scispace - formally typeset
Search or ask a question

Showing papers in "RSC Advances in 2018"


Journal ArticleDOI
TL;DR: The unique biological properties of a chitosan-based hydrogel enable it to serve as both a wound dressing and as a drug delivery system (DDS) to deliver antibacterial agents, growth factors, stem cells and so on, which could further accelerate wound healing.
Abstract: Functional active wound dressings are expected to provide a moist wound environment, offer protection from secondary infections, remove wound exudate and accelerate tissue regeneration, as well as to improve the efficiency of wound healing. Chitosan-based hydrogels are considered as ideal materials for enhancing wound healing owing to their biodegradable, biocompatible, non-toxic, antimicrobial, biologically adhesive, biological activity and hemostatic effects. Chitosan-based hydrogels have been demonstrated to promote wound healing at different wound healing stages, and also can alleviate the factors against wound healing (such as excessive inflammatory and chronic wound infection). The unique biological properties of a chitosan-based hydrogel enable it to serve as both a wound dressing and as a drug delivery system (DDS) to deliver antibacterial agents, growth factors, stem cells and so on, which could further accelerate wound healing. For various kinds of wounds, chitosan-based hydrogels are able to promote the effectiveness of wound healing by modifying or combining with other polymers, and carrying different types of active substances. In this review, we will take a close look at the application of chitosan-based hydrogels in wound dressings and DDS to enhance wound healing.

452 citations


Journal ArticleDOI
TL;DR: In this article, the authors provide an overview of advances in CO2 hydrogenation to hydrocarbons that have been achieved recently in terms of catalyst design, catalytic performance and reaction mechanism from both experiments and density functional theory calculations.
Abstract: CO2 hydrogenation to hydrocarbons is a promising way of making waste to wealth and energy storage, which also solves the environmental and energy issues caused by CO2 emissions Much efforts and research are aimed at the conversion of CO2 via hydrogenation to various value-added hydrocarbons, such as CH4, lower olefins, gasoline, or long-chain hydrocarbons catalyzed by different catalysts with various mechanisms This review provides an overview of advances in CO2 hydrogenation to hydrocarbons that have been achieved recently in terms of catalyst design, catalytic performance and reaction mechanism from both experiments and density functional theory calculations In addition, the factors influencing the performance of catalysts and the first C–C coupling mechanism through different routes are also revealed The fundamental factor for product selectivity is the surface H/C ratio adjusted by active metals, supports and promoters Furthermore, the technical and application challenges of CO2 conversion into useful fuels/chemicals are also summarized To meet these challenges, future research directions are proposed in this review

436 citations


Journal ArticleDOI
TL;DR: In this article, the authors focused on the removal of arsenic from water using iron-based materials, such as iron nanoparticles, layered double hydroxides (LDHs), zero-valent iron (ZVI), iron-doped activated carbon, iron-depleted polymer/biomass materials, and iron-containing combined metal oxides.
Abstract: Intensive research efforts have been pursued to remove arsenic (As) contamination from water with an intention to provide potable water to millions of people living in different countries. Recent studies have revealed that iron-based adsorbents, which are non-toxic, low cost, and easily accessible in large quantities, offer promising results for arsenic removal from water. This review is focused on the removal of arsenic from water using iron-based materials such as iron-based nanoparticles, iron-based layered double hydroxides (LDHs), zero-valent iron (ZVI), iron-doped activated carbon, iron-doped polymer/biomass materials, iron-doped inorganic minerals, and iron-containing combined metal oxides. This review also discusses readily available low-cost adsorbents such as natural cellulose materials, bio-wastes, and soils enriched with iron. Details on mathematical models dealing with adsorption, including thermodynamics, kinetics, and mass transfer process, are also discussed. For elucidating the adsorption mechanisms of specific adsorption of arsenic on the iron-based adsorbent, X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS) are frequently used. Overall, iron-based adsorbents offer significant potential towards developing adsorbents for arsenic removal from water.

275 citations


Journal ArticleDOI
TL;DR: In this paper, the authors summarize the recent research progress on MXene materials in the adsorptive remediation of environmental pollutants and highlight the main challenges in the future to understand the full potential of MXenes in environmental systems.
Abstract: Since titanium carbide Ti3C2 nanosheets were first produced in 2011, an increasing number of members of this new family of two-dimensional transition metal carbides/nitride (MXene) materials have been successfully synthesized. Due to their large specific surface area, hydrophilic nature and abundant highly active surface sites, MXenes have been demonstrated to adsorb a variety of environmental pollutants, including heavy metal ions, organic dyes, radionuclides, and gas molecules, and thus can be used for the removal of pollutants and even sensing. In this review, we summarize the recent research progress on MXene materials in the adsorptive remediation of environmental pollutants and highlight the main challenges in the future to understand the full potential of MXene materials in environmental systems.

