scispace - formally typeset
Search or ask a question
JournalISSN: 1869-1897

Science China-earth Sciences 

Springer Science+Business Media
About: Science China-earth Sciences is an academic journal published by Springer Science+Business Media. The journal publishes majorly in the area(s): Crust & Subduction. It has an ISSN identifier of 1869-1897. Over the lifetime, 3778 publications have been published receiving 81863 citations. The journal is also known as: Zhongguo kexue..
Topics: Crust, Subduction, Craton, Plateau, Geology


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the spatial patterns and temporal variation of land-use change during 1995-2000 are studied by using the Landsat TM digital images, supported by the 1km GRID data of land use change and the comprehensive characters of physical, economic and social features.
Abstract: It is more and more acknowledged that land-use/cover dynamic change has become a key subject urgently to be dealt with in the study of global environmental change. Supported by the Landsat TM digital images, spatial patterns and temporal variation of land-use change during 1995 –2000 are studied in the paper. According to the land-use dynamic degree model, supported by the 1km GRID data of land-use change and the comprehensive characters of physical, economic and social features, a dynamic regionalization of land-use change is designed to disclose the spatial pattern of land-use change processes. Generally speaking, in the traditional agricultural zones, e.g., Huang-Huai-Hai Plains, Yangtze River Delta and Sichuan Basin, the built-up and residential areas occupy a great proportion of arable land, and in the interlock area of farming and pasturing of northern China and the oases agricultural zones, the reclamation of arable land is conspicuously driven by changes of production conditions, economic benefits and climatic conditions. The implementation of “returning arable land into woodland or grassland” policies has won initial success in some areas, but it is too early to say that the trend of deforestation has been effectively reversed across China. In this paper, the division of dynamic regionalization of land-use change is designed, for the sake of revealing the temporal and spatial features of land-use change and laying the foundation for the study of regional scale land-use changes. Moreover, an integrated study, including studies of spatial pattern and temporal process of land-use change, is carried out in this paper, which is an interesting try on the comparative studies of spatial pattern on change process and the change process of spatial pattern of land-use change.

695 citations

Journal ArticleDOI
TL;DR: In this article, the formation and evolution of haze pollution episodes were observed by the "Forming Mechanism and Control Strategies of Haze in China" group using an intensive aerosol and trace gases campaign that simultaneously obtained data at 11 ground-based observing sites in the CARE-China network.
Abstract: In January 2013, a long-lasting episode of severe haze occurred in central and eastern China, and it attracted attention from all sectors of society. The process and evolution of haze pollution episodes were observed by the "Forming Mechanism and Control Strategies of Haze in China" group using an intensive aerosol and trace gases campaign that simultaneously obtained data at 11 ground-based observing sites in the CARE-China network. The characteristics and formation mechanism of haze pollution episodes were discussed. Five haze pollution episodes were identified in the Beijing-Tianjin-Hebei (Jing-Jin-Ji) area; the two most severe episodes occurred during 9-15 January and 25-31 January. During these two haze pollution episodes, the maximum hourly PM2.5 mass concentrations in Beijing were 680 and 530 μg m-3, respectively. The process and evolution of haze pollution episodes in other major cities in the Jing-Jin-Ji area, such as Shijiazhuang and Tianjin were almost the same as those observed in Beijing. The external cause of the severe haze episodes was the unusual atmospheric circulation, the depression of strong cold air activities and the very unfavorable dispersion due to geographical and meteorological conditions. However, the internal cause was the quick secondary transformation of primary gaseous pollutants to secondary aerosols, which contributed to the "explosive growth" and "sustained growth" of PM2.5. Particularly, the abnormally high amount of nitric oxide (NO x ) in the haze episodes, produced by fossil fuel combustion and vehicle emissions, played a direct or indirect role in the quick secondary transformation of coal-burning sulphur dioxide (SO2) to sulphate aerosols. Furthermore, gaseous pollutants were transformed into secondary aerosols through heterogeneous reactions on the surface of fine particles, which can change the particles size and chemical composition. Consequently, the proportion of secondary inorganic ions, such as sulphate and nitrate, gradually increased, which enhances particle hygroscopicity and thereby accelerating formation of the haze pollution.

