scispace - formally typeset
Search or ask a question

Showing papers in "Reviews of Modern Physics in 2010"


Journal ArticleDOI
TL;DR: In this paper, the theoretical foundation for topological insulators and superconductors is reviewed and recent experiments are described in which the signatures of topologically insulators have been observed.
Abstract: Topological insulators are electronic materials that have a bulk band gap like an ordinary insulator but have protected conducting states on their edge or surface. These states are possible due to the combination of spin-orbit interactions and time-reversal symmetry. The two-dimensional (2D) topological insulator is a quantum spin Hall insulator, which is a close cousin of the integer quantum Hall state. A three-dimensional (3D) topological insulator supports novel spin-polarized 2D Dirac fermions on its surface. In this Colloquium the theoretical foundation for topological insulators and superconductors is reviewed and recent experiments are described in which the signatures of topological insulators have been observed. Transport experiments on $\mathrm{Hg}\mathrm{Te}∕\mathrm{Cd}\mathrm{Te}$ quantum wells are described that demonstrate the existence of the edge states predicted for the quantum spin Hall insulator. Experiments on ${\mathrm{Bi}}_{1\ensuremath{-}x}{\mathrm{Sb}}_{x}$, ${\mathrm{Bi}}_{2}{\mathrm{Se}}_{3}$, ${\mathrm{Bi}}_{2}{\mathrm{Te}}_{3}$, and ${\mathrm{Sb}}_{2}{\mathrm{Te}}_{3}$ are then discussed that establish these materials as 3D topological insulators and directly probe the topology of their surface states. Exotic states are described that can occur at the surface of a 3D topological insulator due to an induced energy gap. A magnetic gap leads to a novel quantum Hall state that gives rise to a topological magnetoelectric effect. A superconducting energy gap leads to a state that supports Majorana fermions and may provide a new venue for realizing proposals for topological quantum computation. Prospects for observing these exotic states are also discussed, as well as other potential device applications of topological insulators.

15,562 citations


Journal ArticleDOI
TL;DR: In this article, the authors present a review of the most important aspects of the different classes of modified gravity theories, including higher-order curvature invariants and metric affine.
Abstract: Modified gravity theories have received increased attention lately due to combined motivation coming from high-energy physics, cosmology, and astrophysics. Among numerous alternatives to Einstein's theory of gravity, theories that include higher-order curvature invariants, and specifically the particular class of $f(R)$ theories, have a long history. In the last five years there has been a new stimulus for their study, leading to a number of interesting results. Here $f(R)$ theories of gravity are reviewed in an attempt to comprehensively present their most important aspects and cover the largest possible portion of the relevant literature. All known formalisms are presented---metric, Palatini, and metric affine---and the following topics are discussed: motivation; actions, field equations, and theoretical aspects; equivalence with other theories; cosmological aspects and constraints; viability criteria; and astrophysical applications.

4,027 citations


Journal ArticleDOI
TL;DR: In this paper, a detailed review of the role of the Berry phase effect in various solid state applications is presented. And a requantization method that converts a semiclassical theory to an effective quantum theory is demonstrated.
Abstract: Ever since its discovery, the Berry phase has permeated through all branches of physics. Over the last three decades, it was gradually realized that the Berry phase of the electronic wave function can have a profound effect on material properties and is responsible for a spectrum of phenomena, such as ferroelectricity, orbital magnetism, various (quantum/anomalous/spin) Hall effects, and quantum charge pumping. This progress is summarized in a pedagogical manner in this review. We start with a brief summary of necessary background, followed by a detailed discussion of the Berry phase effect in a variety of solid state applications. A common thread of the review is the semiclassical formulation of electron dynamics, which is a versatile tool in the study of electron dynamics in the presence of electromagnetic fields and more general perturbations. Finally, we demonstrate a re-quantization method that converts a semiclassical theory to an effective quantum theory. It is clear that the Berry phase should be added as a basic ingredient to our understanding of basic material properties.