272 citations


Journal ArticleDOI
TL;DR: In this paper, the dielectric properties of Ca0.85Er0.1Ti1−xCo4x/3O3 (CETCox) were systematically characterized.
Abstract: The dielectric properties of Ca0.85Er0.1Ti1−xCo4x/3O3 (CETCox) (x = 0.00, 0.05 and 0.10), prepared by a sol–gel method, were systematically characterized. The temperature and frequency dependence of the dielectric properties showed a major effect of the grain and grain boundary. The dielectric constant and dielectric loss of CETCox decreased sharply with increasing frequency. This is referred to as the Maxwell–Wagner type of polarization in accordance with Koop's theory. As a function of temperature, the dielectric loss and the real part of permittivity decreased with increasing frequency as well as Co rate. Indeed, a classical ferroelectric behavior was observed for x = 0.00. The non-ferroelectric state of the grain boundary and its correlation with structure, however, proved the existence of a relaxor behavior for x = 0.05 and 0.10. The complex electric modulus analysis M*(ω) confirmed that the relaxation process is thermally activated. The normalized imaginary part of the modulus indicated that the relaxation process is dominated by the short range movement of charge carriers.

247 citations


Journal ArticleDOI
TL;DR: The use of cellulose fibers, nanocellulose, and cellulose derivatives as fillers or matrices in biocomposite materials is an efficient biosustainable alternative for the production of high-quality polymer composites and functional polymeric materials as discussed by the authors.
Abstract: Cellulose has attracted considerable attention as the strongest potential candidate feedstock for bio-based polymeric material production. During the past decade, significant progress in the production of biopolymers based on different cellulosic forms has been achieved. This review highlights the most recent advances and developments in the three main routes for the production of cellulose-based biopolymers, and discusses their scope and applications. The use of cellulose fibers, nanocellulose, and cellulose derivatives as fillers or matrices in biocomposite materials is an efficient biosustainable alternative for the production of high-quality polymer composites and functional polymeric materials. The use of cellulose-derived monomers (glucose and other platform chemicals) in the synthesis of sustainable biopolymers and functional polymeric materials not only provides viable replacements for most petroleum-based polymers but also enables the development of novel polymers and functional polymeric materials. The present review describes the current status of biopolymers based on various forms of cellulose and the scope of their importance and applications. Challenges, promising research trends, and methods for dealing with challenges in exploitation of the promising properties of different forms of cellulose, which are vital for the future of the global polymeric industry, are discussed. Sustainable cellulosic biopolymers have potential applications not only in the replacement of existing petroleum-based polymers but also in cellulosic functional polymeric materials for a range of applications from electrochemical and energy-storage devices to biomedical applications.

230 citations


Journal ArticleDOI
TL;DR: In this paper, the regeneration capacity and adsorption efficiency of different adsorbents for the treatment of industrial dyes to control water pollution is discussed. But, the regeneration is an important aspect to stimulate the adsorbing efficiency of the exhausted/spent adsorbent for water treatment.
Abstract: The present review covers the regeneration capacity and adsorption efficiency of different adsorbents for the treatment of industrial dyes to control water pollution. Various techniques and materials have been employed to remove organic pollutants from water; however, adsorption techniques using cost-effective, ecofriendly, clay-supported adsorbents are widely used owing to their simplicity and good efficiency. Among all the natural adsorbents, activated carbon has been found to be the most effective for dye adsorption; however, its use is restricted due to its high regeneration cost. Clays and modified clay-based adsorbents are the most efficient clarifying agents for organic pollutants as compared to activated carbon, organic/inorganic, and composite materials. Regeneration is an important aspect to stimulate the adsorption efficiency of the exhausted/spent adsorbent for water treatment. A number of techniques, including chemical treatment, supercritical extraction, thermal, and photocatalytic and biological degradation, have been developed to regenerate spent or dye-adsorbed clays. This review discusses how these techniques enhance the adsorption and retention potential of spent low-cost adsorbents and reflects on the future perspectives for their use in wastewater treatment.

195 citations


Journal ArticleDOI
TL;DR: This tutorial review introduces some important concepts related to fluorescent probe development and is hoped that it will facilitate further expansion of the field by demystifying it.
Abstract: Small-molecule fluorescent probes have become powerful tools for using light to advance the study of cell biology, discover new drugs, detect environmental contaminants, and further the detection of cancer. These applications correlate with the expansion of the fluorescent probe research community – small in the late 20th century, now a collection of more than a hundred research groups world-wide. This expansion required the entry of adventurous scientists from many other fields. This tutorial review introduces some important concepts related to fluorescent probe development. It is hoped that it will facilitate further expansion of the field by demystifying it.

