scispace - formally typeset
Search or ask a question
JournalISSN: 1027-202X

SA Journal of Radiology 

AOSIS
About: SA Journal of Radiology is an academic journal published by AOSIS. The journal publishes majorly in the area(s): Medicine & Radiology. It has an ISSN identifier of 1027-202X. It is also open access. Over the lifetime, 436 publications have been published receiving 1190 citations. The journal is also known as: South Africa journal of radiology & South African journal of radiology.


Papers
More filters
Journal Article
TL;DR: The results suggest that the cumulative effect of a high number of small dams is impacting the quality and quantity of waters in South African rivers and that these impacts need to be systematically incorporated into the monitoring protocol of the environmental water requirements.
Abstract: Impacts of large dams are well-known and quantifiable, while small dams have generally been perceived as benign, both socially and environmentally. The present study quantifies the cumulative impacts of small dams on the water quality (physico-chemistry and invertebrate biotic indices) and quantity (discharge) of downstream rivers in 2 South African regions. The information from 2 South African national databases was used for evaluating the cumulative impacts on water quality and quantity. Physico-chemistry and biological data were obtained from the River Health Programme, and discharge data at stream flow gauges was obtained from the Hydrological Information System. Multivariate analyses were conducted to establish broad patterns for cumulative impacts of small dams across the 2 regions – Western Cape (winter rainfall, temperate, south-western coast) and Mpumalanga (summer rainfall, tropical, eastern coast). Multivariate analyses found that the changes in macroinvertebrate indices and the stream’s physico-chemistry were more strongly correlated with the density of small dams in the catchment (as a measure of cumulative impact potential) relative to the storage capacity of large dams. T-tests on the data, not including samples with upstream large dams, indicated that the high density of small dams significantly reduced low flows and increased certain physico-chemistry variables (particularly total dissolved salts) in both the regions, along with associated significant reductions in a macroinvertebrate index (SASS4 average score per taxon). Regional differences were apparent in the results for discharge reductions and the macroinvertebrate index. The results suggest that the cumulative effect of a high number of small dams is impacting the quality and quantity of waters in South African rivers and that these impacts need to be systematically incorporated into the monitoring protocol of the environmental water requirements. Keywords: cumulative impacts, regional comparison, macroinvertebrate indices, measures of small-dam impact potential, average score per taxon

58 citations

Journal Article
TL;DR: In this article, the authors provide an overview of recent findings on U toxicity with specific reference to drinking water, together with a critical examination of related international and South African guidelines, in order to provide a factual base for subsequent risk assessments.
Abstract: Even though mining-related uranium (U) pollution in the Wonderfonteinspruit (WFS) has been an ongoing concern since the mid-1960s, media attention has increased considerably recently, focusing on pollution-related health risks that unsettle the general public. In view of recent findings that U might be more toxic than previously thought, such concerns need to be addressed. This even more so as South Africa has embarked on a nuclear expansion programme aimed at, amongst others, extending mining and processing of U. This is Part 1 of a series of papers aimed at the quantification of the extent of U pollution in the WFS, in order to provide a factual base for subsequent risk assessments. This paper provides an overview of recent findings on U toxicity with specific reference to drinking water, together with a critical examination of related international and South African guidelines. Based on a brief description of the study area and the impacts of mining over the past decades, the origin of U from different auriferous ore bodies (reefs) is explored. Using secondary data on historic gold and U production in the West Rand and the Far West Rand, tailings deposits in the 2 goldfields are estimated to contain well over 100 000 tons of U constituting a large reservoir for ongoing future U pollution. Apart from tailings, underground water in contact with uraniferous reefs constitutes another major source of waterborne U pollution. This applies to water pumped from underground mine workings as part of the active de-watering of overlying karst aquifers as well as decanting water from flooded mine voids. The discharge of U-polluted water together with largely uncontrolled outflow of uraniferous seepage from tailings deposits are major sources of water pollution in the WFS catchment.Keywords: uranium, toxicity, gold mining, reefs, karst, de-watering, tailings, slimes dams, Wonderfonteinspruit

41 citations

Journal Article
TL;DR: In this article, the cumulative impacts of small dams on invertebrate communities in two regions of South Africa were investigated, the Western Cape and Mpumalanga, using the River Health Programme (RHP).
Abstract: This paper investigates the cumulative impacts of small dams on invertebrate communities in 2 regions of South Africa – the Western Cape and Mpumalanga. Previous research found reduced discharge, increased total dissolved salts, and a decrease in average score per taxon (ASPT; collected using SASS4 methods) at sites with high density of small dams in their catchment. These changes in ASPT are investigated using the invertebrate abundance data available in the River Health Programme. Multivariate analyses found differences in invertebrate communities in rivers with high densities of small dams in their catchment in foothill-gravel streams (in both Western Cape and Mpumalanga) and in foothill-cobble streams (in Western Cape only). Opportunistic taxa that are tolerant of pollution, and capable of exploiting various habitats, and those that prefer slower currents increased in numbers, while other taxa that are sensitive to pollution and disturbance declined in numbers. Some regional differences were noted possibly reflecting climatic differences between the regions. Since the results of this study are correlative, it highlights the need for a systematic (by sites and seasons) and detailed (at species level) collection of data to verify the results of cumulative effects of small dams. This can further the development of a framework for small-dam construction and management that will limit their impact on river catchments. Keywords: cumulative impacts, reduced low flows, environmental water quality, Ephemeroptera, Trichoptera