3,344 citations


Journal ArticleDOI
TL;DR: In this paper, a review of experimental and theoretical studies of anomalous Hall effect (AHE), focusing on recent developments that have provided a more complete framework for understanding this subtle phenomenon and have, in many instances, replaced controversy by clarity.
Abstract: We present a review of experimental and theoretical studies of the anomalous Hall effect (AHE), focusing on recent developments that have provided a more complete framework for understanding this subtle phenomenon and have, in many instances, replaced controversy by clarity. Synergy between experimental and theoretical work, both playing a crucial role, has been at the heart of these advances. On the theoretical front, the adoption of Berry-phase concepts has established a link between the AHE and the topological nature of the Hall currents which originate from spin-orbit coupling. On the experimental front, new experimental studies of the AHE in transition metals, transition-metal oxides, spinels, pyrochlores, and metallic dilute magnetic semiconductors, have more clearly established systematic trends. These two developments in concert with first-principles electronic structure calculations, strongly favor the dominance of an intrinsic Berry-phase-related AHE mechanism in metallic ferromagnets with moderate conductivity. The intrinsic AHE can be expressed in terms of Berry-phase curvatures and it is therefore an intrinsic quantum mechanical property of a perfect cyrstal. An extrinsic mechanism, skew scattering from disorder, tends to dominate the AHE in highly conductive ferromagnets. We review the full modern semiclassical treatment of the AHE together with the more rigorous quantum-mechanical treatments based on the Kubo and Keldysh formalisms, taking into account multiband effects, and demonstrate the equivalence of all three linear response theories in the metallic regime. Finally we discuss outstanding issues and avenues for future investigation.

2,970 citations


Journal ArticleDOI
TL;DR: Feshbach resonances are the essential tool to control the interaction between atoms in ultracold quantum gases and have found numerous experimental applications, opening up the way to important breakthroughs as mentioned in this paper.
Abstract: Feshbach resonances are the essential tool to control the interaction between atoms in ultracold quantum gases. They have found numerous experimental applications, opening up the way to important breakthroughs. This review broadly covers the phenomenon of Feshbach resonances in ultracold gases and their main applications. This includes the theoretical background and models for the description of Feshbach resonances, the experimental methods to find and characterize the resonances, a discussion of the main properties of resonances in various atomic species and mixed atomic species systems, and an overview of key experiments with atomic Bose-Einstein condensates, degenerate Fermi gases, and ultracold molecules.

2,642 citations


Journal ArticleDOI
TL;DR: In this paper, the authors introduce the concept of Fano resonances, which can be reduced to the interaction of a discrete (localized) state with a continuum of propagation modes, and explain their geometrical and/or dynamical origin.
Abstract: Modern nanotechnology allows one to scale down various important devices (sensors, chips, fibers, etc.) and thus opens up new horizons for their applications. The efficiency of most of them is based on fundamental physical phenomena, such as transport of wave excitations and resonances. Short propagation distances make phase-coherent processes of waves important. Often the scattering of waves involves propagation along different paths and, as a consequence, results in interference phenomena, where constructive interference corresponds to resonant enhancement and destructive interference to resonant suppression of the transmission. Recently, a variety of experimental and theoretical work has revealed such patterns in different physical settings. The purpose of this review is to relate resonant scattering to Fano resonances, known from atomic physics. One of the main features of the Fano resonance is its asymmetric line profile. The asymmetry originates from a close coexistence of resonant transmission and resonant reflection and can be reduced to the interaction of a discrete (localized) state with a continuum of propagation modes. The basic concepts of Fano resonances are introduced, their geometrical and/or dynamical origin are explained, and theoretical and experimental studies of light propagation in photonic devices, charge transport through quantum dots, plasmon scattering in Josephson-junction networks, and matter-wave scattering in ultracold atom systems, among others are reviewed.

2,520 citations


Journal ArticleDOI
TL;DR: In this paper, the current status of area laws in quantum many-body systems is reviewed and a significant proportion is devoted to the clear and quantitative connection between the entanglement content of states and the possibility of their efficient numerical simulation.
Abstract: Physical interactions in quantum many-body systems are typically local: Individual constituents interact mainly with their few nearest neighbors. This locality of interactions is inherited by a decay of correlation functions, but also reflected by scaling laws of a quite profound quantity: the entanglement entropy of ground states. This entropy of the reduced state of a subregion often merely grows like the boundary area of the subregion, and not like its volume, in sharp contrast with an expected extensive behavior. Such ``area laws'' for the entanglement entropy and related quantities have received considerable attention in recent years. They emerge in several seemingly unrelated fields, in the context of black hole physics, quantum information science, and quantum many-body physics where they have important implications on the numerical simulation of lattice models. In this Colloquium the current status of area laws in these fields is reviewed. Center stage is taken by rigorous results on lattice models in one and higher spatial dimensions. The differences and similarities between bosonic and fermionic models are stressed, area laws are related to the velocity of information propagation in quantum lattice models, and disordered systems, nonequilibrium situations, and topological entanglement entropies are discussed. These questions are considered in classical and quantum systems, in their ground and thermal states, for a variety of correlation measures. A significant proportion is devoted to the clear and quantitative connection between the entanglement content of states and the possibility of their efficient numerical simulation. Matrix-product states, higher-dimensional analogs, and variational sets from entanglement renormalization are also discussed and the paper is concluded by highlighting the implications of area laws on quantifying the effective degrees of freedom that need to be considered in simulations of quantum states.