191 citations


Journal ArticleDOI
TL;DR: Based on the recent progress in pHi and pHe manipulation in cancer treatment, potential nanoparticle-based strategies to manipulate pHiand pHe to effectively treat cancer are proposed.
Abstract: The pH in tumour cells and the tumour microenvironment has played important roles in cancer development and treatment. It was thought that both the extracellular and intracellular pH values in tumours are acidic and lower than in normal cells. However, recent progress in the measurement of pH in tumour tissue has disclosed that the intracellular pH (pHi) of cancer cells is neutral or even mildly alkaline compared to normal tissue cells. This review article has summarized the recent advancement in the measurement pHi and extracellular pH (pHe) in cancer cells, and the effect of pHi and pHe on proliferation, migration and biological functions of cancer cells. This paper has also elaborated recent treatment strategies to manipulate pHi and pHe for cancer treatment. Based on the recent progress in pHi and pHe manipulation in cancer treatment, we have proposed potential nanoparticle-based strategies to manipulate pHi and pHe to effectively treat cancer.

185 citations


Journal ArticleDOI
TL;DR: In this paper, a new NIR-emitting phosphor ScBO3:Cr3+ was synthesized by a high temperature solid state reaction method, which showed a broad absorption band ranging from 400 to 530 nm, which matches well with the characteristic emission of the blue LED chip.
Abstract: The rapid extension of solid state lighting technologies offers the possibility to develop broadband near-infrared (NIR) phosphor-converted LEDs (pc-LEDs) as novel NIR light sources. In this paper, a new NIR-emitting phosphor ScBO3:Cr3+ was synthesized by a high temperature solid state reaction method. Phase structure, spectroscopic properties, luminescent lifetime, quantum yield, emitter concentration influences and thermal quenching behavior of ScBO3:Cr3+, as well as its applications for NIR pc-LEDs, were systematically investigated. ScBO3:Cr3+ phosphors exhibit a broad absorption band ranging from 400 to 530 nm, which matches well with the characteristic emission of the blue LED chip. Moreover, Cr3+ ions occupy the Sc3+ sites with relatively low crystal field strength in the ScBO3 host, and therefore ScBO3:Cr3+ phosphors show intense broadband emission peaking at ∼800 nm upon excitation at 460 nm, originating from spin-allowed 4T2 → 4A2 transition of Cr3+ ions. The optimum Cr3+ concentration was determined to be ∼2 mol% with a quantum yield of ∼65%. A broadband NIR pc-LED prototype device was fabricated by the combination of ScBO3:Cr3+ phosphors and a blue LED chip, which showed a maximum NIR light output power of ∼26 mW and a corresponding energy conversion efficiency of ∼7%. The results indicate the great potential of ScBO3:Cr3+ phosphors for applications in broadband NIR pc-LEDs.

183 citations


Journal ArticleDOI
TL;DR: In this article, a review describes the advances in the syntheses, properties and applications of TiO2 nano structures, and efforts are also made to discuss the working mechanism and future challenges and perspectives.
Abstract: TiO2 is a compound of great importance due to its remarkable catalytic and distinctive semiconducting properties. It is also a chemically stable, non-toxic and biocompatible material. Nano TiO2 is strong oxidizing agent with a large surface area and, hence, high photo-catalytic activities. With low production cost and a high dielectric constant, it is an inexpensive material. It can be prepared by diverse procedures such as solution and gas phase procedures. Nowadays, TiO2 is being used frequently for photo degradation of organic molecules and water splitting for hydrogen generation. Most important applications include purification, disinfection of waste water, self-cleaning coatings for buildings in urban areas and the production of the green currency of energy (hydrogen) by splitting water. The review describes the advances in the syntheses, properties and applications of TiO2 nano structures. Besides, efforts are also made to discuss the working mechanism and future challenges and perspectives.

Journal ArticleDOI
TL;DR: In this paper, a chitosan-based antioxidative and antimicrobial films with Pistacia terebinthus extracts were used for the first time for the purpose of food packaging.
Abstract: Methanol extracts of stem, leaf, and seed obtained from Pistacia terebinthus which are rich in phenolic compounds were used for the first time to produce chitosan-based antioxidative and antimicrobial films. All the produced films were characterized by FT-IR, TGA, DSC, SEM, contact angle measurements, and UV-Vis spectroscopy and mechanically. As was expected, incorporation of the plant extracts into chitosan films enhanced the antioxidant and antimicrobial activities effectively. Also, the elasticity of chitosan-seed and chitosan-stem films was improved. The eco-friendly nature of the produced blend films was determined through soil and water degradation analyses. All these findings lead to the conclusion that the produced blend films with Pistacia terebinthus extracts can be applied as alternative food packaging material.

Journal ArticleDOI
TL;DR: In this paper, the authors synthesized the catalysts for photoreduction of endocrine disrupting heavy metal ions in reverse osmosis concentrates (ROC) using graphene oxide (GO), titanium dioxide (TiO2), and TiO2/GO nanocomposites.
Abstract: In this study, graphene oxide (GO), titanium dioxide (TiO2) and TiO2/GO nanocomposites were synthesized as the catalysts for photoreduction of endocrine disrupting heavy metal ions in reverse osmosis concentrates (ROC). The morphology, structure and chemical composition of these catalysts were characterized by scanning electron microscopy, transmission electron microscopy, powder X-ray diffraction, Brunauer–Emmett–Teller analysis, Barrett–Joyner–Halenda, Fourier transform infrared spectroscopy and Raman spectroscopy. The photocatalytic experiments showed that TiO2/GO nanocomposites exhibit a higher photoreduction performance than pure TiO2 and GO. Under the optimal conditions, the removal rates of Cd2+ and Pb2+ can reach 66.32 and 88.96%, respectively, confirming the effectiveness of photoreduction to reduce the endocrine disrupting heavy metal ions in ROC resulted from the combined adsorption–reduction with TiO2/GO nanocomposites.

