scispace - formally typeset
Search or ask a question

Showing papers in "Robotica in 2015"


Journal ArticleDOI
01 Mar 2015-Robotica
TL;DR: Methods applicable to stationary obstacles, moving obstacles and multiple vehicles scenarios are reviewed, and particular attention is given to reactive methods based on local sensory data, with a special focus on recently proposed navigation laws based on model predictive and sliding mode control.
Abstract: We review a range of techniques related to navigation of unmanned vehicles through unknown environments with obstacles, especially those that rigorously ensure collision avoidance (given certain assumptions about the system). This topic continues to be an active area of research, and we highlight some directions in which available approaches may be improved. The paper discusses models of the sensors and vehicle kinematics, assumptions about the environment, and performance criteria. Methods applicable to stationary obstacles, moving obstacles and multiple vehicles scenarios are all reviewed. In preference to global approaches based on full knowledge of the environment, particular attention is given to reactive methods based on local sensory data, with a special focus on recently proposed navigation laws based on model predictive and sliding mode control.

390 citations


Journal ArticleDOI
01 Jan 2015-Robotica
TL;DR: Experimental results show that the ETS-MARSE can efficiently perform passive rehabilitation therapy and be used to ease daily upper limb movements and to provide effective rehabilitation therapy to the superior extremity.
Abstract: To assist physically disabled people with impaired upper limb function, we have developed a new 7-DOF exoskeleton-type robot named Motion Assistive Robotic-Exoskeleton for Superior Extremity (ETS-MARSE) to ease daily upper limb movements and to provide effective rehabilitation therapy to the superior extremity. The ETS-MARSE comprises a shoulder motion support part, an elbow and forearm motion support part, and a wrist motion support part. It is designed to be worn on the lateral side of the upper limb in order to provide naturalistic movements of the shoulder (vertical and horizontal flexion/extension and internal/external rotation), elbow (flexion/extension), forearm (pronation/supination), and wrist joint (radial/ulnar deviation and flexion/extension). This paper focuses on the modeling, design, development, and control of the ETS-MARSE. Experiments were carried out with healthy male human subjects in whom trajectory tracking in the form of passive rehabilitation exercises (i.e., pre-programmed trajectories recommended by a therapist/clinician) were carried out. Experimental results show that the ETS-MARSE can efficiently perform passive rehabilitation therapy.

159 citations


Journal ArticleDOI
01 Jun 2015-Robotica
TL;DR: It is demonstrated that the hand motion for detaching the fruit from the stem has a significant role in the process because it can reduce the required force.
Abstract: Strawberry is a very delicate fruit that requires special treatment during harvesting. A hierarchical control scheme is proposed based on a fuzzy controller for the force regulation of the gripper and proper grasping criteria, that can detect misplaced strawberries on the gripper or uneven distribution of forces. The design of the gripper and the controller are based on conducted experiments to measure the maximum gripping force and the required detachment force under a variety of detachment techniques. It is demonstrated that the hand motion for detaching the fruit from the stem has a significant role in the process because it can reduce the required force. By analysing those results a robotic gripper with pressure profile sensors is developed that demonstrates an efficiency comparable to the human hand for strawberry grasping. The designed gripper and fuzzy controller performance is tested with a considerable number of fresh fruits to demonstrate the effectiveness to the uncertainties of strawberry grasping.

62 citations


Journal ArticleDOI
01 Dec 2015-Robotica
TL;DR: The resultant bi-criteria minimization scheme, formulated as the pseudoinverse-type solution, not only avoids the high joint-velocity and joint-acceleration phenomena but also causes the joint velocity to be near zero at the end of motion.
Abstract: In this paper, a pseudoinverse-type bi-criteria minimization scheme is proposed and investigated for the redundancy resolution of robot manipulators at the joint-acceleration level. Such a bi-criteria minimization scheme combines the weighted minimum acceleration norm solution and the minimum velocity norm solution via a weighting factor. The resultant bi-criteria minimization scheme, formulated as the pseudoinverse-type solution, not only avoids the high joint-velocity and joint-acceleration phenomena but also causes the joint velocity to be near zero at the end of motion. Computer simulation results based on a 4-Degree-of-Freedom planar robot manipulator comprising revolute joints further verify the efficacy and flexibility of the proposed bi-criteria minimization scheme on robotic redundancy resolution.

