scispace - formally typeset
Search or ask a question

Showing papers in "Reviews of Geophysics in 2005"


Journal ArticleDOI
TL;DR: The Madden-Julian Oscillation (MJO) is the dominant component of the intraseasonal (30-90 days) variability in the tropical atmosphere as mentioned in this paper, which consists of large-scale coupled patterns in atmospheric circulation and deep convection with coherent signals in many other variables, all propagating eastward slowly through the portion of the Indian and Pacific oceans where the sea surface is warm.
Abstract: [1] The Madden-Julian Oscillation (MJO) is the dominant component of the intraseasonal (30–90 days) variability in the tropical atmosphere. It consists of large-scale coupled patterns in atmospheric circulation and deep convection, with coherent signals in many other variables, all propagating eastward slowly (∼5 m s−1) through the portion of the Indian and Pacific oceans where the sea surface is warm. It constantly interacts with the underlying ocean and influences many weather and climate systems. The past decade has witnessed an expeditious progress in the study of the MJO: Its large-scale and multiscale structures are better described, its scale interaction is recognized, its broad influences on tropical and extratropical weather and climate are increasingly appreciated, and its mechanisms for disturbing the ocean are further comprehended. Yet we are facing great difficulties in accurately simulating and predicting the MJO using sophisticated global weather forecast and climate models, and we are unable to explain such difficulties based on existing theories of the MJO. It is fair to say that the MJO remains an unmet challenge to our understanding of the tropical atmosphere and to our ability to simulate and predict its variability. This review, motivated by both the acceleration and gaps in our knowledge of the MJO, intends to synthesize what we currently know and what we do not know on selected topics: its observed basic characteristics, mechanisms, numerical modeling, air-sea interaction, and influences on the El Nino and Southern Oscillation.

1,931 citations


Journal ArticleDOI
TL;DR: In this article, the influence of seasonal snow cover on seasonally frozen ground has received relatively little attention and further study is needed, and further studies are needed to evaluate the impact of seasonal cover on the ground thermal regime.
Abstract: [1] The presence of seasonal snow cover during the cold season of the annual air temperature cycle has significant influence on the ground thermal regime in cold regions. Snow has high albedo and emissivity that cool the snow surface, high absorptivity that tends to warm the snow surface, low thermal conductivity so that a snow layer acts as an insulator, and high latent heat due to snowmelt that is a heat sink. The overall impact of snow cover on the ground thermal regime depends on the timing, duration, accumulation, and melting processes of seasonal snow cover; density, structure, and thickness of seasonal snow cover; and interactions of snow cover with micrometeorological conditions, local microrelief, vegetation, and the geographical locations. Over different timescales either the cooling or warming impact of seasonal snow cover may dominate. In the continuous permafrost regions, impact of seasonal snow cover can result in an increase of the mean annual ground and permafrost surface temperature by several degrees, whereas in discontinuous and sporadic permafrost regions the absence of seasonal snow cover may be a key factor for permafrost development. In seasonally frozen ground regions, snow cover can substantially reduce the seasonal freezing depth. However, the influence of seasonal snow cover on seasonally frozen ground has received relatively little attention, and further study is needed. Ground surface temperatures, reconstructed from deep borehole temperature gradients, have increased by up to 4°C in the past centuries and have been widely used as evidence of paleoclimate change. However, changes in air temperature alone cannot account for the changes in ground temperatures. Changes in seasonal snow conditions might have significantly contributed to the ground surface temperature increase. The influence of seasonal snow cover on soil temperature, soil freezing and thawing processes, and permafrost has considerable impact on carbon exchange between the atmosphere and the ground and on the hydrological cycle in cold regions/cold seasons.

