Alzheimer's disease, and multiple sclerosis. The exact molecular mechanisms of EST-mediated neuroprotection in the CNS remain unclear due to heterogeneity of cell populations that express EST receptors (ERs) in the CNS as well as in the innate and adaptive immune system. Recent investigations suggest that EST protects the CNS from injury by suppressing pro-inflammatory pathways, oxidative stress, and cell death, while promoting neurogenesis, angiogenesis, and neurotrophic support. In this review, we have described the currently known molecular mechanisms of EST-mediated neuroprotection and neuroregeneration in SCI and TBI. At the same time, we have emphasized on the recent in vitro and in vivo findings from our and other laboratories, implying potential clinical benefits of EST in the treatment of SCI and TBI.

Journal ArticleDOI
TL;DR: Data suggest that the glutamatergic system could be a final common pathway for antidepressant treatments, and various studies show that treatment with antidepressants decreases plasma glutamate levels in depressed individuals and regulates glutamate receptors.
Abstract: Experimental evidence has demonstrated that glutamate is an essential factor for neurogenesis, whereas another line of research postulates that excessive glutamatergic neurotransmission is associated with the pathogenesis of depression. The present review shows that such paradox can be explained within the framework of hormesis, defined as biphasic dose responses. Low glutamate levels activate adaptive stress responses that include proteins that protect neurons against more severe stress. Conversely, abnormally high levels of glutamate, resulting from increased release and/or decreased removal, cause neuronal atrophy and depression. The dysregulation of the glutamatergic transmission in depression could be underlined by several factors including a decreased inhibition (γ-aminobutyric acid or serotonin) or an increased excitation (primarily within the glutamatergic system). Experimental evidence shows that the activation of N-methyl-D-aspartate receptor (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors (AMPAR) can exert two opposite effects on neurogenesis and neuron survival depending on the synaptic or extrasynaptic concentration. Chronic stress, which usually underlies experimental and clinical depression, enhances glutamate release. This overactivates NMDA receptors (NMDAR) and consequently impairs AMPAR activity. Various studies show that treatment with antidepressants decreases plasma glutamate levels in depressed individuals and regulates glutamate receptors by reducing NMDAR function by decreasing the expression of its subunits and by potentiating AMPAR-mediated transmission. Additionally, it has been shown that chronic treatment with antidepressants having divergent mechanisms of action (including tricyclics, selective serotonin reuptake inhibitors, and ketamine) markedly reduced depolarization-evoked glutamate release in the hippocampus. These data, taken together, suggest that the glutamatergic system could be a final common pathway for antidepressant treatments.

Journal ArticleDOI
TL;DR: In this review, the known and potential mechanisms of action of SIRT1 with regard to AD, and its potential as a therapeutic target are discussed.
Abstract: Alzheimer's disease (AD) is the most prevalent cause of dementia in the aging population worldwide. SIRT1 deacetylation of histones and transcription factors impinge on multiple neuronal and non-neuronal targets, and modulates stress response, energy metabolism and cellular senescence/death pathways. Collectively, SIRT1 activity could potentially affect multiple aspects of hippocampal and cortical neuron function and survival, thus modifying disease onset and progression. In this review, the known and potential mechanisms of action of SIRT1 with regard to AD, and its potential as a therapeutic target, are discussed.

Journal ArticleDOI
TL;DR: It is argued that whereas retinogeniculate coupling is strong, what occurs in the LGN is judicious pruning of a retinal drive by nonretinal inputs, which reshape a receptive field that under the right conditions departs significantly from its retinalDrive.
Abstract: Providing the critical link between the retina and visual cortex, the well-studied lateral geniculate nucleus (LGN) has stood out as a structure in search of a function exceeding the mundane 'relay'. For many mammals, it is structurally impressive: Exquisite lamination, sophisticated microcircuits, and blending of multiple inputs suggest some fundamental transform. This impression is bolstered by the fact that numerically, the retina accounts for a small fraction of its input. Despite such promise, the extent to which an LGN neuron separates itself from its retinal brethren has proven difficult to appreciate. Here, I argue that whereas retinogeniculate coupling is strong, what occurs in the LGN is judicious pruning of a retinal drive by nonretinal inputs. These nonretinal inputs reshape a receptive field that under the right conditions departs significantly from its retinal drive, even if transiently. I first review design features of the LGN and follow with evidence for 10 putative functions. Only two of these tend to surface in textbooks: parsing retinal axons by eye and functional group and gating by state. Among the remaining putative functions, implementation of the principle of graceful degradation and temporal decorrelation are at least as interesting but much less promoted. The retina solves formidable problems imposed by physics to yield multiple efficient and sensitive representations of the world. The LGN applies context, increasing content, and gates several of these representations. Even if the basic concentric receptive field remains, information transmitted for each LGN spike relative to each retinal spike is measurably increased.