60 citations


Journal ArticleDOI
01 May 2015-Robotica
TL;DR: Stability and tracking performance of the teleoperation system are proved using a proposed Lyapunov–Krasovskii functional to guarantee position and force tracking in nonlinear teleoperation systems subject to varying communication delays.
Abstract: In this paper, a novel control scheme is proposed to guarantee position and force tracking in nonlinear teleoperation systems subject to varying communication delays. Stability and tracking performance of the teleoperation system are proved using a proposed Lyapunov–Krasovskii functional. To show its effectiveness, the teleoperation controller is simulated on a pair of planar 2-DOF (degree of freedom) robots and experimented on a pair of 3-DOF PHANToM Premium 1.5A robots connected via a communication channel with time-varying delays. Both the planar robots in simulations and the PHANToM robots in experiments possess nonlinear dynamics.

56 citations


Journal ArticleDOI
01 Jan 2015-Robotica
TL;DR: In this article, a human-robot interface (HRI) is presented to teleoperate a robotic platform via the user's voice, where a speech recognition system is necessary.
Abstract: Verbal communication is the most natural way of human–robot interaction. Such an interaction is usually achieved by means of a human-robot interface (HRI). In this paper, a HRI is presented to teleoperate a robotic platform via the user's voice. Hence, a speech recognition system is necessary. In this work, a user-dependent acoustic model for Spanish speakers has been developed to teleoperate a robot with a set of commands. Experimental results have been successful, both in terms of a high recognition rate and the navigation of the robot under the control of the user's voice.

50 citations


Journal ArticleDOI
01 May 2015-Robotica
TL;DR: Simulation results validate the feasibility of the attitude control scheme for a tumbling combination system, and fuel consumption of the attitudes is efficiently reduced using the coordinated control strategies.
Abstract: This paper presents a novel scheme for achieving attitude control of a tumbling combination system in the post-capture phase of a tethered space robot (TSR). Given the combination rotation characteristics, tether force is applied to provide greater control torques for stabilising the attitude. The proposed control scheme involves two attitude controllers, which coordinate the controller of the tether force and thruster force and the controller of single thruster force. The numerical simulations include a comparison between this coordinated control and the traditional thruster control and a sensitivity analysis on initial values of parameters. Simulation results validate the feasibility of the attitude control scheme for a tumbling combination system, and fuel consumption of the attitude control is efficiently reduced using the coordinated control strategies.

49 citations


Journal ArticleDOI
01 Feb 2015-Robotica
TL;DR: The formation shape and the avoidance of collisions between robots are obtained by exploiting the properties of weighted graphs and the effectiveness of the proposed control strategy has been demonstrated by means of analytical proofs.
Abstract: In this paper, a consensus-based control strategy is presented to gather formation for a group of differential-wheeled robots. The formation shape and the avoidance of collisions between robots are obtained by exploiting the properties of weighted graphs. Since mobile robots are supposed to move in unknown environments, the presented approach to multi-robot coordination has been extended in order to include obstacle avoidance. The effectiveness of the proposed control strategy has been demonstrated by means of analytical proofs. Moreover, results of simulations and experiments on real robots are provided for validation purposes.

47 citations


Journal ArticleDOI
01 Jun 2015-Robotica
TL;DR: A cam-mechanism implementation at the ankle joint level of the leg exoskeleton with fairly simple construction, lightweight, easy to wear and to adapt to human legs is proposed.
Abstract: This paper addresses attention to a design for a low-cost exoskeleton with fairly simple construction, lightweight, easy to wear and to adapt to human legs. The design core is focused on a cam-mechanism implementation at the ankle joint level of the leg exoskeleton. The engineering feasibility of the proposed design is characterized by numerical simulations for the design process.