Journal ArticleDOI
TL;DR: In this article, Nafion/Fe3O4-SGO composite membranes were applied as potential proton exchange membranes in Proton Exchange Membrane Fuel Cell (PEMFC) operated at high temperature and low humidity.
Abstract: Iron oxide (Fe3O4) nanoparticles anchored over sulfonated graphene oxide (SGO) and Nafion/Fe3O4–SGO composites were fabricated and applied as potential proton exchange membranes in proton exchange membrane fuel cells (PEMFCs) operated at high temperature and low humidity. Fe3O4 nanoparticles bridge SGO and Nafion through electrostatic interaction/hydrogen bonding and increased the intrinsic thermal and mechanical stabilities of Nafion/Fe3O4–SGO composite membranes. Nafion/Fe3O4–SGO composite membranes increased the compactness of ionic domains and enhanced the water absorption and proton conductivity while restricting hydrogen permeability across the membranes. The proton conductivity of Nafion/Fe3O4–SGO (3 wt%) composite membrane at 120 °C under 20% relative humidity (RH) was 11.62 mS cm−1, which is 4.74 fold higher than that of a pristine recast Nafion membrane. PEMFC containing the Nafion/Fe3O4–SGO composite membrane delivered a peak power density of 258.82 mW cm−2 at a load current density of 640.73 mA cm−2 while operating at 120 °C under 25% RH and ambient pressure. In contrast, under identical operating conditions, a peak power density of only 144.89 mW cm−2 was achieved with the pristine recast Nafion membrane at a load current density of 431.36 mA cm−2. Thus, Nafion/Fe3O4–SGO composite membranes can be used to address various critical problems associated with commercial Nafion membranes in PEMFC applications.

Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate the enhancement of microwave attenuation capability of Ti3C2 enabled microwave absorbing materials (MAMs) within a frequency range of 2-18 GHz.
Abstract: In this work, we demonstrate the enhancement of microwave attenuation capability of Ti3C2 enabled microwave absorbing materials (MAMs) within a frequency range of 2–18 GHz. Ti3C2 nano-sheet/paraffin composites exhibit enhanced microwave absorbing performance with an effective absorbing bandwidth of 6.8 GHz (11.2–18 GHz) at 2 mm and an optimal reflection loss of −40 dB at 7.8 GHz. Moreover, mechanisms for the dielectric responses of the Ti3C2 MXene nanosheets are intensively discussed. Three typical electric polarizations of Ti3C2 are illustrated with the Cole–Cole diagram. The enhanced microwave absorbing properties can be ascribed to the high dielectric loss accompanied with the strong multi-reflections between MXene layers.

Journal ArticleDOI
TL;DR: In this article, the synthesis of different rare earth metal (La, Nd, Sm and Dy)-doped ZnO nanoparticles using a facile sol-gel route is reported.
Abstract: Rare earth metal doping into semiconductor oxides is considered to be an effective approach to enhance photocatalytic activity due to its ability to retard the electron–hole pair recombination upon excitation. Herein, we report the synthesis of different rare earth metal (La, Nd, Sm and Dy)-doped ZnO nanoparticles using a facile sol–gel route followed by evaluation of their photocatalytic activity by studying the degradation of methylene blue (MB) and Rhodamine B (RhB) under UV-light irradiation. Different standard analytical techniques were employed to investigate the microscopic structure and physiochemical properties of the prepared samples. The formation of the hexagonal wurtzite structure of ZnO was established by XRD and TEM analyses. In addition, the incorporation of rare earth metal into ZnO is confirmed by the shift of XRD planes towards lower theta values. All metal doped ZnO showed improved photocatalytic activity toward the degradation of MB, of which, Nd-doped ZnO showed the best activity with 98% degradation efficiency. In addition, mineralization of the dye was also observed, indicating 68% TOC removal in 180 min with Nd-doped ZnO nanoparticles. The influence of different operational parameters on the photodegradation of MB was also investigated and discussed in detail. Additionally, a possible photocatalytic mechanism for degradation of MB over Nd-doped ZnO nanoparticles has been proposed and involvement of hydroxyl radicals as reactive species is elucidated by radical trapping experiments.