584 citations

Journal ArticleDOI
TL;DR: The North China Craton (NCC) is a classical example of ancient destroyed cratons and numerous studies have been conducted on the timing, scale, and mechanism of this destruction through combined interdisciplinary research.
Abstract: The North China Craton (NCC) is a classical example of ancient destroyed cratons. Since the initiation of the North China Craton Destruction Project by the National Natural Science Foundation of China, numerous studies have been conducted on the timing, scale, and mechanism of this destruction through combined interdisciplinary research. Available data suggest that the destruction occurred mainly in the eastern NCC, whereas the western NCC was only locally modified. The sedimentation, magmatic activities and structural deformation after cratonization at ~1.8 Ga indicate that the NCC destruction took place in the Mesozoic with a peak age of ca 125 Ma. A global comparison suggests that most cratons on Earth are not destroyed, although they have commonly experienced lithospheric thinning; destruction is likely to occur only when the craton has been disturbed by oceanic subduction. The destruction of the NCC was coincident with globally active plate tectonics and high mantle temperatures during the Cretaceous. The subducted Pacific slab destabilized mantle convection beneath the eastern NCC, which resulted in cratonic destruction in the eastern NCC. Delamination and/or thermal-mechanical-chemical erosion resulted from the destabilization of mantle convection.

551 citations

Journal ArticleDOI
TL;DR: A National Science Foundation of China (NSFC) major research project, Destruction of the North China Craton (NCC), has been carried out in the past few years by Chinese scientists through an in-depth and systematic observations, experiments and theoretical analyses, with an emphasis on the spatio-temporal distribution of the NCC destruction, the structure of deep earth and shallow geological records of the craton evolution, the mechanism and dynamics of craton destruction.
Abstract: A National Science Foundation of China (NSFC) major research project, Destruction of the North China Craton (NCC), has been carried out in the past few years by Chinese scientists through an in-depth and systematic observations, experiments and theoretical analyses, with an emphasis on the spatio-temporal distribution of the NCC destruction, the structure of deep earth and shallow geological records of the craton evolution, the mechanism and dynamics of the craton destruction. From this work the following conclusions can be drawn: (1) Significant spatial heterogeneity exists in the NCC lithospheric thickness and crustal structure, which constrains the scope of the NCC destruction. (2) The nature of the Paleozoic, Mesozoic and Cenozoic sub-continental lithospheric mantle (CLM) underneath the NCC is characterized in detail. In terms of water content, the late Mesozoic CLM was rich in water, but Cenozoic CLM was highly water deficient. (3) The correlation between magmatism and surface geological response confirms that the geological and tectonic evolution is governed by cratonic destruction processes. (4) Pacific subduction is the main dynamic factor that triggered the destruction of the NCC, which highlights the role of cratonic destruction in plate tectonics.

489 citations

Journal ArticleDOI
TL;DR: In this article, the authors show that the South Tianshan Suture of the south Central Asian Orogenic Belt is equivalent to the whole part of the Chinese Tianhan belt, located to the south of Narat Fault and Main Tianhuan Shear Zone.
Abstract: The Chinese Tianshan belt is a major part of the southern Central Asian Orogenic Belt, extending westward to Kyrgyzstan and Kazakhstan. Its Paleozoic tectonic evolution, crucial for understanding the amalgamation of Central Asia, comprises two stages of subduction-collision. The first collisional stage built the Eo-Tianshan Mountains, before a Visean unconformity, in which all structures are verging north. It implied a southward subduction of the Central Tianshan Ocean beneath the Tarim ac-tive margin, that induced the Ordovician-Early Devonian Central Tianshan arc, to the south of which the South Tianshan back-arc basin opened. During the Late Devonian, the closure of this ocean led to a collision between Central Tianshan arc and the Kazakhstan-Yili-North Tianshan Block, and subsequently closure of the South Tianhan back-arc basin, producing two su-ture zones, namely the Central Tianshan and South Tianshan suture zones where ophiolitic melanges and HP metamorphic rocks were emplaced northward. The second stage included the Late Devonian-Carboniferous southward subduction of North Tianshan Ocean beneath the Eo-Tianshan active margin, underlined by the Yili-North Tianshan arc, leading to the collision between the Kazakhstan-Yili-NTS plate and an inferred Junggar Block at Late Carboniferous-Early Permian time. The North Tianshan Suture Zone underlines likely the last oceanic closure of Central Asia Orogenic Belt; all the oceanic domains were consumed before the Middle Permian. The amalgamated units were affected by a Permian major wrenching, dextral in the Tianshan. The correlation with the Kazakh and Kyrgyz Tianshan is clarified. The Kyrgyz South Tianshan is equivalent to the whole part of Chinese Tianshan (CTS and STS) located to the south of Narat Fault and Main Tianshan Shear Zone; the so-called Middle Tianshan thins out toward the east. The South Tianshan Suture of Kyrgyzstan correlates with the Central Tianshan Suture of Chinese Tianshan. The evolution of this southern domain remains similar from east (Gangou area) to west until the Talas-Ferghana Fault, which reflects the convergence history between the Kazakhstan and Tarim blocks.

416 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202397
2022155
2021173
2020154
2019136
2018142