2,282 citations


Journal ArticleDOI
TL;DR: Rydberg atoms with principal quantum number $n⪢1$ have exaggerated atomic properties including dipole-dipole interactions that scale as ${n}^{4}$ and radiative lifetimes that scale at least{n}−3}$ as mentioned in this paper, and it was proposed a decade ago to implement quantum gates between neutral atom qubits.
Abstract: Rydberg atoms with principal quantum number $n⪢1$ have exaggerated atomic properties including dipole-dipole interactions that scale as ${n}^{4}$ and radiative lifetimes that scale as ${n}^{3}$. It was proposed a decade ago to take advantage of these properties to implement quantum gates between neutral atom qubits. The availability of a strong long-range interaction that can be coherently turned on and off is an enabling resource for a wide range of quantum information tasks stretching far beyond the original gate proposal. Rydberg enabled capabilities include long-range two-qubit gates, collective encoding of multiqubit registers, implementation of robust light-atom quantum interfaces, and the potential for simulating quantum many-body physics. The advances of the last decade are reviewed, covering both theoretical and experimental aspects of Rydberg-mediated quantum information processing.

2,156 citations


Journal ArticleDOI
TL;DR: In this paper, a pedagogical introduction to the physics of quantum noise and its connections to quantum measurement and quantum amplification is given, and the basics of weak continuous measurements are described.
Abstract: The topic of quantum noise has become extremely timely due to the rise of quantum information physics and the resulting interchange of ideas between the condensed matter and atomic, molecular, optical--quantum optics communities. This review gives a pedagogical introduction to the physics of quantum noise and its connections to quantum measurement and quantum amplification. After introducing quantum noise spectra and methods for their detection, the basics of weak continuous measurements are described. Particular attention is given to the treatment of the standard quantum limit on linear amplifiers and position detectors within a general linear-response framework. This approach is shown how it relates to the standard Haus-Caves quantum limit for a bosonic amplifier known in quantum optics and its application to the case of electrical circuits is illustrated, including mesoscopic detectors and resonant cavity detectors.

1,581 citations


Journal ArticleDOI
TL;DR: In this article, the authors review the progress in this field of laser manipulation of magnetic order in a systematic way and show that the polarization of light plays an essential role in the manipulation of the magnetic moments at the femtosecond time scale.
Abstract: The interaction of subpicosecond laser pulses with magnetically ordered materials has developed into a fascinating research topic in modern magnetism. From the discovery of subpicosecond demagnetization over a decade ago to the recent demonstration of magnetization reversal by a single 40 fs laser pulse, the manipulation of magnetic order by ultrashort laser pulses has become a fundamentally challenging topic with a potentially high impact for future spintronics, data storage and manipulation, and quantum computation. Understanding the underlying mechanisms implies understanding the interaction of photons with charges, spins, and lattice, and the angular momentum transfer between them. This paper will review the progress in this field of laser manipulation of magnetic order in a systematic way. Starting with a historical introduction, the interaction of light with magnetically ordered matter is discussed. By investigating metals, semiconductors, and dielectrics, the roles of nearly free electrons, charge redistributions, and spin-orbit and spin-lattice interactions can partly be separated, and effects due to heating can be distinguished from those that are not. It will be shown that there is a fundamental distinction between processes that involve the actual absorption of photons and those that do not. It turns out that for the latter, the polarization of light plays an essential role in the manipulation of the magnetic moments at the femtosecond time scale. Thus, circularly and linearly polarized pulses are shown to act as strong transient magnetic field pulses originating from the nonabsorptive inverse Faraday and inverse Cotton-Mouton effects, respectively. The recent progress in the understanding of magneto-optical effects on the femtosecond time scale together with the mentioned inverse, optomagnetic effects promises a bright future for this field of ultrafast optical manipulation of magnetic order or femtomagnetism.

1,449 citations


Journal ArticleDOI
TL;DR: In this paper, a quantum-mechanical description of the interaction between the electrons and the sample is discussed, followed by a powerful classical dielectric approach that can be in practice applied to more complex systems.
Abstract: This review discusses how low-energy, valence excitations created by swift electrons can render information on the optical response of structured materials with unmatched spatial resolution. Electron microscopes are capable of focusing electron beams on sub-nanometer spots and probing the target response either by analyzing electron energy losses or by detecting emitted radiation. Theoretical frameworks suited to calculate the probability of energy loss and light emission (cathodoluminescence) are revisited and compared with experimental results. More precisely, a quantum-mechanical description of the interaction between the electrons and the sample is discussed, followed by a powerful classical dielectric approach that can be in practice applied to more complex systems. We assess the conditions under which classical and quantum-mechanical formulations are equivalent. The excitation of collective modes such as plasmons is studied in bulk materials, planar surfaces, and nanoparticles. Light emission induced by the electrons is shown to constitute an excellent probe of plasmons, combining sub-nanometer resolution in the position of the electron beam with nanometer resolution in the emitted wavelength. Both electron energy-loss and cathodoluminescence spectroscopies performed in a scanning mode of operation yield snap shots of plasmon modes in nanostructures with fine spatial detail as compared to other existing imaging techniques, thus providing an ideal tool for nanophotonics studies.

