scispace - formally typeset
Search or ask a question
JournalISSN: 0723-2632

Rock Mechanics and Rock Engineering 

Springer Science+Business Media
About: Rock Mechanics and Rock Engineering is an academic journal published by Springer Science+Business Media. The journal publishes majorly in the area(s): Rock mass classification & Geology. It has an ISSN identifier of 0723-2632. Over the lifetime, 3844 publications have been published receiving 120804 citations. The journal is also known as: Rock mechanics (1983. Print) & Rock mechanics (1983. Internet).


Papers
More filters
Journal ArticleDOI
TL;DR: A review of the development and the state of the art in dynamic testing techniques and dynamic mechanical behaviour of rock materials can be found in this article, where a detailed description of various dynamic mechanical properties (e.g., uniaxial and triaxial compressive strength, tensile strength, shear strength and fracture toughness) and corresponding fracture behaviour are discussed.
Abstract: The purpose of this review is to discuss the development and the state of the art in dynamic testing techniques and dynamic mechanical behaviour of rock materials. The review begins by briefly introducing the history of rock dynamics and explaining the significance of studying these issues. Loading techniques commonly used for both intermediate and high strain rate tests and measurement techniques for dynamic stress and deformation are critically assessed in Sects. 2 and 3. In Sect. 4, methods of dynamic testing and estimation to obtain stress–strain curves at high strain rate are summarized, followed by an in-depth description of various dynamic mechanical properties (e.g. uniaxial and triaxial compressive strength, tensile strength, shear strength and fracture toughness) and corresponding fracture behaviour. Some influencing rock structural features (i.e. microstructure, size and shape) and testing conditions (i.e. confining pressure, temperature and water saturation) are considered, ending with some popular semi-empirical rate-dependent equations for the enhancement of dynamic mechanical properties. Section 5 discusses physical mechanisms of strain rate effects. Section 6 describes phenomenological and mechanically based rate-dependent constitutive models established from the knowledge of the stress–strain behaviour and physical mechanisms. Section 7 presents dynamic fracture criteria for quasi-brittle materials. Finally, a brief summary and some aspects of prospective research are presented.

781 citations

Journal ArticleDOI
TL;DR: In this paper, a high speed video system was used, which allowed us to precisely observe the cracking mechanisms and identified nine crack coalescence categories with different crack types and trajectories.
Abstract: Cracking and coalescence behavior has been studied experimentally with prismatic laboratory-molded gypsum and Carrara marble specimens containing two parallel pre-existing open flaws. This was done at both the macroscopic and the microscopic scales, and the results are presented in two separate papers. This paper (the first of two) summarizes the macroscopic experimental results and investigates the influence of the different flaw geometries and material, on the cracking processes. In the companion paper (also in this issue), most of the macroscopic deformation and cracking processes shown in this present paper will be related to the underlying microscopic changes. In the present study, a high speed video system was used, which allowed us to precisely observe the cracking mechanisms. Nine crack coalescence categories with different crack types and trajectories were identified. The flaw inclination angle (β), the ligament length (L), that is, intact rock length between the flaws, and the bridging angle (α), that is, the inclination of a line linking up the inner flaw tips, between two flaws, had different effects on the coalescence patterns. One of the pronounced differences observed between marble and gypsum during the compression loading test was the development of macroscopic white patches prior to the initiation of macroscopic cracks in marble, but not in gypsum. Comparing the cracking and coalescence behaviors in the two tested materials, tensile cracking generally occurred more often in marble than in gypsum for the same flaw pair geometries.

568 citations

Journal ArticleDOI
TL;DR: A list of symbols for major principal stress and minor principal stress can be found in this paper, along with a list of Symbols for Uniaxial Compressive Strength Index (USGS).
Abstract: List of Symbols r1 Major principal stress r3 Minor principal stress Co Uniaxial compressive strength mi Hoek–Brown material constant (intact rock) mb Hoek–Brown material constant (rock mass) s Hoek–Brown material constant a Hoek–Brown material constant GSI Geological Strength Index D Disturbance factor To Uniaxial tensile strength r3max Upper limit of confining stress r Coefficient of determination

482 citations

Journal ArticleDOI
TL;DR: In this paper, a linear elastic numerical model is constructed to study crack initiation in a 50mm-diameter Brazilian disc using FLAC3D, and the maximum tensile stress and tensile strain are both found to occur about 5 mm away from the two loading points along the compressed diameter of the disc, instead of at the center of a disc surface.
Abstract: The development of the Brazilian disc test for determining indirect tensile strength and its applications in rock mechanics are reviewed herein. Based on the history of research on the Brazilian test by analytical, experimental, and numerical approaches, three research stages can be identified. Most of the early studies focused on the tensile stress distribution in Brazilian disc specimens, while ignoring the tensile strain distribution. The observation of different crack initiation positions in the Brazilian disc has drawn a lot of research interest from the rock mechanics community. A simple extension strain criterion was put forward by Stacey (Int J Rock Mech Min Sci Geomech Abstr 18(6):469–474, 1981) to account for extension crack initiation and propagation in rocks, although this is not widely used. In the present study, a linear elastic numerical model is constructed to study crack initiation in a 50-mm-diameter Brazilian disc using FLAC3D. The maximum tensile stress and the maximum tensile strain are both found to occur about 5 mm away from the two loading points along the compressed diameter of the disc, instead of at the center of the disc surface. Therefore, the crack initiation point of the Brazilian test for rocks may be located near the loading point when the tensile strain meets the maximum extension strain criterion, but at the surface center when the tensile stress meets the maximum tensile strength criterion.

476 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
2023257
2022476
2021453
2020337
2019333
2018242