Journal ArticleDOI
TL;DR: In this article, the authors focus on most commonly used cognitive domains: learning, working memory, and attention, and find that the type of cognitive domain under investigation, medication state and type, and severity of positive and negative symptoms can explain the conflicting results in the literature.
Abstract: Introduction - Schizophrenia is a severe mental disorder with multiple psychopathological domains being affected. Several lines of evidence indicate that cognitive impairment serves as the key component of schizophrenia psychopathology. Although there have been a multitude of cognitive studies in schizophrenia, there are many conflicting results. We reasoned that this could be due to individual differences among the patients (i.e. variation in the severity of positive vs. negative symptoms), different task designs, and/or the administration of different antipsychotics. Methods - We thus review existing data concentrating on these dimensions, specifically in relation to dopamine function. We focus on most commonly used cognitive domains: learning, working memory, and attention. Results - We found that the type of cognitive domain under investigation, medication state and type, and severity of positive and negative symptoms can explain the conflicting results in the literature. Conclusions - This review points to future studies investigating individual differences among schizophrenia patients in order to reveal the exact relationship between cognitive function, clinical features, and antipsychotic treatment.

Journal ArticleDOI
TL;DR: Evidence of sleep playing an important role in psychosis predominantly mediated by dopaminergic pathways is presented, suggesting that treatment of circadian disturbance may be a useful target in improving the lives and symptoms of patients with schizophrenia.
Abstract: Schizophrenia has long been associated with abnormalities in circadian rhythms and sleep. Up until now, there have been no thorough reviews of the potential mechanisms behind the myriad of circadian and sleep abnormalities observed in schizophrenia and psychosis. We present evidence of sleep playing an important role in psychosis predominantly mediated by dopaminergic pathways. A synthesis of both human and animal experimental work suggests that the interplay between sleep and dopamine is important in the generation and maintenance of psychosis. In particular, both animal and human data point to sleep disruption increasing dopamine release and sensitivity. Furthermore, elevated dopamine levels disrupt sleep and circadian rhythms. The synthesis of knowledge suggests that circadian rhythms, dopamine dysregulation, and psychosis are intricately linked. This suggests that treatment of circadian disturbance may be a useful target in improving the lives and symptoms of patients with schizophrenia.

Journal ArticleDOI
TL;DR: The objective of the present review was to shed new light on electrical stimulation techniques in brain mapping by comparing EMS and DES to highlight the potential for new experimental paradigms in electrical stimulation for functional brain mapping.
Abstract: Both electrical microstimulation (EMS) and direct electrical stimulation (DES) of the brain are used to perform functional brain mapping. EMS is applied to animal fundamental neuroscience experiments, whereas DES is performed in the operating theatre on neurosurgery patients. The objective of the present review was to shed new light on electrical stimulation techniques in brain mapping by comparing EMS and DES. There is much controversy as to whether the use of DES during wide-awake surgery is the 'gold standard' for studying the brain function. As part of this debate, it is sometimes wrongly assumed that EMS and DES induce similar effects in the nervous tissues and have comparable behavioural consequences. In fact, the respective stimulation parameters in EMS and DES are clearly different. More surprisingly, there is no solid biophysical rationale for setting the stimulation parameters in EMS and DES; this may be due to historical, methodological and technical constraints that have limited the experimental protocols and prompted the use of empirical methods. In contrast, the gap between EMS and DES highlights the potential for new experimental paradigms in electrical stimulation for functional brain mapping. In view of this gap and recent technical developments in stimulator design, it may now be time to move towards alternative, innovative protocols based on the functional stimulation of peripheral nerves (for which a more solid theoretical grounding exists).