852 citations


Journal ArticleDOI
TL;DR: The sub-crustal mantle as discussed by the authors consists of a thick section of material left behind after extensive partial melt extraction, possibly from the wedge of mantle overlying a subducting oceanic plate.
Abstract: [1] Unlike in the ocean basins where the shallow mantle eventually contributes to the destruction of the overlying crust, the shallow mantle beneath continents serves as a stiff, buoyant “root” whose presence may be essential to the long-term survival of continental crust at Earth's surface. These distinct roles for subcrustal mantle come about because the subcontinental mantle consists of a thick section of material left behind after extensive partial melt extraction, possibly from the wedge of mantle overlying a subducting oceanic plate. Melt removal causes the continental mantle to be cold and strong but also buoyant compared to oceanic mantle. These characteristics allow thick sections of cold mantle to persist beneath continental crust in some cases for over 3 billion years. If the continental mantle becomes gravitationally unstable, however, its detachment from the overlying crust can cause major episodes of intracontinental deformation and volcanism.

433 citations


Journal ArticleDOI
TL;DR: In this article, the effect of clouds on UV radiation has been studied from an empirical point of view. But the cloud effect is not well described, given the intrinsic difficulties in properly describing cloud characteristics.
Abstract: The interest in solar ultraviolet (UV) radiation from the scientific community and the general population has risen significantly in recent years because of the link between increased UV levels at the Earth's surface and depletion of ozone in the stratosphere. As a consequence of recent research, UV radiation climatologies have been developed, and effects of some atmospheric constituents (such as ozone or aerosols) have been studied broadly. Correspondingly, there are well-established relationships between, for example, total ozone column and UV radiation levels at the Earth's surface. Effects of clouds, however, are not so well described, given the intrinsic difficulties in properly describing cloud characteristics. Nevertheless, the effect of clouds cannot be neglected, and the variability that clouds induce on UV radiation is particularly significant when short timescales are involved. In this review we show, summarize, and compare several works that deal with the effect of clouds on UV radiation. Specifically, works reviewed here approach the issue from the empirical point of view: Some relationship between measured UV radiation in cloudy conditions and cloud-related information is given in each work. Basically, there are two groups of methods: techniques that are based on observations of cloudiness (either from human observers or by using devices such as sky cameras) and techniques that use measurements of broadband solar radiation as a surrogate for cloud observations. Some techniques combine both types of information. Comparison of results from different works is addressed through using the cloud modification factor (CMF) defined as the ratio between measured UV radiation in a cloudy sky and calculated radiation for a cloudless sky. Typical CMF values for overcast skies range from 0.3 to 0.7, depending both on cloud type and characteristics. Despite this large dispersion of values corresponding to the same cloud cover, it is clear that the cloud effect on UV radiation is 15–45% lower than the cloud effect on total solar radiation. The cloud effect is usually a reducing effect, but a significant number of works report an enhancement effect (that is increased UV radiation levels at the surface) due to the presence of clouds. The review concludes with some recommendations for future studies aimed to further analyze the cloud effects on UV radiation