43 citations


Journal ArticleDOI
01 Dec 2015-Robotica
TL;DR: The studies indicated that the use of an HMD to create a stereoscopic visualization of the camera feeds from a mobile robot enhanced the perception of cues in a static three-dimensional environment and also that such benefits transferred to simulated field scenarios in the form of enhanced task completion times.
Abstract: This paper describes and evaluates the use of a head-mounted display (HMD) for the teleoperation of a field robot. The HMD presents a pair of video streams to the operator (one to each eye) originating from a pair of stereo cameras located on the front of the robot, thus providing him/her with a sense of depth (stereopsis). A tracker on the HMD captures 3-DOF head orientation data which is then used for adjusting the camera orientation by moving the robot and/or the camera position accordingly, and rotating the displayed images to compensate for the operator's head rotation. This approach was implemented in a search and rescue robot (RAPOSA), and it was empirically validated in a series of short user studies. This evaluation involved four experiments covering two-dimensional perception, depth perception, scene perception, and performing a search and rescue task in a controlled scenario. The stereoscopic display and head tracking are shown to afford a number of performance benefits. However, one experiment also revealed that controlling robot orientation with yaw input from the head tracker negatively influenced task completion time. A possible explanation is a mismatch between the abilities of the robot and the human operator. This aside, the studies indicated that the use of an HMD to create a stereoscopic visualization of the camera feeds from a mobile robot enhanced the perception of cues in a static three-dimensional environment and also that such benefits transferred to simulated field scenarios in the form of enhanced task completion times.

41 citations


Journal ArticleDOI
01 Dec 2015-Robotica
TL;DR: An optimal fuzzy sliding mode controller has been designed for controlling the end-effector position in the task space and a novel heuristic algorithm namely self-adaptive modified bat algorithm (SAMBA) is employed to achieve an optimal performance.
Abstract: In this paper, an optimal fuzzy sliding mode controller has been designed for controlling the end-effector position in the task space. In the proposed control, feedback linearization method, sliding mode control, first-order fuzzy TSK system and optimization algorithm are utilized. In the proposed controller, a novel heuristic algorithm namely self-adaptive modified bat algorithm (SAMBA) is employed. To achieve an optimal performance, the parameters of the proposed controller as well as the input membership functions are optimized by SAMBA simultaneously. In this method, the bounds of structural and non-structural uncertainties are reduced by using feedback linearization method, and to overcome the remaining uncertainties, sliding mode control is employed. Mathematical proof demonstrates that the closed loop system with the proposed control has global asymptotic stability. The presence of sliding mode control gives rise to the adverse phenomenon of chattering in the end-effector position tracking in the task space. Subsequently, to prevent the occurrence of chattering in control input, a first-order TSK fuzzy approximator is utilized. Finally, to determine the fuzzy sliding mode controller coefficients, the optimization algorithm of Self-Adaptive Modified Bat is employed. To investigate the performance of the proposed control, a two-degree-of-freedom manipulator is used as a case study. The simulation results indicate the favorable performance of the proposed method.

Journal ArticleDOI
01 Feb 2015-Robotica
TL;DR: The results show that the proposed scheme of actuator redundancy can guarantee that the redundantly actuated parallel mechanisms have no singularity, better dexterity, and stiffness within the prescribed workspace in comparison with the corresponding non-redundant parallel mechanisms.
Abstract: In this paper, we present the design of two serial spherical mechanisms to substitute for a single spherical joint that is usually used to connect the platform with the base in three degrees of freedom parallel mechanisms. According to the principle derived from the conceptual design, through using the two serial spherical mechanisms as the constraint limb, several redundantly actuated parallel mechanisms are proposed for ankle rehabilitation. The proposed parallel mechanisms all can perform the rotational movements of the ankle in three directions while at the same time the mechanism center of rotations can match the ankle axes of rotations compared with other multi-degree-of-freedom devices, due to the structural characteristics of the special constraint limb and platform. Two special parallel mechanisms are selected to analyze their kinematical performances, such as workspace, dexterity, singularity, and stiffness, based on the computed Jacobian. The results show that the proposed scheme of actuator redundancy can guarantee that the redundantly actuated parallel mechanisms have no singularity, better dexterity, and stiffness within the prescribed workspace in comparison with the corresponding non-redundant parallel mechanisms. In addition, the proposed mechanisms possess certain reconfigurable capacity based on control strategies or rehabilitation modes to obtain sound performance for completing ankle rehabilitation exercise.