Journal ArticleDOI
TL;DR: A brief overview of the recent advanced mass spectrometry techniques and their latest applications in metabolomics can be found in this paper, where the software/websites for MS result analyses are also reviewed.
Abstract: Metabolomics is the systematic study of all the metabolites present within a biological system, which consists of a mass of molecules, having a variety of physical and chemical properties and existing over an extensive dynamic range in biological samples. Diverse analytical techniques are needed to achieve higher coverage of metabolites. The application of mass spectrometry (MS) in metabolomics has increased exponentially since the discovery and development of electrospray ionization and matrix-assisted laser desorption ionization techniques. Significant advances have also occurred in separation-based MS techniques (gas chromatography-mass spectrometry, liquid chromatography-mass spectrometry, capillary electrophoresis-mass spectrometry, and ion mobility-mass spectrometry), as well as separation-free MS techniques (direct infusion-mass spectrometry, matrix-assisted laser desorption ionization-mass spectrometry, mass spectrometry imaging, and direct analysis in real time mass spectrometry) in the past decades. This review presents a brief overview of the recent advanced MS techniques and their latest applications in metabolomics. The software/websites for MS result analyses are also reviewed.

Journal ArticleDOI
TL;DR: In this paper, the authors present the challenges in unravelling the molecule-specific Raman spectral signatures of different biomolecules like proteins, nucleic acids, lipids and carbohydrates based on the review of their work and the current trends in these areas.
Abstract: Raman spectroscopy has become an essential tool for chemists, physicists, biologists and materials scientists. In this article, we present the challenges in unravelling the molecule-specific Raman spectral signatures of different biomolecules like proteins, nucleic acids, lipids and carbohydrates based on the review of our work and the current trends in these areas. We also show how Raman spectroscopy can be used to probe the secondary and tertiary structural changes occurring during thermal denaturation of protein and lysozyme as well as more complex biological systems like bacteria. Complex biological systems like tissues, cells, blood serum etc. are also made up of such biomolecules. Using mice liver and blood serum, it is shown that different tissues yield their unique signature Raman spectra, owing to a difference in the relative composition of the biomolecules. Additionally, recent progress in Raman spectroscopy for diagnosing a multitude of diseases ranging from cancer to infection is also presented. The second part of this article focuses on applications of Raman spectroscopy to materials. As a first example, Raman spectroscopy of a melt cast explosives formulation was carried out to monitor the changes in the peaks which indicates the potential of this technique for remote process monitoring. The second example presents various modern methods of Raman spectroscopy such as spatially offset Raman spectroscopy (SORS), reflection, transmission and universal multiple angle Raman spectroscopy (UMARS) to study layered materials. Studies on chemicals/layered materials hidden in non-metallic containers using the above variants are presented. Using suitable examples, it is shown how a specific excitation or collection geometry can yield different information about the location of materials. Additionally, it is shown that UMARS imaging can also be used as an effective tool to obtain layer specific information of materials located at depths beyond a few centimeters.

Journal ArticleDOI
TL;DR: In this paper, the authors focus on porous sorbents for the capture and storage of radioactive iodine compounds, and discuss the concerns with, and limitations of, the existing porosity with respect to operating conditions and their capacities for iodine capture.
Abstract: The number of studies on the capture of radioactive iodine compounds by porous sorbents has regained major importance in the last few years. In fact, nuclear energy is facing major issues related to operational safety and the treatment and safe disposal of generated radioactive waste. In particular during nuclear accidents, such as that in 2011 at Fukushima, gaseous radionuclides have been released in the off-gas stream. Among these, radionuclides that are highly volatile and harmful to health such as long-lived 129I, short-lived 131I and organic compounds such as methyl iodide (CH3I) have been released. Immediate and effective means of capturing and storing these radionuclides are needed. In the present review, we focus on porous sorbents for the capture and storage of radioactive iodine compounds. Concerns with, and limitations of, the existing sorbents with respect to operating conditions and their capacities for iodine capture are discussed and compared.

Journal ArticleDOI
TL;DR: In this article, the authors discuss the important role of biochar in influencing the photocatalytic performance of BSPs such as supporting nanoparticles, increasing the surface area and the number of active sites, shuttingtling electrons, acting as an electron reservoir, increasing charge separation, and reducing band gap energy.
Abstract: Incorporating photocatalytic nanoparticles with biochar templates can produce biochar-supported photocatalysts (BSPs) and combine the advantages of biochar with catalytic nanoparticles. The obtained composite exhibits excellent surface properties, crystallinity, chemical stability, recoverability, and higher photocatalytic competency than the bare semiconductor photocatalyst. The literature and advances in BSPs based on the combination of low-cost biochar and catalytic nanoparticles are presented in this review. Various synthetic techniques and physicochemical properties of BSPs are summarized. The article then discusses in detail the important role of biochar in influencing the photocatalytic performance of BSPs such as supporting nanoparticles, increasing the surface area and the number of active sites, shuttling electrons, acting as an electron reservoir, increasing charge separation, and reducing band gap energy. Furthermore, the synergistic effects of adsorption and photodegradation of organic pollutants by BSPs are discussed with in-depth mechanistic evidence. Finally, the application of BSPs in various fields and constructive suggestions for their future development are reported.

