scispace - formally typeset
Search or ask a question

Showing papers in "Science & Engineering Faculty in 2012"


Journal Article
TL;DR: A new approach to visual navigation under changing conditions dubbed SeqSLAM, which removes the need for global matching performance by the vision front-end - instead it must only pick the best match within any short sequence of images.
Abstract: Learning and then recognizing a route, whether travelled during the day or at night, in clear or inclement weather, and in summer or winter is a challenging task for state of the art algorithms in computer vision and robotics. In this paper, we present a new approach to visual navigation under changing conditions dubbed SeqSLAM. Instead of calculating the single location most likely given a current image, our approach calculates the best candidate matching location within every local navigation sequence. Localization is then achieved by recognizing coherent sequences of these “local best matches”. This approach removes the need for global matching performance by the vision front-end - instead it must only pick the best match within any short sequence of images. The approach is applicable over environment changes that render traditional feature-based techniques ineffective. Using two car-mounted camera datasets we demonstrate the effectiveness of the algorithm and compare it to one of the most successful feature-based SLAM algorithms, FAB-MAP. The perceptual change in the datasets is extreme; repeated traverses through environments during the day and then in the middle of the night, at times separated by months or years and in opposite seasons, and in clear weather and extremely heavy rain. While the feature-based method fails, the sequence-based algorithm is able to match trajectory segments at 100% precision with recall rates of up to 60%.

686 citations


Journal Article
TL;DR: The fascinating structural and biological properties of xanthone dimers and heterodimers may excite the synthetic or natural product chemist.
Abstract: Many fungi, lichens, and bacteria produce xanthones (derivatives of 9H-xanthen-9-one, “xanthone” from the Greek “xanthos”, for “yellow”) as secondary metabolites. Xanthones are typically polysubstituted and occur as either fully aromatized, dihydro-, tetrahydro-, or, more rarely, hexahydro-derivatives. This family of compounds appeals to medicinal chemists because of their pronounced biological activity within a notably broad spectrum of disease states, a result of their interaction with a correspondingly diverse range of target biomolecules. This has led to the description of xanthones as “privileged structures”.(1) Historically, the total synthesis of the natural products has mostly been limited to fully aromatized targets. Syntheses of the more challenging partially saturated xanthones have less frequently been reported, although the development in recent times of novel and reliable methods for the construction of the (polysubstituted) unsaturated xanthone core holds promise for future endeavors. In particular, the fascinating structural and biological properties of xanthone dimers and heterodimers may excite the synthetic or natural product chemist.

236 citations


Journal Article
TL;DR: In this paper, the magnetic and electronic properties of single-layer MoS 2 nanoribbons (MoS 2 NRs) are modulated by applied strain and electric field.
Abstract: Effective modulation of physical properties via external control may open various potential nanoelectronic applications of single-layer MoS 2 nanoribbons (MoS 2 NRs). We show by first-principles calculations that the magnetic and electronic properties of zigzag MoS 2 NRs exhibit sensitive response to applied strain and electric field. Tensile strain in the zigzag direction produces reversible modulation of magnetic moments and electronic phase transitions among metallic, half-metallic, and semiconducting states, which stem from the energy-level shifts induced by an internal electric polarization and the competing covalent/ionic interactions. A simultaneously applied electric field further enhances or suppresses the strain-induced modulations depending on the direction of the electric field relative to the internal polarization. These findings suggest a robust and efficient approach to modulating the properties of Mo 2 NRs by a combination of strain engineering and electric field tuning.

189 citations


Journal Article
TL;DR: In this article, the fracture strength of a hexagonal monolayer network of carbon atoms with Stone-Wales type defects and vacancies was investigated using molecular dynamics simulations at different temperatures.
Abstract: With a hexagonal monolayer network of carbon atoms, graphene has demonstrated exceptional electrical and mechanical properties. In this work, the fracture of graphene sheets with Stone–Wales type defects and vacancies were investigated using molecular dynamics simulations at different temperatures. The initiation of defects via bond rotation was also investigated. The results indicate that the defects and vacancies can cause significant strength loss in graphene. The fracture strength of graphene is also affected by temperature and loading directions. The simulation results were compared with the prediction from the quantized fracture mechanics.

174 citations


Journal Article
TL;DR: Phenomenography is a qualitative research approach that seeks to explore variation in how people experience various aspects of their world as discussed by the authors, and has been used in numerous information research studies that have explored various phenomena of interest in the library and information sphere.
Abstract: Phenomenography is a qualitative research approach that seeks to explore variation in how people experience various aspects of their world. Phenomenography has been used in numerous information research studies that have explored various phenomena of interest in the library and information sphere. This paper provides an overview of the phenomenographic method and discusses key assumptions that underlie this approach to research. Aspects including data collection, data analysis and the outcomes of phenomenographic research are also detailed. The paper concludes with an illustration of how phenomenography was used in research to investigate students’ experiences of web-based information searching. The results of this research demonstrate how phenomenography can reveal variation, making it possible to develop greater understanding of the phenomenon as it was experienced, and to draw upon these experiences to improve and enhance current practice.