Journal ArticleDOI
01 Oct 2015-Robotica
TL;DR: A novel 6-DOF parallel manipulator with coaxial actuated arms is introduced and it is shown that this manipulator has the important benefits of combining a large positional workspace in relation to its footprint with a sizable range of platform rotations.
Abstract: Parallel mechanisms possess several advantages such as the possibilities for high acceleration and high accuracy positioning of the end effector. However, most of the proposed parallel manipulators suffer from a limited workspace. In this paper, a novel 6-DOF parallel manipulator with coaxial actuated arms is introduced. Since parallel mechanisms have more workspace limitations compared to that of serial mechanisms, determination of the workspace in parallel manipulators is of the utmost importance. For finding position, angular velocity, and acceleration, in this paper, inverse and forward kinematics of the mechanism are studied and after presenting the workspace limitations, workspace analysis of the hexarot manipulator is performed by using MATLAB software. Next, using the obtained cloud of points from simulation, the overall borders of the workspace are illustrated. Finally, it is shown that this manipulator has the important benefits of combining a large positional workspace in relation to its footprint with a sizable range of platform rotations.

Journal ArticleDOI
01 Nov 2015-Robotica
TL;DR: Two methods are proposed and implemented for collision detection between the robot and a human based on fuzzy identification and time series modelling that are able to detect the occurrence of a collision, the link that collided and to some extent the magnitude of the collision without using the explicit model of the robot.
Abstract: In this paper, two methods are proposed and implemented for collision detection between the robot and a human based on fuzzy identification and time series modelling. Both methods include a collision detection system for each joint of the robot that is trained to approximate the external torque. In addition, the proposed methods are able to detect the occurrence of a collision, the link that collided and to some extent the magnitude of the collision without using the explicit model of the robot. Since the speed of the detection is of critical importance for mitigating the danger, attention is paid to recognise a collision as soon as possible. Experimental results conducted with a KUKALWR manipulator using two joints in planar motion, verify the validity on both methods.

Journal ArticleDOI
01 Jul 2015-Robotica
TL;DR: The procedure employed for dynamic modeling and control analysis provides a valuable contribution into the vibration suppression of a highly coupled rigid–flexible PPM.
Abstract: In this paper, a rigid–flexible planar parallel manipulator (PPM) actuated by three linear ultrasonic motors for high-accuracy positioning is proposed. Based on the extended Hamilton's principle, a rigid–flexible dynamic model of the proposed PPM is developed utilizing exact boundary conditions. To derive an appropriate low-order dynamic model for the design of the controller, the assumed modes method is employed to discretize elastic motion. Then to investigate the interaction between the rigid and elastic motions, a proportional derivative feedback controller combined with a feed-forward-computed torque controller is developed to achieve motion tracking while attenuating the residual vibration. Then the controller is extended to incorporate an input shaper for the further suppression of residual vibration of flexible linkages. Computer simulations are presented as well as experimental results to verify the proposed dynamic model and controller. The input shaping method is verified to be effective in attenuating residual vibration in a highly coupled rigid–flexible PPM. The procedure employed for dynamic modeling and control analysis provides a valuable contribution into the vibration suppression of such a PPM.