Journal ArticleDOI
TL;DR: In this paper, the authors briefly introduce the history of efficiency development for PSCs, and discuss some of the major problems for large-area (≥1 cm2) PSC devices.
Abstract: In recent years, perovskite solar cells (PSCs) have attracted great attention in the photovoltaic research field, because of their high-efficiency (certified 22.1%) and low-cost. In this review paper, we briefly introduce the history of efficiency development for PSCs, and discuss some of the major problems for large-area (≥1 cm2) PSC devices. In addition, we summarize the recent progress in the aspects of fabrication methods for large-area perovskite films, and improving the efficiency and stability of the large-area PSC devices. Finally, we give a short summary and outlook of large-area PSC devices. This article is mainly organized into three parts. The first part focuses on the main fabricating technologies for large-area perovskite films. The second section discusses some methods that are used to improve the efficiency of PSCs. In the last part, different approaches are used to improve the stability of PSCs.

Journal ArticleDOI
TL;DR: In this article, high quality CdS quantum dots (QDs) were immobilized in the channels of graphene-hybridized and supported mesoporous titania (GMT) nanocrystals (CdS@GMT/GR) under facile hydrothermal conditions.
Abstract: We report the considerable advantages of direct Z-scheme photocatalysts by immobilizing high-quality CdS quantum dots (QDs) in the channels of graphene-hybridized and supported mesoporous titania (GMT) nanocrystals (CdS@GMT/GR) under facile hydrothermal conditions. The photocatalysts have been characterized by XRD, PL, XPS, SEM, DRS, TEM, EIS, and N2 adsorption. CdS QDs primarily serve as photosensitizers with a unique pore-embedded structure for the effective utilization of the light source. This direct Z-scheme CdS@GMT/GR exhibits higher photocatalytic activity than CdS/GR, GMT/GR, or CdS@MT. In addition, the rate constant of CdS@GMT/GR-2 is approximately twice the sum of those of CdS@MT and GMT/GR, because GR played the role of hole-transporting and collection layer as well as the hybridization level formation in terms of hybridizing MT and serving as a support. Therefore, the GR content tunes the energy band, affects the surface area, and controls the interfacial hole transfer and collection rate of the direct Z-scheme system. Furthermore, CdS@GMT/GR retains its high performance in repeated photocatalytic processes. This can be attributed to the fact that GR prevents QDs from photocorrosion by means of the hole-transporting and collection effect. A possible reaction mechanism is proposed. This work provides a promising strategy for the construction of highly efficient visible-light-driven photocatalysts to reduce the growing menace of environmental pollution.

Journal ArticleDOI
TL;DR: In this paper, an overview of recent advances in research on the interfacial characteristics of carbon nanotube-polymer nanocomposites is presented, and the current challenges and opportunities for efficiently translating the remarkable properties of nanotubes to polymer matrices are summarized in the hopes of facilitating the development of this emerging area.
Abstract: This paper provides an overview of recent advances in research on the interfacial characteristics of carbon nanotube–polymer nanocomposites. The state of knowledge about the chemical functionalization of carbon nanotubes as well as the interaction at the interface between the carbon nanotube and the polymer matrix is presented. The primary focus of this paper is on identifying the fundamental relationship between nanocomposite properties and interfacial characteristics. The progress, remaining challenges, and future directions of research are discussed. The latest developments of both microscopy and scattering techniques are reviewed, and their respective strengths and limitations are briefly discussed. The main methods available for the chemical functionalization of carbon nanotubes are summarized, and particular interest is given to evaluation of their advantages and disadvantages. The critical issues related to the interaction at the interface are discussed, and the important techniques for improving the properties of carbon nanotube–polymer nanocomposites are introduced. Additionally, the mechanism responsible for the interfacial interaction at the molecular level is briefly described. Furthermore, the mechanical, electrical, and thermal properties of the nanocomposites are discussed separately, and their influencing factors are briefly introduced. Finally, the current challenges and opportunities for efficiently translating the remarkable properties of carbon nanotubes to polymer matrices are summarized in the hopes of facilitating the development of this emerging area. Potential topics of oncoming focus are highlighted, and several suggestions concerning future research needs are also presented.

Journal ArticleDOI
TL;DR: In this paper, a review of plasma reactor technologies and heterogeneous catalysis application, largely into higher hydrocarbon molecules, that is ethane, ethylene, acetylene, propane, etc., and organic oxygenated compounds, is presented.
Abstract: CO2 and CH4 contribute to greenhouse gas emissions, while the production of industrial base chemicals from natural gas resources is emerging as well. Such conversion processes, however, are energy-intensive and introducing a renewable and sustainable electric activation seems optimal, at least for intermediate-scale modular operation. The review thus analyses such valorisation by plasma reactor technologies and heterogeneous catalysis application, largely into higher hydrocarbon molecules, that is ethane, ethylene, acetylene, propane, etc., and organic oxygenated compounds, i.e. methanol, formaldehyde, formic acid and dimethyl ether. Focus is given to reaction pathway mechanisms, related to the partial oxidation steps of CH4 with O2, H2O and CO2, CO2 reduction with H2, CH4 or other paraffin species, and to a lesser extent, to mixtures' dry reforming to syngas. Dielectric barrier discharge, corona, spark and gliding arc sources are considered, combined with (noble) metal materials. Carbon (C), silica (SiO2) and alumina (Al2O3) as well as various catalytic supports are examined as precious critical raw materials (e.g. platinum, palladium and rhodium) or transition metal (e.g. manganese, iron, cobalt, nickel and copper) substrates. These are applied for turnover, such as that pertinent to reformer, (reverse) water–gas shift (WGS or RWGS) and CH3OH synthesis. Time-on-stream catalyst deactivation or reactivation is also overviewed from the viewpoint of individual transient moieties and their adsorption or desorption characteristics, as well as reactivity.