Journal ArticleDOI
TL;DR: It is suggested that the ‘multiplexer and ‘demultiplexer’ concepts could, at least in part, model the role of RMs formed by iso-receptors in the information handling by the cell.
Abstract: Intercellular and intracellular communication processes consist of signals and recognition/decoding apparatuses of these signals. In humans, the G protein-coupled receptor (GPCR) family represents the largest family of cell surface receptors. More than 30 years ago, it has been proposed that GPCR could form dimers or higher-order oligomers (receptor mosaics [RMs] at the plasma membrane level and receptor-receptor interactions [RRIs] have been proposed as a new integrative mechanism for chemical signals impinging on cell plasma membranes). The basic phenomena involved in RRIs are allostery and cooperativity of membrane receptors, and the present paper provides basic information concerning their relevance for the integrative functions of RMs. In this context, the possible role of iso-receptor RM is discussed (with a special focus on dopamine receptor subtypes and on some of the RMs they form with other dopamine iso-receptors), and it is proposed that two types of cooperativity, namely, homotropic and heterotropic cooperativity, could allow distinguishing two types of functionally different RMs. From a general point of view, the presence of iso-receptors and their topological organization within RMs allow the use of a reduced number of signals for the intercellular communication processes, since the target cells can recognize and decode the same signal in different ways. This theoretical aspect is further analyzed here by means of an analogy with artificial information systems. Thus, it is suggested that the 'multiplexer' and 'demultiplexer' concepts could, at least in part, model the role of RMs formed by iso-receptors in the information handling by the cell.

Journal ArticleDOI
TL;DR: It is revealed that mitochondria-targeted antioxidants could retard accumulation of hyperphosphorylated τ-protein, as well as amyloid-β1-42, and its precursor APP in the brain, which are involved in developing neurodegenerative processes in Alzheimer’s disease.
Abstract: In 2008, using a model of compression brain ischemia, we presented the first evidence that mitochondria-targeted antioxidants of the SkQ family, i.e. SkQR1 [10-(6'-plastoquinonyl)decylrhodamine], have a neuroprotective action. It was shown that intraperitoneal injections of SkQR1 (0.5-1 μmol/kg) 1 day before ischemia significantly decreased the damaged brain area. Later, we studied in more detail the anti-ischemic action of this antioxidant in a model of experimental focal ischemia provoked by unilateral intravascular occlusion of the middle cerebral artery. The neuroprotective action of SkQ family compounds (SkQR1, SkQ1, SkQTR1, SkQT1) was manifested through the decrease in trauma-induced neurological deficit in animals and prevention of amyloid-β-induced impairment of long-term potentiation in rat hippocampal slices. At present, most neurophysiologists suppose that long-term potentiation underlies cellular mechanisms of memory and learning. They consider inhibition of this process by amyloid-β1-42 as an in vitro model of memory disturbance in Alzheimer's disease. Further development of the above studies revealed that mitochondria-targeted antioxidants could retard accumulation of hyperphosphorylated τ-protein, as well as amyloid-β1-42, and its precursor APP in the brain, which are involved in developing neurodegenerative processes in Alzheimer's disease.

Journal ArticleDOI
TL;DR: It is suggested that neurobiological abnormalities observed in adult BPD may not solely be the consequence of chronic morbidity or prolonged medication use and provide tentative support for neurodevelopmental theories of BPD by demonstrating that Neurobiological markers may be observed from childhood onwards and interact with environmental factors to increase risk of B PD in young populations.
Abstract: Contemporary theories for the aetiology of borderline personality disorder (BPD) take a lifespan approach asserting that inborn biological predisposition is potentiated across development by environmental risk factors. In this review, we present and critically evaluate evidence on the neurobiology of BPD in childhood and adolescence, compare this evidence to the adult literature, and contextualise within a neurodevelopmental framework. A systematic review was conducted to identify studies examining the neurobiological (i.e. genetic, structural neuroimaging, neurophysiological, and neuropsychological) correlates of BPD symptoms in children and adolescents aged 19 years or under. We identified, quality assessed, and narratively summarised 34 studies published between 1980 and June 2016. Similar to findings in adult populations, twin studies indicated moderate to high levels of heritability of BPD, and there was some evidence for gene-environment interactions. Also consistent with adult reports is that some adolescents with BPD demonstrated structural (grey and white matter) alterations in frontolimbic regions and neuropsychological abnormalities (i.e. reduced executive function and disturbances in social cognition). These findings suggest that neurobiological abnormalities observed in adult BPD may not solely be the consequence of chronic morbidity or prolonged medication use. They also provide tentative support for neurodevelopmental theories of BPD by demonstrating that neurobiological markers may be observed from childhood onwards and interact with environmental factors to increase risk of BPD in young populations. Prospective studies with a range of repeated measures are now required to elucidate the temporal unfurling of neurobiological features and further delineate the complex pathways to BPD.