Journal ArticleDOI
TL;DR: In this paper, the authors provide a perspective on the recent developments in the transmission of light through subwavelength apertures in metal films, and the physical mechanisms operating in the different structures considered are analyzed within a common theoretical framework.
Abstract: This review provides a perspective on the recent developments in the transmission of light through subwavelength apertures in metal films. The main focus is on the phenomenon of extraordinary optical transmission in periodic hole arrays, discovered over a decade ago. It is shown that surface electromagnetic modes play a key role in the emergence of the resonant transmission. These modes are also shown to be at the root of both the enhanced transmission and beaming of light found in single apertures surrounded by periodic corrugations. This review describes both the theoretical and experimental aspects of the subject. For clarity, the physical mechanisms operating in the different structures considered are analyzed within a common theoretical framework. Several applications based on the transmission properties of subwavelength apertures are also addressed.

Journal ArticleDOI
TL;DR: In this article, the authors present the current evidence from the analysis of the orbits of more than two dozen stars and from measurements of the size and motion of the central compact radio source, Sgr A*, that this radio source must be a massive black hole of about 4.4 \times 1e6 Msun, beyond any reasonable doubt.
Abstract: The Galactic Center is an excellent laboratory for studying phenomena and physical processes that may be occurring in many other galactic nuclei. The Center of our Milky Way is by far the closest galactic nucleus, and observations with exquisite resolution and sensitivity cover 18 orders of magnitude in energy of electromagnetic radiation. Theoretical simulations have become increasingly more powerful in explaining these measurements. This review summarizes the recent progress in observational and theoretical work on the central parsec, with a strong emphasis on the current empirical evidence for a central massive black hole and on the processes in the surrounding dense nuclear star cluster. We present the current evidence, from the analysis of the orbits of more than two dozen stars and from the measurements of the size and motion of the central compact radio source, Sgr A*, that this radio source must be a massive black hole of about 4.4 \times 1e6 Msun, beyond any reasonable doubt. We report what is known about the structure and evolution of the dense nuclear star cluster surrounding this black hole, including the astounding fact that stars have been forming in the vicinity of Sgr A* recently, apparently with a top-heavy stellar mass function. We discuss a dense concentration of fainter stars centered in the immediate vicinity of the massive black hole, three of which have orbital peri-bothroi of less than one light day. This 'S-star cluster' appears to consist mainly of young early-type stars, in contrast to the predicted properties of an equilibrium 'stellar cusp' around a black hole. This constitutes a remarkable and presently not fully understood 'paradox of youth'. We also summarize what is known about the emission properties of the accreting gas onto Sgr A* and how this emission is beginning to delineate the physical properties in the hot accretion zone around the event horizon.

Journal ArticleDOI
TL;DR: In this article, the authors reviewed recent experiments and corresponding theoretical pictures based on the Gross-Pitaevskii equations and the Boltzmann kinetic simulations for a finite-size BEC of polaritons.
Abstract: In the past decade, a two-dimensional matter-light system called the microcavity exciton-polariton has emerged as a new promising candidate of Bose-Einstein condensation BEC in solids. Many pieces of important evidence of polariton BEC have been established recently in GaAs and CdTe microcavities at the liquid helium temperature, opening a door to rich many-body physics inaccessible in experiments before. Technological progress also made polariton BEC at room temperatures promising. In parallel with experimental progresses, theoretical frameworks and numerical simulations are developed, and our understanding of the system has greatly advanced. In this article, recent experiments and corresponding theoretical pictures based on the Gross-Pitaevskii equations and the Boltzmann kinetic simulations for a finite-size BEC of polaritons are reviewed.

Journal ArticleDOI
TL;DR: In this paper, the interaction of light with multiatom ensembles has attracted much attention as a basic building block for quantum information processing and quantum state engineering, and the authors provide a common theoretical frame for these processes, describes basic experimental techniques and media used for quantum interfaces, and reviews several key experiments on quantum memory for light, quantum entanglement between atomic enambles and light, and quantum teleportation with atomic enassembles.
Abstract: During the past decade the interaction of light with multiatom ensembles has attracted much attention as a basic building block for quantum information processing and quantum state engineering. The field started with the realization that optically thick free space ensembles can be efficiently interfaced with quantum optical fields. By now the atomic ensemble-light interfaces have become a powerful alternative to the cavity-enhanced interaction of light with single atoms. Various mechanisms used for the quantum interface are discussed, including quantum nondemolition or Faraday interaction, quantum measurement and feedback, Raman interaction, photon echo, and electromagnetically induced transparency. This review provides a common theoretical frame for these processes, describes basic experimental techniques and media used for quantum interfaces, and reviews several key experiments on quantum memory for light, quantum entanglement between atomic ensembles and light, and quantum teleportation with atomic ensembles. The two types of quantum measurements which are most important for the interface are discussed: homodyne detection and photon counting. This review concludes with an outlook on the future of atomic ensembles as an enabling technology in quantum information processing.

