scispace - formally typeset
Search or ask a question
JournalISSN: 0096-736X

SAE transactions 

SAE International
About: SAE transactions is an academic journal. The journal publishes majorly in the area(s): Diesel engine & Diesel fuel. It has an ISSN identifier of 0096-736X. Over the lifetime, 13962 publications have been published receiving 226556 citations.


Papers
More filters
Proceedings ArticleDOI

1,138 citations

Proceedings ArticleDOI
TL;DR: In this paper, a phenomenological description of how direct-injection (DI) diesel combustion occurs has been derived from laser-sheet imaging and other recent optical data, which is summarized in a series of idealized schematics that depict the combustion process for a typical, modern-diesel-engine condition.
Abstract: A phenomenological description, or “conceptual model,” of how direct-injection (DI) diesel combustion occurs has been derived from laser-sheet imaging and other recent optical data. To provide background, the most relevant of the recent imaging data of the author and co-workers are presented and discussed, as are the relationships between the various imaging measurements. Where appropriate, other supporting data from the literature is also discussed. Then, this combined information is summarized in a series of idealized schematics that depict the combustion process for a typical, modern-diesel-engine condition. The schematics incorporate virtually all of the information provided by our recent imaging data including: liquidand vapor-fuel zones, fuel/air mixing, autoignition, reaction zones, and soot distributions. By combining all these elements, the schematics show the evolution of a reacting diesel fuel jet from the start of fuel injection up through the first part of the mixing-controlled burn (i.e. until the end of fuel injection). In addition, for a “developed” reacting diesel fuel jet during the mixingcontrolled burn, the schematics explain the sequence of events that occurs as fuel moves from the injector downstream through the mixing, combustion, and emissions-formation processes. The conceptual model depicted in these schematics also gives insight into the most likely mechanisms for soot formation and destruction and NO formation during the portion of the DI diesel combustion event discussed.

1,109 citations

Proceedings ArticleDOI
TL;DR: In this paper, the authors examined the effect of ambient gas density and fuel vaporization on the penetration and dispersion of diesel sprays over a gas density range spanning nearly two order of magnitude.
Abstract: Ambient gas density and fuel vaporization effects on the penetration and dispersion of diesel sprays were examined over a gas density range spanning nearly two order of magnitude. This range included gas densities more than a factor of two higher than top-dead-center conditions in current technology heavy-duty diesel engines. The results show that ambient gas density has a significantly larger effect on spray penetration and a smaller effect on spray dispersion than has been previously reported. The increased dependence of penetration on gas density is shown to be the result of gas density effects on dispersion. In addition, the results show that vaporization decreases penetration and dispersion by as much as 20% relative to non-vaporizing sprays; however, the effects of vaporization decrease with increasing gas density. Characteristic penetration time and length scales are presented that include a dispersion term that accounts for the increased dependence of penetration on ambient density. These penetration time and length scales collapse the penetration data obtained over the entire range of conditions examined in the experiment into two distinct non-dimensional penetration curves: one for the non-vaporizing conditions and one for the vaporizing conditions. Comparison of the two nondimensional penetration curves to a theoretical penetration correlation for non-vaporizing sprays helped isolate and explain the effects of droplets and vaporization on penetration. The theoretical penetration correlation was derived using the penetration time and length scales and simple model for a non-vaporizing spray that has been previously presented in the literature. The correlation is in good agreement with the non-vaporizing data from this experiment and other commonly quoted penetration data sets. It also provides a potential explanation for much of scatter in the penetration predicted by various correlations in the literature.

965 citations

Proceedings ArticleDOI
TL;DR: A consortium of CONCAWE, EUCAR and the EU Commission's JRC carried out a Well-to-Wheels analysis of a wide range of automotive fuels and powertrains as discussed by the authors.
Abstract: A consortium of CONCAWE, EUCAR and the EU Commission's JRC carried out a Well-to-Wheels analysis of a wide range of\automotive fuels and powertrains. The study gives an assessment of the energy consumption and greenhouse gas emissions for each pathway. It also considers macroeconomic costs and the market potential of alternative fuels.

926 citations

Network Information
Related Journals (5)
Combustion and Flame
11.4K papers, 503.6K citations
75% related
Progress in Energy and Combustion Science
847 papers, 203.5K citations
75% related
Combustion Science and Technology
5.9K papers, 149.6K citations
74% related
Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
20141
20075
20063
2005911
2004790
2003929