277 citations


Journal ArticleDOI
TL;DR: In this article, the authors apply the methods of dynamical systems theory to explain the physical processes governing the large-scale ocean circulation and its intrinsic variability, up to and including oceanic and coupled ocean-atmosphere general circulation models.
Abstract: [1] Oceanic variability on interannual, interdecadal, and longer timescales plays a key role in climate variability and climate change. Paleoclimatic records suggest major changes in the location and rate of deepwater formation in the Atlantic and Southern oceans on timescales from millennia to millions of years. Instrumental records of increasing duration and spatial coverage document substantial variability in the path and intensity of ocean surface currents on timescales of months to decades. We review recent theoretical and numerical results that help explain the physical processes governing the large-scale ocean circulation and its intrinsic variability. To do so, we apply systematically the methods of dynamical systems theory. The dynamical systems approach is proving successful for more and more detailed and realistic models, up to and including oceanic and coupled ocean-atmosphere general circulation models. In this approach one follows the road from simple, highly symmetric model solutions, through a “bifurcation tree,” toward the observed, complex behavior of the system under investigation. The observed variability can be shown to have its roots in simple transitions from a circulation with high symmetry in space and regularity in time to circulations with successively lower symmetry in space and less regularity in time. This road of successive bifurcations leads through multiple equilibria to oscillatory and eventually chaotic solutions. Key features of this approach are illustrated in detail for simplified models of two basic problems of the ocean circulation. First, a barotropic model is used to capture major features of the wind-driven ocean circulation and of the changes in its behavior as wind stress increases. Second, a zonally averaged model is used to show how the thermohaline ocean circulation changes as buoyancy fluxes at the surface increase. For the wind-driven circulation, multiple separation patterns of a “Gulf-Stream like” eastward jet are obtained. These multiple equilibria are followed by subannual and interannual oscillations of the jet and of the entire basin's circulation. The multiple equilibria of the thermohaline circulation include deepwater formation near the equator, near either pole or both, as well as intermediate possibilities that bear some degree of resemblance to the currently observed Atlantic overturning pattern. Some of these multiple equilibria are subject, in turn, to oscillatory instabilities with timescales of decades, centuries, and millennia. Interdecadal and centennial oscillations are the ones of greatest interest in the current debate on global warming and on the relative roles of natural and anthropogenic variability in it. They involve the physics of the truly three-dimensional coupling between the wind-driven and thermohaline circulation. To arrive at this three-dimensional picture, the bifurcation tree is sketched out for increasingly complex models for both the wind-driven and the thermohaline circulation.

233 citations


Journal ArticleDOI
TL;DR: In this paper, it is argued that two physically separable classes of jokulhlaup exist and that not all jokULhlaups are an upward extrapolation of processes inherent in events of lesser magnitude and smaller scale.
Abstract: [1] In glaciated catchments, glacier-generated floods (jokulhlaups) put human activity at risk with large, sporadic jokulhlaups accounting for most flood-related fatalities and damage to infrastructure. In studies of jokulhlaup hydrodynamics the view predominates that floodwater travels within a distinct conduit eroded into the underside of a glacier. However, some jokulhlaups produce subglacial responses wholly inconsistent with the conventional theory of drainage. By focusing on Icelandic jokulhlaups this article reassesses how floodwater flows through glaciers. It is argued that two physically separable classes of jokulhlaup exist and that not all jokulhlaups are an upward extrapolation of processes inherent in events of lesser magnitude and smaller scale. The hydraulic coupling of multiple, nonlinear components to the flood circuit of a glacier can induce extreme responses, including pressure impulses in subglacial drainage. Representing such complexity in mathematical form should be the basis for upcoming research, as future modeling results may help to determine the glaciological processes behind Heinrich events. Moreover, such an approach would lead to more accurate, predictive models of jokulhlaup timing and intensity.

149 citations


Journal ArticleDOI
TL;DR: In this paper, the basic principles of extracting time information from U series nuclides and summarize variations in (230Th/238U), (226Ra/230Th), and (231Pa/235U) observed in magmas from mid-ocean ridges, within-plate settings, and subduction zones to contrast melt generation processes in different tectonic settings.
Abstract: [1] Several U series nuclides have half-lives (230Th, 76 kyr; 231Pa, 33 kyr; and 226Ra, 1.6 kyr) comparable to timescales of magmatic processes. We review the basic principles of extracting time information from U series nuclides and summarize variations in (230Th/238U), (226Ra/230Th), and (231Pa/235U) observed in magmas from mid-ocean ridges, within-plate settings, and subduction zones to contrast melt generation processes in different tectonic settings. U series disequilibria on melt and crystal phases of igneous rocks can provide temporal information on different stages in the magmatic history (melting duration, melt transport rates, magmatic crustal residence times, and timing of crystal growth) and potentially provide clues about the nature and mineralogy of mantle sources, mantle upwelling rates and porosity, fluid influences, and mechanisms of melt generation and transport. The subject is beginning to take a genuinely integrated approach to developing physically realistic quantitative models that offer increasingly exciting opportunities in the study of magmatic processes.