Journal ArticleDOI
01 Jun 2015-Robotica
TL;DR: The results prove the advantage of introducing redundancy in the actuator and sensor to improve the behavior of the SPM.
Abstract: This paper discusses the study of a spherical parallel manipulator (SPM) used as a haptic device for tele-operation applications. The SPM presents poor behavior in singular configurations. Redundancy is used to eliminate the parallel singularity without major changes in the mechanical structure. Comparisons in terms of kinematic and dynamic behavior between the non-redundant and redundant SPM are presented. The results prove the advantage of introducing redundancy in the actuator and sensor to improve the behavior of the SPM. A new control strategy for the redundant SPM is also proposed. The control strategy has been successfully tested and validated on a SimMechanics model.

Journal ArticleDOI
01 Nov 2015-Robotica
TL;DR: This paper model the dynamics of post-stroke patient arm as an impedance model, and proposes an adaptive control scheme, which consists of an adaptive PI control algorithm and an adaptive damping control algorithm, to control the rehabilitation robot moving along predefined trajectories stably and smoothly.
Abstract: There is increasing interest in using rehabilitation robots to assist post-stroke patients during rehabilitation therapy. The motion control of the robot plays an important role in the process of functional recovery training. Due to the change of the arm impedance of the post-stroke patient in the passive recovery training, the conventional motion control based on a proportional-integral (PI) controller is difficult to produce smooth movement of the robot to track the designed trajectory set by the rehabilitation therapist. In this paper, we model the dynamics of post-stroke patient arm as an impedance model, and propose an adaptive control scheme, which consists of an adaptive PI control algorithm and an adaptive damping control algorithm, to control the rehabilitation robot moving along predefined trajectories stably and smoothly. An equivalent two-port circuit of the rehabilitation robot and human arm is built, and the passivity theory of circuits is used to analyze the stability and smoothness performance of the robot. A slide Least Mean Square with adaptive window (SLMS-AW) method is presented for on-line estimation of the parameters of the arm impedance model, which is used for adjusting the gains of the PI-damping controller. In this paper, the Barrett WAM Arm manipulator is used as the main hardware platform for the functional recovery training of the post-stroke patient. Passive recovery training has been implemented on the WAM Arm, and the experimental results demonstrate the effectiveness and potential of the proposed adaptive control strategies.

Journal ArticleDOI
01 Dec 2015-Robotica
TL;DR: This paper presents a comparison for kinematic performances among three different continuum manipulators and provides scalable results for a wide spectrum of continuum manipulator designs as long as their segments have a constant curvature.
Abstract: SUMMARY Many recent developments of surgical robots focus on less invasive paradigms, such as laparoscopic SPA (Single Port Access) surgery, NOTES (Natural Orifice Translumenal Endoscopic Surgery), laryngoscopic MIS (Minimally Invasive Surgery), etc. A configuration similarity shared by these surgical robots is that two or more manipulators are inserted through one access port (a laparoscope, an endoscope, or a laryngoscope) for surgical interventions. However, upon designing such a surgical robot, the structure of the inserted manipulators has not been thoroughly explored based on evaluation of their performances. This paper presents a comparison for kinematic performances among three different continuum manipulators. They all could be applied in the aforementioned surgical robots. The structural parameters of these continuum manipulators are firstly optimized to assure a more fair and consistent comparison. This study is conducted in a dimensionless manner and provides scalable results for a wide spectrum of continuum manipulator designs as long as their segments have a constant curvature. The results could serve as a design reference for future developments of surgical robots which use one access port and continuum mechanisms.

Journal ArticleDOI
01 Jun 2015-Robotica
TL;DR: A model of an underactuated robotic hand with tendon driven fingers with potential application as a human hand prosthesis is proposed and a prototype of the modelled robotic hand was developed in order to optimize functionality and simplicity of construction.
Abstract: In the present paper, a model of an underactuated robotic hand with tendon driven fingers is proposed. The aim of the project was to study the feasibility of building a mechanical hand with four or five fingers, the movement of which is achieved using a single linear actuator. The mechanism was first modelled in order to study the possible improvement in the ability of a “robotic hand” powered with a single actuator in regard to grasping objects with complex shapes and also in achieving a strong grip on objects. Next, a model of the finger was studied in order to optimize of its parameters. Finally, a five-fingered robotic hand was modelled for potential application as a human hand prosthesis. Our studies on the dynamic and kinematic behaviour of a single finger mechanism permitted us to make the first prototypes of the mechanism. In addition to modelling studies, we also present a prototype of the modelled robotic hand that was developed in order to optimize functionality and simplicity of construction.