Journal ArticleDOI
TL;DR: In this article, the authors review the application of non abelian discrete groups to the theory of neutrino masses and mixing, which is strongly suggested by the agreement of the TriBimaximal (TB) mixing pattern with experiment.
Abstract: We review the application of non abelian discrete groups to the theory of neutrino masses and mixing, which is strongly suggested by the agreement of the TriBimaximal (TB) mixing pattern with experiment. After summarizing the motivation and the formalism, we discuss specific models, based on A4, S4 and other finite groups, and their phenomenological implications, including lepton flavor violating processes, leptogenesis and the extension to quarks. In alternative to TB mixing the application of discrete flavor symmetries to quark-lepton complementarity and Bimaximal Mixing (BM) is also considered.

Journal ArticleDOI
TL;DR: A review of the properties of pyrochlore oxides can be found in this paper, mainly from a materials perspective, but with an appropriate theoretical context, where the authors attempt to review the myriad of properties found in the oxides.
Abstract: Within the past 20 years or so, there has occurred an explosion of interest in the magnetic behavior of pyrochlore oxides of the type $A_{2}^{3+}$$B_{2}^{4+}$O$_{7}$ where $A$ is a rare-earth ion and $B$ is usually a transition metal. Both the $A$ and $B$ sites form a network of corner-sharing tetrahedra which is the quintessential framework for a geometrically frustrated magnet. In these systems the natural tendency to form long range ordered ground states in accord with the Third Law is frustrated, resulting in some novel short range ordered alternatives such as spin glasses, spin ices and spin liquids and much new physics. This article attempts to review the myriad of properties found in pyrochlore oxides, mainly from a materials perspective, but with an appropriate theoretical context.

Journal ArticleDOI
TL;DR: Very light axion (theory, supersymmetrization, and models) using recent particle, astrophysical, and cosmological data, and present prospects for its discovery is reviewed here.
Abstract: Current upper bounds on the neutron electric dipole moment constrain the physically observable quantum chromodynamic (QCD) vacuum angle $|\overline{\ensuremath{\theta}}|\ensuremath{\lesssim}{10}^{\ensuremath{-}11}$. Since QCD explains a great deal of experimental data from the $100\phantom{\rule{0.3em}{0ex}}\mathrm{MeV}$ to the TeV scale, it is desirable to explain this smallness of $|\overline{\ensuremath{\theta}}|$ in the QCD framework; this is the strong $CP$ problem. There now exist two plausible solutions to this problem, one of which leads to the existence of a very light axion. The axion decay constant window, ${10}^{9}\ensuremath{\lesssim}{F}_{a}\ensuremath{\lesssim}{10}^{12}\phantom{\rule{0.3em}{0ex}}\mathrm{GeV}$ for an $O(1)$ initial misalignment angle ${\ensuremath{\theta}}_{1}$, has been obtained from astrophysical and cosmological data. For ${F}_{a}\ensuremath{\gtrsim}{10}^{12}\phantom{\rule{0.3em}{0ex}}\mathrm{GeV}$ with ${\ensuremath{\theta}}_{1}lO(1)$, axions may constitute a significant fraction of the dark matter of the universe. The supersymmetrized axion solution of the strong $CP$ problem introduces its superpartner the axino, which might have affected the evolution of the Universe significantly. The very light axion (theory, supersymmetrization, and models) using recent particle, astrophysical, and cosmological data, and present prospects for its discovery is reviewed here.

Journal ArticleDOI
TL;DR: In this article, a review summarizes recent first-principles investigations of the electronic structure and magnetism of dilute magnetic semiconductors (DMSs), which are interesting for applications in spintronics.
Abstract: This review summarizes recent first-principles investigations of the electronic structure and magnetism of dilute magnetic semiconductors (DMSs), which are interesting for applications in spintronics. Details of the electronic structure of transition-metal-doped III-V and II-VI semiconductors are described, especially how the electronic structure couples to the magnetic properties of an impurity. In addition, the underlying mechanism of the ferromagnetism in DMSs is investigated from the electronic structure point of view in order to establish a unified picture that explains the chemical trend of the magnetism in DMSs. Recent efforts to fabricate high-TC DMSs require accurate materials design and reliable TC predictions for the DMSs. In this connection, a hybrid method (ab initio calculations of effective exchange interactions coupled to Monte Carlo simulations for the thermal properties) is discussed as a practical method for calculating the Curie temperature of DMSs. The calculated ordering temperatures for various DMS systems are discussed, and the usefulness of the method is demonstrated. Moreover, in order to include all the complexity in the fabrication process of DMSs into advanced materials design, spinodal decomposition in DMSs is simulated and we try to assess the effect of inhomogeneity in them. Finally, recent works on first-principles theory of transport properties of DMSs are reviewed. The discussion is mainly based on electronic structure theory within the local-density approximation to density-functional theory.