Journal ArticleDOI
TL;DR: In this article, the adsorption properties of the as-prepared activated carbon fibers were investigated using three models including pseudo-first-order, pseudo-second-order and intraparticle diffusion models.
Abstract: In this study, using coconut fibers as raw material, activated carbon fibers were prepared via carbonization and KOH activation processes. The morphology, composition, specific surface area, pore structure and thermal stability of the resulting activated carbon fibers were systematically characterized. It was found that the activation process increases the specific surface area of carbon fibers to a greater extent via formation of a large number of micropores (0.7–1.8 nm) and a certain amount of slit-shaped mesopores (2–9 nm). The specific surface area and the pore volume of the activated carbon fibers reach 1556 m2 g−1 and 0.72 cm3 g−1, respectively. The activation process can also decompose the tar deposits formed after the carbonization process by pyrolysis, making the surface of the activated carbon fibers smoother. To study the adsorption properties of the as-prepared activated carbon fibers, the adsorption capacities and adsorption kinetics of various organic dyes including methylene blue, Congo red and neutral red were investigated. The adsorption capacities of the dyes increased with the increasing initial dye concentrations, and varied greatly with the pH value of the system. In methylene blue and neutral red systems, the adsorption capacities reach the maximum at pH 9, and in the Congo red system, it reaches the maximum at pH 3. The adsorption capacities of the activated carbon fibers in methylene blue, Congo red and neutral red systems reached equilibrium at 150, 120, and 120 min, and the maximum adsorption capacities were 21.3, 22.1, and 20.7 mg g−1, respectively. The kinetics of the adsorption process was investigated using three models including pseudo-first-order, pseudo-second-order and intraparticle diffusion models. The results indicated that the dynamic adsorption processes of coconut-based activated carbon fibers to methylene blue, Congo red and neutral red were all in accordance with the second-order kinetic model, and the equations are as follows: t/Qt = 0.1028 + t/21.3220, t/Qt = 0.1128 + t/21.5982 and t/Qt = 0.0210 + t/20.6612.

Journal ArticleDOI
TL;DR: In this article, a waste snail shell (Pila spp.) derived catalyst was used to produce biodiesel from soybean oil at room temperature for the first time, achieving a high biodiesel yield of 98% under optimized reaction conditions such as a calcination temperature of 900 °C, a catalyst loading of 3 wt, a reaction time of 7 h and a methanol to oil ratio of 6
Abstract: A waste snail shell (Pila spp.) derived catalyst was used to produce biodiesel from soybean oil at room temperature for the first time. The snail shell was calcined at different temperatures of 400–1000 °C. The synthesized catalysts underwent XRD, SEM, TEM, EDS, FTIR, XRF, TG/DTA and N2 adsorption–desorption isotherm (BET) analysis. The major component CaO was determined at a calcination temperature of 900 °C as depicted in the XRD results. 100% conversion of soybean oil to methyl ester biodiesel was obtained, as confirmed by 1H NMR. A biodiesel yield of 98% was achieved under optimized reaction conditions such as a calcination temperature of 900 °C, a catalyst loading of 3 wt%, a reaction time of 7 h and a methanol to oil ratio of 6 : 1, and biodiesel conversion was confirmed by FT-NMR and IR spectroscopies. A total of 9 fatty acid methyl esters (FAMEs) were identified in the synthesized biodiesel by the retention time and fragmentation pattern data of GC-MS analysis. The catalyst was recycled 8 times without appreciable loss in its catalytic activity. A high biodiesel yield of 98% was obtained under these optimised conditions. The catalyst has the advantage of being a waste material, therefore it is easily prepared, cost free, highly efficient, biogenic, labor effective and environmentally friendly, making it a potential candidate as a green catalyst for low cost production of biodiesel at an industrial scale.