Journal ArticleDOI
01 Jan 2015-Robotica
TL;DR: A comparative study is presented to illustrate that the proposed saturated controller is more effective when WMR actuators are subjected to saturation.
Abstract: Many research works on the control of nonholonomic wheeled mobile robots (WMRs) do not consider the actuator saturation problem and the absence of velocity sensors in practice. The actuator saturation deteriorates the tracking performance of the controller, and the use of velocity sensors increases the cost and weight of WMR systems. This paper simultaneously addresses these problems by designing a saturated output feedback controller for uncertain nonholonomic WMRs. First, a second-order input–output model of nonholonomic WMRs is developed by defining a suitable set of output equations. Then a saturated adaptive robust tracking controller is proposed without velocity measurements. For this purpose, a nonlinear saturated observer is used to estimate robot velocities. The risk of actuator saturation is effectively reduced by utilizing saturation functions in the design of the observer–controller scheme. Semi-global uniform ultimate boundedness of error signals is guarantied by the Lyapunov stability analyses. Finally, simulation results are provided to show the effectiveness of the proposed controller. Compared with one recent work of the author, a comparative study is also presented to illustrate that the proposed saturated controller is more effective when WMR actuators are subjected to saturation.

Journal ArticleDOI
01 Jun 2015-Robotica
TL;DR: The results on how parental scaffolding can be used to guide the robot learning and to modify its crude action execution to speed up the learning of complex skills are presented and the details of the work that takes the robot beyond simple goal-level imitation, making it a better imitator with the help of motionese are presented.
Abstract: Parental scaffolding is an important mechanism that speeds up infant sensorimotor development. Infants pay stronger attention to the features of the objects highlighted by parents, and their manipulation skills develop earlier than they would in isolation due to caregivers' support. Parents are known to make modifications in infant-directed actions, which are often called “motionese”7. The features that might be associated with motionese are amplification, repetition and simplification in caregivers' movements, which are often accompanied by increased social signalling. In this paper, we extend our previously developed affordances learning framework to enable our hand-arm robot equipped with a range camera to benefit from parental scaffolding and motionese. We first present our results on how parental scaffolding can be used to guide the robot learning and to modify its crude action execution to speed up the learning of complex skills. For this purpose, an interactive human caregiver-infant scenario was realized with our robotic setup. This setup allowed the caregiver's modification of the ongoing reach and grasp movement of the robot via physical interaction. This enabled the caregiver to make the robot grasp the target object, which in turn could be used by the robot to learn the grasping skill. In addition to this, we also show how parental scaffolding can be used in speeding up imitation learning. We present the details of our work that takes the robot beyond simple goal-level imitation, making it a better imitator with the help of motionese.

Journal ArticleDOI
01 Dec 2015-Robotica
TL;DR: It is found that swing-leg retraction can improve stability and disturbance rejection and can simultaneously reduce touchdown forces, slipping likelihood, and impact energy losses.
Abstract: Using simple running models, researchers have argued that swing-leg retraction can improve running robot performance. In this paper, we investigate whether this holds for a more realistic simulation model validated against a physical running robot. We find that swing-leg retraction can improve stability and disturbance rejection. Alternatively, swing-leg retraction can simultaneously reduce touchdown forces, slipping likelihood, and impact energy losses. Surprisingly, swing-leg retraction barely affected net energetic efficiency. The retraction rates at which these effects are the greatest are strongly model-dependent, suggesting that robot designers cannot always rely on simplified models to accurately predict such complex behaviors.