Journal ArticleDOI
TL;DR: In this paper, an introduction to the transport properties of graphene combining experimental results and theoretical analysis is presented, where simple intuitive models are used to illustrate important points on the transport property of graphene.
Abstract: An introduction to the transport properties of graphene combining experimental results and theoretical analysis is presented. In the theoretical description simple intuitive models are used to illustrate important points on the transport properties of graphene. The concept of chirality, stemming from the massless Dirac nature of the low energy physics of the material, is shown to be instrumental in understanding its transport properties: the conductivity minimum, the electronic mobility, the effect of strain, the weak (anti-)localization, and the optical conductivity.

Journal ArticleDOI
TL;DR: This review describes the diversity of jammed configurations attainable by frictionless convex nonoverlapping (hard) particles in Euclidean spaces and for that purpose it stresses individual-packing geometric analysis.
Abstract: This review describes the diversity of jammed configurations attainable by frictionless convex nonoverlapping (hard) particles in Euclidean spaces and for that purpose it stresses individual-packing geometric analysis. A fundamental feature of that diversity is the necessity to classify individual jammed configurations according to whether they are locally, collectively, or strictly jammed. Each of these categories contains a multitude of jammed configurations spanning a wide and (in the large system limit) continuous range of intensive properties, including packing fraction $\phi$, mean contact number $Z$, and several scalar order metrics. Application of these analytical tools to spheres in three dimensions (an analog to the venerable Ising model) covers a myriad of jammed states, including maximally dense packings (as Kepler conjectured), low-density strictly-jammed tunneled crystals, and a substantial family of amorphous packings. With respect to the last of these, the current approach displaces the historically prominent but ambiguous idea of ``random close packing" (RCP) with the precise concept of ``maximally random jamming" (MRJ). This review also covers recent advances in understanding jammed packings of polydisperse sphere mixtures, as well as convex nonspherical particles, e.g., ellipsoids, ``superballs", and polyhedra. Because of their relevance to error-correcting codes and information theory, sphere packings in high-dimensional Euclidean spaces have been included as well. We also make some remarks about packings in (curved) non-Euclidean spaces. In closing this review, several basic open questions for future research to consider have been identified.

Journal ArticleDOI
TL;DR: Results of clinical phase I-II trials provide evidence that carbon-ion radiotherapy might be beneficial in several tumor entities, and the progress in heavy-ion therapy is reviewed, including physical and technical developments, radiobiological studiesmore and models, as well as radiooncological studies.
Abstract: High-energy beams of charged nuclear particles (protons and heavier ions) offer significant advantages for the treatment of deep-seated local tumors in comparison to conventional megavolt photon therapy. Their physical depth-dose distribution in tissue is characterized by a small entrance dose and a distinct maximum (Bragg peak) near the end of range with a sharp fall-off at the distal edge. Taking full advantage of the well-defined range and the small lateral beam spread, modern scanning beam systems allow delivery of the dose with millimeter precision. In addition, projectiles heavier than protons such as carbon ions exhibit an enhanced biological effectiveness in the Bragg peak region caused by the dense ionization of individual particle tracks resulting in reduced cellular repair. This makes them particularly attractive for the treatment of radio-resistant tumors localized near organs at risk. While tumor therapy with protons is a well-established treatment modality with more than 60 000 patients treated worldwide, the application of heavy ions is so far restricted to a few facilities only. Nevertheless, results of clinical phase I-II trials provide evidence that carbon-ion radiotherapy might be beneficial in several tumor entities. This article reviews the progress in heavy-ion therapy, including physical and technical developments, radiobiological studiesmore » and models, as well as radiooncological studies. As a result of the promising clinical results obtained with carbon-ion beams in the past ten years at the Heavy Ion Medical Accelerator facility (Japan) and in a pilot project at GSI Darmstadt (Germany), the plans for new clinical centers for heavy-ion or combined proton and heavy-ion therapy have recently received a substantial boost.« less