Journal ArticleDOI
Jingjing Zhou1, Hong Sui1, Zhidan Jia1, Ziqi Yang1, Lin He1, Xingang Li1 
TL;DR: In this article, a review of the recent advances of the recovery and purification of ionic liquids from solutions is presented, mainly focused on recent advances in ionic liquid recovery.
Abstract: With low melting point, extremely low vapor pressure and non-flammability, ionic liquids have been attracting much attention from academic and industrial fields. Great efforts have been made to facilitate their applications in catalytic processes, extraction, desulfurization, gas separation, hydrogenation, electronic manufacturing, etc. To reduce the cost and environmental effects, different technologies have been proposed to recover the ionic liquids from different solutions after their application. This review is mainly focused on the recent advances of the recovery and purification of ionic liquids from solutions. Several methods for recovery of ionic liquids including distillation, extraction, adsorption, membrane separation, aqueous two-phase extraction, crystallization and external force field separation, are introduced and discussed systematically. Some industrial applications of ionic liquid recovery and purification methods are selected for discussion. Additionally, considerations on the combined design of different methods and process optimization have also been touched on to provide potential insights for future development of ionic liquid recovery and purification.

Journal ArticleDOI
TL;DR: In this article, the electrical modulus and other dielectric properties of the samples were analyzed by means of impedance spectroscopy in the −100 °C to 100 °C range, with steps of 20 °C.
Abstract: We have prepared LaCrO3 (LCO) and 10% Ir doped LCO samples by the solid state reaction method and studied the electrical modulus and the other dielectric properties of the samples by means of the impedance spectroscopy in the −100 °C to 100 °C range, with steps of 20 °C. It has been clearly observed that the dielectric properties change due to Ir doping. The absolute dielectric constant value of Ir doped LCO has decreased and this reduction was attributed to decreasing Cr6+ ions which may play a vital role in space charge polarization and charge hopping. A plateau region appeared in the temperature-dependent real electrical modulus M′ versus f curves of the pure LCO sample while almost no plateau region is visible in the Ir doped LCO sample. The temperature-dependent imaginary modulus M′′ versus f curves has two peaks at each temperature; one of the peaks is at low frequency and the other at the high frequency region, which shifts through higher frequency region with increasing temperature. This originates from free charge accumulation at the interface with the increase of the temperature. Furthermore, it has been seen that the Ir doped LCO sample has higher impedance and resistance values than the undoped LCO sample at the same frequency and temperature. This phenomenon was attributed to doped Ir ions behaving like a donor in LCO because LCO is a p-type compound. Moreover, the activation energy values of 0.224 eV and 0.208 eV for LCO and of 0.161 eV and 0.265 eV for the Ir doped LCO have been obtained from the slopes of the ρdc vs. (kT)−1 curves, respectively. Also the activation energies were calculated from the slopes of the fmax vs. (kT)−1 curves and the obtained results from low frequency region were in good agreement with ρdc vs. (kT)−1 ones.

Journal ArticleDOI
TL;DR: In this paper, a sustainable solution to biomass burning by converting agricultural residues into biochar was provided to improve soil fertility, sequester carbon, and increase crop production, which can be used for carbon sequestration and soil amendments.
Abstract: A sustainable solution to biomass burning by converting agricultural residues into biochar was provided. Biochar application was investigated to improve soil fertility, sequester carbon, and increase crop production. Rice husk (RHBC) and corn stover (CSBC) biochars were obtained by slow pyrolysis at 650° and 550 °C, respectively. RHBC and CSBC were characterized (SEM, SEM-EDX, TEM, FTIR, XRD, elemental analyses, and SBET). Unpyrolyzed husks and stover were also used for soil amendments and compared to biochars in different proportions under a controlled incubation environment over 107 days. Fertilizers were not applied. An increase in water holding capacity, total organic carbon, cation exchange capacity, and a decrease in soil CO2 emission were observed after biochar application to soil versus the application of the parent husks or stover. These biochars improved soil fertility and enhanced eggplant crop growth (height, leaf number, fresh and dry weight). In addition, carbon mitigation was achieved because the biochar remained stable in the soil achieving longer term carbon sequestration. Both chars can be used for carbon sequestration and soil amendments.

Journal ArticleDOI
TL;DR: In this article, a thorough survey of the synthesis of V2O5-based nanomaterials with various structures and chemical compositions and their application as positive electrodes for LIBs is provided.
Abstract: As an important part of lithium-ion batteries, the cathode material can directly affect the performance of lithium-ion batteries. However, with the increasing demand for high-energy and high-power devices, the energy and power density of electrode materials need to be further improved. Among all metal oxides, vanadium pentoxide (V2O5) is regarded as a promising candidate to serve as a cathode material for LIBs due to its high theoretical capacity. Herein, a thorough survey of the synthesis of V2O5-based nanomaterials with various structures and chemical compositions and their application as positive electrodes for LIBs is provided. This review covers V2O5 with different morphologies ranging from 1D nanorods/nanowires/nanotubes/nanofibers/nanobelts, to 2D nanosheets, and to 3D hollow and porous nanostructures. Nanocomposites consisting of V2O5 and different carbonaceous supports, e.g., amorphous carbon, carbon nanotubes, and graphene, are also investigated. The cation-doped V2O5 samples as the cathode material for LIBs are briefly discussed as well. The aim of this review is to provide an in-depth and rational understanding of how the electrochemical properties of V2O5-based cathodes can be effectively enhanced by achieving proper nanostructures with optimized chemical composition.