Journal ArticleDOI
01 Mar 2015-Robotica
TL;DR: The experimental results show that the proposed optimization algorithm for the trajectory planning problem of an industrial robot is feasible and has been applied successfully to the PUMA 560 robotic system.
Abstract: This paper presents a new genetic algorithm methodology to solve the trajectory planning problem. This methodology can obtain smooth trajectories for industrial robots in complex environments using a direct method. The algorithm simultaneously creates a collision-free trajectory between initial and final configurations as the robot moves. The presented method deals with the uncertainties associated with the unknown kinematic properties of intermediate via points since they are generated as the algorithm evolves looking for the solution. Additionally, the objective of this algorithm is to minimize the trajectory time, which guides the robot motion. The method has been applied successfully to the PUMA 560 robotic system. Four operational parameters (execution time, computational time, end-effector distance travelled and significant points distance travelled) have been computed to study and analyze the algorithm efficiency. The experimental results show that, the proposed optimization algorithm for the trajectory planning problem of an industrial robot is feasible.

Journal ArticleDOI
01 Jun 2015-Robotica
TL;DR: A new, direct method to collect the dynamic and friction parameters in linear form is worked out based on the Projection Equation, but in this form, linear dependencies in the parameters occur and they are canceled out with the help of the QR algorithm.
Abstract: This paper presents a persistent method for the identification problem of open-chained robotic systems. Based on the Projection Equation, a new, direct method to collect the dynamic and friction parameters in linear form is worked out. However, in this form, linear dependencies in the parameters occur and they are canceled out with the help of the QR algorithm. The obtained linear independent parameters are the base parameters of the system. To ensure a good excitation, the identification is improved by using optimized trajectories defined by Fourier-series, taking also physical constraints into account. The evaluation of the dynamic robot parameters is realized with a least squares error optimization. Furthermore, the result strongly depends on a special choice of weighting matrices for the error. Experimental results for a seven-axes robotic system (standard six-axes industrial manipulator mounted on a linear axis) are presented in detail. Additionally, the influence of temperature effects to base parameter changes is discussed.

Journal ArticleDOI
01 Jul 2015-Robotica
TL;DR: Simulation results demonstrate the effectiveness of cross-coupled PID position domain control for both linear and circular contour tracking, and prove the robustness of the controller to deal with random disturbances.
Abstract: Accurate contour tracking is one of the main tasks in modern manufacturing processes. By considering coupling effects among multiple axes, this paper proposes a cross-coupled proportional-integral-derivative (PID) control developed in position domain, and the controller is applied to a multi-axis computer numerical control (CNC) machine for contour tracking performance improvement. Stability analysis is conducted for the developed position domain cross-coupled PID control using the Lyapunov method, and guidelines for the selection of control gains are provided. The contour tracking performance are improved compared to an equivalent time domain controller, since the reference axis in position domain control does not contribute any error to the overall contouring error of the system. Simulation results demonstrate the effectiveness of cross-coupled PID position domain control for both linear and circular contour tracking, and prove the robustness of the controller to deal with random disturbances. It also shows that position domain cross-coupled PID control provides better contour tracking performance over position domain PID control and the equivalent time domain PID control.

Journal ArticleDOI
01 Mar 2015-Robotica
TL;DR: An unmanned aerial vehicle (UAV) dynamic path planning method is proposed to avoid not only static threats but also mobile threats, using the model predictive control (MPC) algorithm to determine the optimal or sub-optimal path with minimum overall costs.
Abstract: An unmanned aerial vehicle (UAV) dynamic path planning method is proposed to avoid not only static threats but also mobile threats. The path of a UAV is planned or modified by the potential trajectory of the mobile threat, which is predicted by its current position, velocity, and direction angle, because the positions of the UAV and mobile threat are dynamically changing. In each UAV planning path, the UAV incurs some costs, including control costs to change the direction angle, route costs to bypass the threats, and threat costs to acquire some probability to be destroyed by threats. The model predictive control (MPC) algorithm is used to determine the optimal or sub-optimal path with minimum overall costs. The MPC algorithm is a rolling-optimization feedback algorithm. It is used to plan the UAV path in several steps online instead of one-time offline to avoid sudden and mobile threats dynamically. Lastly, solution implementation is described along with several simulation results that demonstrate the effectiveness of the proposed method.