39 citations

Journal Article
TL;DR: Of particular concern is the fact that U levels in the WFS are comparable to those detected in the Northern Cape (South Africa), which have been linked geostatistically to abnormal haematological values related to increased incidences of leukaemia observed in residents of the area.
Abstract: Uranium (U) pollution of the surface water and groundwater of the Wonderfonteinspruit (WFS) catchment caused by gold mining over more than a century has been an ongoing concern for several decades. Triggered by a recent increase in media attention, political pressure on governmental authorities has mounted to assess the associated health risks and implement appropriate mitigation measures. However, owing to the complexity of the catchment arising from the presence of a multitude of dischargers, a complex karst hydrology and large-scale modifications thereof by deep-level gold mining, most attempts to address the issue to date have been limited to uncoordinated ad hoc studies generally suffering from a lack of temporal and spatial representivity of the underlying data. Part 2 of a series of 2 papers aimed at quantifying the extent of mining-related U pollution in the WFS catchment, this paper addresses the pollution of surface water, groundwater, as well as mine effluent. Based on close to 3 400 measured U concentrations (mostly unpublished) of water samples gathered between 1997 and 2008, an overview of U levels and associated loads in the WFS catchment is provided. Results indicate that U levels in water resources of the whole catchment have increased markedly, even though U loads emitted by some large gold mines in the Far West Rand have been significantly reduced. A major contributing factor is highly polluted water decanting from the flooded mine void in the West Rand, which was diverted to the WFS. Over the reference period, an average of some 3.5 t of dissolved U has been released into the fluvial system from monitored discharge points alone. However, since the WFS dries up well before it joins the Mooi River this U load does not usually impact on the water supply system of downstream Potchefstroom directly. It may, however, indirectly reach Potchefstroom since much of the water from the WFS recharges the underlying karst aquifer of the Boskop Turffontein Compartment (BTC), the single most important water resource for Potchefstroom. Compared to 1997, groundwater in the BTC showed the highest relative increase in U levels of the whole WFS catchment, resulting in some 800 kg/a of U flowing into Boskop Dam, Potchefstroom’s main water reservoir. Of particular concern is the fact that U levels in the WFS are comparable to those detected in the Northern Cape (South Africa), which have been linked geostatistically to abnormal haematological values related to increased incidences of leukaemia observed in residents of the area.Keywords: uranium, water pollution, load, deep level gold mining, karst, dolomite, risks, leukaemia, Wonderfonteinspruit, West Rand, Far West Rand

32 citations

Journal Article
TL;DR: In this paper, spent tea leaves were used as a non-conventional, cost-effective sorbent for removal of Cu(II) from aqueous solutions in batch systems.
Abstract: In this work spent tea leaves were used as a non-conventional, cost-effective sorbent for removal of Cu(II) from aqueous solutions in batch systems. The sorbent was characterised with respect to surface area, pore volume, density, etc. The equilibrium sorption data were applied to various sorption isotherm models, and the order of fitness was: Langmuir > Temkin > Freundlich. The maximum sorption capacity Q o was found to be almost 90.9 and 68.4, as evaluated using Langmuir isotherms at 27oC and 37oC respectively. The observed decrease in sorption capacity with temperature indicated the exothermic nature of the uptake process. The kinetic uptake data were best interpreted by a pseudo second-order kinetic model with values of rate constants of adsorption of 1.47 x 10 -2 and 3.01 x 10 -2 g/mg∙min, respectively, for the initial sorbate concentrations of 10 and 20 mg∙l -1 at 27oC. The sorption mean free energy was determined from the Dubinin Radushkevich (DR) isotherm model and was found to be 9.91 kJ∙mol -1 , indicating ion exchange/chemisorption nature of uptake process. The Cu(II) uptake was found to increase with the pH of the sorbate solution and maximum sorption was observed in the pH range of 1.0 to 4.8. Finally, thermodynamic parameters like ΔG o , ΔH o , ΔS o were also evaluated. Keywords: Spent tea leaves, copper(II), adsorption, Langmuir model

31 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202316
202241
202124
202025
201921
201831