Journal ArticleDOI
TL;DR: In this paper, a theory of amorphous packings, and more generally glassy states, of hard spheres that is based on the replica method, gives predictions on the structure and thermodynamics of these states.
Abstract: Hard spheres are ubiquitous in condensed matter: they have been used as models for liquids, crystals, colloidal systems, granular systems, and powders. Packings of hard spheres are of even wider interest, as they are related to important problems in information theory, such as digitalization of signals, error correcting codes, and optimization problems. In three dimensions the densest packing of identical hard spheres has been proven to be the FCC lattice, and it is conjectured that the closest packing is ordered (a regular lattice, e.g, a crystal) in low enough dimension. Still, amorphous packings have attracted a lot of interest, because for polydisperse colloids and granular materials the crystalline state is not obtained in experiments for kinetic reasons. We review here a theory of amorphous packings, and more generally glassy states, of hard spheres that is based on the replica method: this theory gives predictions on the structure and thermodynamics of these states. In dimensions between two and six these predictions can be successfully compared with numerical simulations. We will also discuss the limit of large dimension where an exact solution is possible. Some of the results we present here have been already published, but others are original: in particular we improved the discussion of the large dimension limit and we obtained new results on the correlation function and the contact force distribution in three dimensions. We also try here to clarify the main assumptions that are beyond our theory and in particular the relation between our static computation and the dynamical procedures used to construct amorphous packings.

Journal ArticleDOI
TL;DR: The area of quantum communication complexity is reviewed, and it is shown how it connects the foundational physics questions regarding non-locality with those of communication complexity studied in theoretical computer science.
Abstract: Quantum information processing is the emerging field that defines and realizes computing devices that make use of quantum mechanical principles, like the superposition principle, entanglement, and interference. Until recently the common notion of computing was based on classical mechanics, and did not take into account all the possibilities that physically-realizable computing devices offer in principle. The field gained momentum after Peter Shor developed an efficient algorithm for factoring numbers, demonstrating the potential computing powers that quantum computing devices can unleash. In this review we study the information counterpart of computing. It was realized early on by Holevo, that quantum bits, the quantum mechanical counterpart of classical bits, cannot be used for efficient transformation of information, in the sense that arbitrary k-bit messages can not be compressed into messages of k − 1 qubits. The abstract form of the distributed computing setting is called communication complexity. It studies the amount of information, in terms of bits or in our case qubits, that two spatially separated computing devices need to exchange in order to perform some computational task. Surprisingly, quantum mechanics can be used to obtain dramatic advantages for such tasks. We review the area of quantum communication complexity, and show how it connects the foundational physics questions regarding non-locality with those of communication complexity studied in theoretical computer science. The first examples exhibiting the advantage of the use of qubits in distributed information-processing tasks were based on non-locality tests. However, by now the field has produced strong and interesting quantum protocols and algorithms of its own that demonstrate that entanglement, although it cannot be used to replace communication, can be used to reduce the communication exponentially. In turn, these new advances yield a new outlook on the foundations of physics, and could even yield new proposals for experiments that test the foundations of physics.

Journal ArticleDOI
TL;DR: In this paper, the authors summarized the current experimental status of electron-doped cuprates, with a goal to provide a snapshot of the current understanding of these materials, and synthesize this information into a consistent view on a number of topics important to both this material class as well as the overall cuprate phenomenology including the phase diagram, the superconducting order parameter symmetry, phase separation, pseudogap effects, the role of competing orders, the spin-density wave mean-field description of the normal state, and electron-phonon coupling.
Abstract: Although the vast majority of high-$T_c$ cuprate superconductors are hole-doped, a small family of electron-doped compounds exists. Under investigated until recently, there has been tremendous recent progress in their characterization. A consistent view is being reached on a number of formerly contentious issues, such as their order parameter symmetry, phase diagram, and normal state electronic structure. Many other aspects have been revealed exhibiting both their similarities and differences with the hole-doped compounds. This review summarizes the current experimental status of these materials, with a goal to providing a snapshot of our current understanding of electron-doped cuprates. When possible we put our results in the context of the hole-doped compounds. We attempt to synthesize this information into a consistent view on a number of topics important to both this material class as well as the overall cuprate phenomenology including the phase diagram, the superconducting order parameter symmetry, phase separation, pseudogap effects, the role of competing orders, the spin-density wave mean-field description of the normal state, and electron-phonon coupling.

Journal ArticleDOI
TL;DR: In this article, recent experimental and theoretical progress in the generation of entangled quantum networks based on the use of optical photons as carriers of information between fixed trapped atomic ion quantum memories is reviewed.
Abstract: Quantum computation and communication exploit the quantum properties of superposition and entanglement in order to perform tasks that may be impossible using classical means. In this Colloquium recent experimental and theoretical progress in the generation of entangled quantum networks based on the use of optical photons as carriers of information between fixed trapped atomic ion quantum memories are reviewed. Taken together, these quantum platforms offer a promising vision for the realization of a large-scale quantum network that could impact the future of communication and computation.