141 citations


Journal ArticleDOI
TL;DR: The NASA IMAGE satellite as discussed by the authors provides nearly continuous imaging of the inner magnetosphere on a nominal timescale of 2 min. The discoveries made by IMAGE during its first 5 years of operation are reviewed in this paper.
Abstract: [1] Measurements of the plasmas, energetic particles, and electric and magnetic fields within the Earth's magnetosphere have been made with ever greater coverage and precision throughout the past 46 years; but until recently, no images of this important environment were available. However, for 2 decades or more, theoretical estimates, data from sounding rockets, and background signals from orbiting instruments designed for in situ ion measurements accumulated to show that most of the plasmas contained in the inner magnetosphere could be imaged if new instruments designed for the purpose could be placed in a suitable high-altitude orbit. With the launch of the NASA IMAGE satellite in March 2000 the promise of magnetospheric imaging began to be realized. IMAGE provides nearly continuous imaging of the inner magnetosphere on a nominal timescale of 2 min. The discoveries made by IMAGE during its first 5 years of operation are reviewed in this paper.

31 citations


Journal ArticleDOI
TL;DR: It is argued that an assimilation solution based on epistemic cognition could lead to more realistic representations of the geophysical situation than a conventional ontologicAssimilation solution (which assumes that the model describes nature as is and focuses on form manipulations).
Abstract: [1] This work presents recent methodological developments in geophysical assimilation research. We revisit the meaning of the term “solution” of a mathematical model representing a geophysical system, and we examine its operational formulations. We argue that an assimilation solution based on epistemic cognition (which assumes that the model describes incomplete knowledge about nature and focuses on conceptual mechanisms of scientific thinking) could lead to more realistic representations of the geophysical situation than a conventional ontologic assimilation solution (which assumes that the model describes nature as is and focuses on form manipulations). Conceptually, the two approaches are fundamentally different. Unlike the reasoning structure of conventional assimilation modeling that is based mainly on ad hoc technical schemes, the epistemic cognition approach is based on teleologic criteria and stochastic adaptation principles. In this way some key ideas are introduced that could open new areas of geophysical assimilation to detailed understanding in an integrated manner. A knowledge synthesis framework can provide the rational means for assimilating a variety of knowledge bases (general and site specific) that are relevant to the geophysical system of interest. Epistemic cognition-based assimilation techniques can produce a realistic representation of the geophysical system, provide a rigorous assessment of the uncertainty sources, and generate informative predictions across space-time. The mathematics of epistemic assimilation involves a powerful and versatile spatiotemporal random field theory that imposes no restriction on the shape of the probability distributions or the form of the predictors (non-Gaussian distributions, multiple-point statistics, and nonlinear models are automatically incorporated) and accounts rigorously for the uncertainty features of the geophysical system. In the epistemic cognition context the assimilation concept may be used to investigate critical issues related to knowledge reliability, such as uncertainty due to model structure error (conceptual uncertainty).

16 citations


Journal ArticleDOI
TL;DR: In this paper, the authors incorporate both the climate and health effects of sulfate aerosol into an integrated-assessment model of fossil fuel emission control, and show that a policy that adjusts fossil fuel and sulfur emissions to address both warming and health simultaneously will support more stringent fossil fuels and sulfur controls.
Abstract: [1] Sulfate aerosol from burning fossil fuels not only has strong cooling effects on the Earth's climate but also imposes substantial costs on human health. To assess the impact of addressing air pollution on climate policy, we incorporate both the climate and health effects of sulfate aerosol into an integrated-assessment model of fossil fuel emission control. Our simulations show that a policy that adjusts fossil fuel and sulfur emissions to address both warming and health simultaneously will support more stringent fossil fuel and sulfur controls. The combination of both climate and health objectives leads to an acceleration of global warming in the 21st century as a result of the short-term climate response to the decreased cooling from the immediate removal of short-lived sulfate aerosol. In the long term (more than 100 years), reducing sulfate aerosol emissions requires that we decrease fossil fuel combustion in general, thereby removing some of the coemitted carbon emissions and leading to a reduction in global warming.

4 citations