Journal ArticleDOI
TL;DR: The present review focuses on the Ang II-triggered signal transduction pathways in central nervous system, which lead to glutamate excitotoxicity, apoptosis, cerebral infarction, astrocyte proliferation, nociception, neuroinflammation, and progression of other neurological disorders.
Abstract: Recent studies have projected the renin-angiotensin system as a central component of the physiological and pathological processes of assorted neurological disorders. Its primary effector hormone, angiotensin II (Ang II), not only mediates the physiological effects of vasoconstriction and blood pressure regulation in cardiovascular disease but is also implicated in a much wider range of neuronal activities and diseases, including Alzheimer's disease, neuronal injury, and cognitive disorders. Ang II produces different actions by acting on its two subtypes of receptors (AT1 and AT2); however, the well-known physiological actions of Ang II are mainly mediated through AT1 receptors. Moreover, recent studies also suggest the important functional role of AT2 receptor in the brain. Ang II acts on AT1 receptors and conducts its functions via MAP kinases (ERK1/2, JNK, and p38MAPK), glycogen synthase kinase, Rho/ROCK kinase, receptor tyrosine kinases (PDGF and EGFR), and nonreceptor tyrosine kinases (Src, Pyk2, and JAK/STAT). AT1R-mediated NADPH oxidase activation also leads to the generation of reactive oxygen species, widely implicated in neuroinflammation. These signaling cascades lead to glutamate excitotoxicity, apoptosis, cerebral infarction, astrocyte proliferation, nociception, neuroinflammation, and progression of other neurological disorders. The present review focuses on the Ang II-triggered signal transduction pathways in central nervous system.

Journal ArticleDOI
TL;DR: Protease-resistant long-lasting GLP-1 mimetics such as lixisenatide, liraglutide, and exenatide not only have demonstrated promising effects for treating neurodegenerative diseases in preclinical studies but also have shown first positive results in Alzheimer’s disease (AD) and Parkinson's disease (PD) patients in clinical trials.
Abstract: Incretin hormones include glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). Due to their promising action on insulinotropic secretion and improving insulin resistance (IR), incretin-based therapies have become a new class of antidiabetic agents for the treatment of type 2 diabetes mellitus (T2DM). Recently, the links between neurodegenerative diseases and T2DM have been identified in a number of studies, which suggested that shared mechanisms, such as insulin dysregulation or IR, may underlie these conditions. Therefore, the effects of incretins in neurodegenerative diseases have been extensively investigated. Protease-resistant long-lasting GLP-1 mimetics such as lixisenatide, liraglutide, and exenatide not only have demonstrated promising effects for treating neurodegenerative diseases in preclinical studies but also have shown first positive results in Alzheimer's disease (AD) and Parkinson's disease (PD) patients in clinical trials. Furthermore, the effects of other related incretin-based therapies such as GIP agonists, dipeptidyl peptidase-IV (DPP-IV) inhibitors, oxyntomodulin (OXM), dual GLP-1/GIP, and triple GLP-1/GIP/glucagon receptor agonists on neurodegenerative diseases have been tested in preclinical studies. Incretin-based therapies are a promising approach for treating neurodegenerative diseases.

Journal ArticleDOI
TL;DR: The present review has sought to link neurobiology findings concerning cortico-limbic function to the field of emotion regulation and found that trauma-related disorders have been placed in a continuum between under- and over-regulation of affect strategies.
Abstract: Emotion regulation impairments with traumatic origins have mainly been studied from posttraumatic stress disorder (PTSD) models by studying cases of adult onset and single-incident trauma exposure. The effects of adverse traumatic experiences, however, go beyond the PTSD. Different authors have proposed that PTSD, borderline personality, dissociative, conversive and somatoform disorders constitute a full spectrum of trauma-related conditions. Therefore, a comprehensive review of the neurobiological findings covering this posttraumatic spectrum is needed in order to develop an all-encompassing model for trauma-related disorders with emotion regulation at its center. The present review has sought to link neurobiology findings concerning cortico-limbic function to the field of emotion regulation. In so doing, trauma-related disorders have been placed in a continuum between under- and over-regulation of affect strategies. Under-regulation of affect was predominant in borderline personality disorder, PTSD with re-experiencing symptoms and positive psychoform and somatoform dissociative symptoms. Over-regulation of affect was more prevalent in somatoform disorders and pathologies characterized by negative psychoform and somatoform symptoms. Throughout this continuum, different combinations between under- and over-regulation of affect strategies were also found.