Journal ArticleDOI
01 Jul 2015-Robotica
TL;DR: By regulating robot kinetic energy between steps using the two control inputs, the control of a compass gait walker using energy regulation between steps is able to generate a wide range of walking speeds and stride lengths, including average human walking.
Abstract: In this paper, we present a theoretical study on the control of a compass gait walker using energy regulation between steps. We use a return map to relate the mid-stance robot kinetic energy between steps with two control inputs, namely, foot placement and ankle push-off. We show that by regulating robot kinetic energy between steps using the two control inputs, we are able to (1) generate a wide range of walking speeds and stride lengths, including average human walking; (2) cancel the effect of external disturbance fully in a single step (dead-beat control); and (3) switch from one periodic gait to another in a single step. We hope that insights from this control methodology can help develop robust controllers for practical bipedal robots.

Journal ArticleDOI
01 Mar 2015-Robotica
TL;DR: The design of the 3-DoF PKM in this paper is very meaningful to the development of the five-axis machine tools with hybrid architectures and the design methods of type synthesis and kinematic optimization can also be used in the design of other PKMs.
Abstract: This paper deals with the design of a three-degree-of-freedom (3-DoF) parallel kinematic mechanism (PKM) with high orientational capability. First, a type synthesis method based on Grassmann line geometry and a line-graph method is proposed, and a novel 3-DoF PKM is derived based on this method. Thereafter, the parasitic motions of the derived mechanism are identified under two different orientation description methods, i.e., Tilt-and-Torsion angles (T&T angles) and Roll-Pitch-Yaw angles (RPY angles), and the kinematic optimization considering the motion/force transmissibility is carried out. On this basis, the orientational capability of the discussed mechanism is investigated, and the high orientational capability is demonstrated. The design of the 3-DoF PKM in this paper is very meaningful to the development of the five-axis machine tools with hybrid architectures. The design methods of type synthesis and kinematic optimization can also be used in the design of other PKMs.

Journal ArticleDOI
01 Nov 2015-Robotica
TL;DR: A novel homogeneous Jacobian matrix which transforms joint space velocity vector into end-effector Cartesian velocity vector has been generated named as a CartesianJacobian matrix, designed to reach the Cartesian workspace with rapid positioning rates as well as with singularity avoidance.
Abstract: In this research work, the maximum Cartesian workspace of a Tricept parallel robot with two rotational and one translational degrees of freedom was investigated. Generally, the Cartesian workspace identifies the maximum size of a work-piece, specifying its cubic x, y and z dimensions, on which the milling machine could perform operations. However, the workspace of a robot can be considered in its task space, such as ψ × θ × z for the Tricept Parallel Kinematic Mechanism (PKM). A novel homogeneous Jacobian matrix which transforms joint space velocity vector into end-effector Cartesian velocity vector has been generated named as a Cartesian Jacobian matrix. Using the indices derived from the homogeneous Cartesian Jacobian matrix, i.e. the maximum singular values and local conditioning indices, the manipulator is designed to reach the Cartesian workspace with rapid positioning rates as well as with singularity avoidance.

Journal ArticleDOI
01 May 2015-Robotica
TL;DR: The potential merits of the designs presented here include a) minimised parasitic rotations by only using three identical compliant legs; b) compact configurations and small size due to the use of embedded designs; c) approximately kinematostatically decoupled designs capable of easy controls; and d) monolithic fabrication for each leg using existing planar manufacturing technologies such as electric discharge machining (EDM).
Abstract: Enterprise Ireland (CF20122748Y); University College Cork (UCC 2013 Strategic Research Fund)