Journal ArticleDOI
TL;DR: In a recent review as discussed by the authors, the lower bound on the photon Compton wavelength has been improved by four orders of magnitude, to about one astronomical unit, and rapid current progress in astronomy makes further advance likely.
Abstract: Efforts to place limits on deviations from canonical formulations of electromagnetism and gravity have probed length scales increasing dramatically over time. Historically, these studies have passed through three stages: (1) testing the power in the inverse-square laws of Newton and Coulomb, (2) seeking a nonzero value for the rest mass of photon or graviton, and (3) considering more degrees of freedom, allowing mass while preserving explicit gauge or general-coordinate invariance. Since the previous review the lower limit on the photon Compton wavelength has improved by four orders of magnitude, to about one astronomical unit, and rapid current progress in astronomy makes further advance likely. For gravity there have been vigorous debates about even the concept of graviton rest mass. Meanwhile there are striking observations of astronomical motions that do not fit Einstein gravity with visible sources. ''Cold dark matter'' (slow, invisible classical particles) fits well at large scales. ''Modified Newtonian dynamics'' provides the best phenomenology at galactic scales. Satisfying this phenomenology is a requirement if dark matter, perhaps as invisible classical fields, could be correct here too. ''Dark energy''might be explained by a graviton-mass-like effect, with associated Compton wavelength comparable to the radius of the visible universe. Significant mass limitsmore » are summarized in a table.« less

Journal ArticleDOI
TL;DR: In this article, the importance of exploring the optically mediated interaction between assembled objects that can cause attractive and repulsive forces and dramatically influence the way they assemble and organize themselves is discussed.
Abstract: The light-matter interaction has been at the heart of major advances from the atomic scale right to the microscopic scale over the past four decades. Confinement by light, embodied by the area of optical trapping, has had a major influence across all of the natural sciences. However, an emergent and powerful topic within this field that has steadily merged but not gained much recognition is optical binding: the importance of exploring the optically mediated interaction between assembled objects that can cause attractive and repulsive forces and dramatically influence the way they assemble and organize themselves. This offers routes for colloidal self-assembly, crystallization, and organization of templates for biological and colloidal sciences. In this Colloquium, this emergent area is reviewed looking at the pioneering experiments in the field and the various theoretical approaches that aim to describe this behavior. The latest experimental studies in the field are reviewed and theoretical approaches are now beginning to converge to describe the binding behavior seen. Recent links between optical binding and nonlinearity are explored as well as future themes and challenges.

Journal ArticleDOI
TL;DR: In this article, the evolution of the nuclear ground-state shapes across the NxZ plane is discussed, and specific data indicating sudden structural changes in various isotopic and isotonic chains of medium-mass and heavy even-even nuclei, as well as diverse theoretical aspects of the models used to describe these changes.
Abstract: Signatures of criticality in the evolution of the nuclear ground-state shapes across the NxZ plane are discussed. Attention is paid to specific data indicating sudden structural changes in various isotopic and isotonic chains of medium-mass and heavy even-even nuclei, as well as to diverse theoretical aspects of the models used to describe these changes. The interacting boson model and the geometric collective model, in particular, are discussed in detail, the former providing global predictions for the evolution of collective observables in nuclei between closed shells and the latter yielding a parameter-efficient description of nuclei at the critical points of shape transitions. Some issues related to the mechanism of first- and second-order quantum phase transitions in general many-body systems are also outlined.

Journal ArticleDOI
TL;DR: In this paper, the authors provide an overview of key phenomena arising from laser-cluster interactions with focus on nonlinear optical excitations and discuss the underlying processes according to the current understanding.
Abstract: Laser excitation of nanometer-sized atomic and molecular clusters offers various opportunities to explore and control ultrafast many-particle dynamics. Whereas weak laser fields allow the analysis of photoionization, excited-state relaxation, and structural modifications on these finite quantum systems, large-amplitude collective electron motion and Coulomb explosion can be induced with intense laser pulses. This review provides an overview of key phenomena arising from laser-cluster interactions with focus on nonlinear optical excitations and discusses the underlying processes according to the current understanding. A general survey covers basic cluster properties and excitation mechanisms relevant for laser-driven cluster dynamics. Then, after an excursion in theoretical and experimental methods, results for single-photon and multiphoton excitations are reviewed with emphasis on signatures from time- and angular-resolved photoemission. A key issue of this review is the broad spectrum of phenomena arising from clusters exposed to strong fields, where the interaction with the laser pulse creates short-lived and dense nanoplasmas. The implications for technical developments such as the controlled generation of ion, electron, and radiation pulses will be addressed along with corresponding examples. Finally, future prospects of laser-cluster research as well as experimental and theoretical challenges are discussed.