Journal ArticleDOI
TL;DR: Preliminary evidence strongly supports the potential role of antiapoptotic agents in reducing neuronal death and improving functional outcome after intracerebral haemorrhage and is suitable for the multimodality treatment approach.
Abstract: Intracerebral haemorrhage (ICH) is the second most common form of stroke and is associated with greater mortality and morbidity compared with ischaemic stroke. The current ICH management strategies, which mainly target primary injury mechanisms, have not been shown to improve patient's functional outcome. Consequently, multimodality treatment approaches that will focus on both primary and secondary pathophysiology have been suggested. During the last decade, a proliferation of experimental studies has demonstrated the role of apoptosis in secondary neuronal loss at the periphery of the clot after ICH. Subsequently, the value of certain antiapoptotic agents in reducing neuronal death and improving functional outcome following ICH was evaluated in animal models. Preliminary evidence from those studies strongly supports the potential role of antiapoptotic agents in reducing neuronal death and improving functional outcome after intracerebral haemorrhage. Expectedly, the ongoing and subsequent clinical trials will substantiate these findings and provide clear information on the most potent and safe antiapoptotic agents, their appropriate dosage, and temporal window of action, thereby making them suitable for the multimodality treatment approach.

Journal ArticleDOI
TL;DR: It is demonstrated that phosphorylation of Girdin by Akt contributed to the maintenance of LTP by linking the BDNF/TrkB signaling pathway with NMDA receptor activity, indicating that GirdIn plays a pivotal role in a variety of processes in the CNS.
Abstract: It is well known that synaptic plasticity is the cellular mechanism underlying learning and memory. Activity-dependent synaptic changes in electrical properties and morphology, including synaptogenesis, lead to alterations of synaptic strength, which is associated with long-term potentiation (LTP). Brain-derived neurotrophic factor (BDNF)/tropomyosin-related kinase B (TrkB) signaling is involved in learning and memory formation by regulating synaptic plasticity. The phosphatidylinositol 3-kinase (PI3-K)/Akt pathway is one of the key signaling cascades downstream BDNF/TrkB and is believed to modulate N-methyl-d-aspartate (NMDA) receptor-mediated synaptic plasticity. However, the molecular mechanism underlying the connection between these two key players in synaptic plasticity remains largely unknown. Girders of actin filament (Girdin), an Akt substrate that directly binds to actin filaments, has been shown to play a role in neuronal migration and neuronal development. Recently, we identified Girdin as a key molecule involved in regulating long-term memory. It was demonstrated that phosphorylation of Girdin by Akt contributed to the maintenance of LTP by linking the BDNF/TrkB signaling pathway with NMDA receptor activity. These findings indicate that Girdin plays a pivotal role in a variety of processes in the CNS. Here, we review recent advances in our understanding about the roles of Girdin in the CNS and focus particularly on neuronal migration and memory.

Journal ArticleDOI
TL;DR: A retrospective analysis revealed that AD, MDD, BD and SZ differed as to affected brain region, affected synaptic constituent(s) and extent as well as direction of dysfunction in terms of either sensitization or desensitization of transporter and receptor binding sites.
Abstract: Impairment of serotonin receptor and transporter function is increasingly recognized to play a major role in the pathophysiology of neuropsychiatric diseases including anxiety disorder (AD), major depressive disorder (MDD), bipolar disorder (BD) and schizophrenia (SZ). We conducted a PubMed search, which provided a total of 136 in vivo studies with PET and SPECT, in which 5-HT synthesis, 5-HT transporter binding, 5-HT1 receptor binding or 5-HT2 receptor binding in patients with the primary diagnosis of acute AD, MDD, BD or SZ was compared to healthy individuals. A retrospective analysis revealed that AD, MDD, BD and SZ differed as to affected brain region(s), affected synaptic constituent(s) and extent as well as direction of dysfunction in terms of either sensitization or desensitization of transporter and receptor binding sites.