169 citations


Journal Article
TL;DR: Using extensive hydrological data and generalized linear statistical models, Wang et al. as discussed by the authors demonstrated that the Three-Georges Dam operation induces major changes in the downstream river discharge near the dam, including an average "water loss".
Abstract: The Three-Georges Dam holds many records in the history of engineering. While the dam has produced benefits in terms of flood control, hydropower generation and increased navigation capacity of the Yangtze River, serious questions have been raised concerning its impact on both upstream and downstream ecosystems. It has been suggested that the dam operation intensifies the extremes of wet and dry conditions in the downstream Poyang Lake, and affects adversely important local wetlands. A floodgate has been proposed to maintain the lake water level by controlling the flow between the Poyang Lake and Yangtze River. Using extensive hydrological data and generalized linear statistical models, we demonstrated that the dam operation induces major changes in the downstream river discharge near the dam, including an average "water loss". The analysis also revealed considerable effects on the Poyang Lake water level, particularly a reduced level over the dry period from late summer to autumn. However, the dam impact needs to be further assessed based on long-term monitoring of the lake ecosystem, covering a wide range of parameters related to hydrological and hydraulic characteristics of the lake, water quality, geomorphological characteristics, aquatic biota and their habitat, wetland vegetation and associated fauna.

164 citations


Journal Article
TL;DR: In this paper, the authors summarized the most recent achievements in the thermal behavior study of kaolinite intercalation complexes obtained with the most common reagents including potassium acetate, formamide, dimethyl sulfoxide, hydrazine and urea.
Abstract: The kaolinite intercalation and its application in polymer-based functional composites have attracted great interest, both in industry and in academia fields, since they frequently exhibit remarkable improvements in materials properties compared with the virgin polymer or conventional micro and macro-composites. Also of significant interest regarding the kaolinite intercalation complex is its thermal behavior and decomposition. This is because heating treatment of intercalated kaolinite is necessary for its further application, especially in the field of plastic and rubber industry. Although intercalation of kaolinite is an old and ongoing research topic, there is a limited knowledge available on kaolinite intercalation with different reagents, the mechanism of intercalation complex formation as well as on thermal behavior and phase transition. This review attempts to summarize the most recent achievements in the thermal behavior study of kaolinite intercalation complexes obtained with the most common reagents including potassium acetate, formamide, dimethyl sulfoxide, hydrazine and urea. At the end of this paper, the further work on kaolinite intercalation complex was also proposed.

161 citations


Journal Article
TL;DR: OpenFABMAP as mentioned in this paper is a fully open source implementation of the original FAB-MAP algorithm, which provides a number of configurable options including rapid codebook training and interest point feature tuning.
Abstract: Appearance-based loop closure techniques, which leverage the high information content of visual images and can be used independently of pose, are now widely used in robotic applications. The current state-of-the-art in the field is Fast Appearance-Based Mapping (FAB-MAP) having been demonstrated in several seminal robotic mapping experiments. In this paper, we describe OpenFABMAP, a fully open source implementation of the original FAB-MAP algorithm. Beyond the benefits of full user access to the source code, OpenFABMAP provides a number of configurable options including rapid codebook training and interest point feature tuning. We demonstrate the performance of OpenFABMAP on a number of published datasets and demonstrate the advantages of quick algorithm customisation. We present results from OpenFABMAP’s application in a highly varied range of robotics research scenarios.

146 citations


Journal Article
TL;DR: In this paper, chemical reaction studies of N-methyl-N-propyl-pyrrolidinium-bis(fluorosulfonyl)imide-based ionic liquid with the lithium metal surface were performed using ab initio molecular dynamics simulations and X-ray Photoelectron Spectroscopy (XPS).
Abstract: Chemical reaction studies of N-methyl-N-propyl-pyrrolidinium-bis(fluorosulfonyl)imide-based ionic liquid with the lithium metal surface were performed using ab initio molecular dynamics (aMD) simulations and X-ray Photoelectron Spectroscopy (XPS). The molecular dynamics simulations showed rapid and spontaneous decomposition of the ionic liquid anion, with subsequent formation of long-lived species such as lithium fluoride. The simulations also revealed the cation to retain its structure by generally moving away from the lithium surface. The XPS experiments showed evidence of decomposition of the anion, consistent with the aMD simulations and also of cation decomposition and it is envisaged that this is due to the longer time scale for the XPS experiment compared to the time scale of the aMD simulation. Overall experimental results confirm the majority of species suggested by the simulation. The rapid chemical decomposition of the ionic liquid was shown to form a solid electrolyte interphase composed of the breakdown products of the ionic liquid components in the absence of an applied voltage.

140 citations


Journal Article
TL;DR: In this article, an overview article for the special series "Bayesian Networks in Environmental and Resource Management" reviews 7 case study articles with the aim to compare Bayesian network (BN) applications to different environmental and resource management problems from around the world.
Abstract: This overview article for the special series “Bayesian Networks in Environmental and Resource Management” reviews 7 case study articles with the aim to compare Bayesian network (BN) applications to different environmental and resource management problems from around the world. The article discusses advances in the last decade in the use of BNs as applied to environmental and resource management. We highlight progress in computational methods, best-practices for model design and model communication. We review several research challenges to the use of BNs in environmental and resource management that we think may find a solution in the near future with further research attention.

127 citations


Journal Article
TL;DR: This article provides a tutorial introduction to modeling, estimation, and control for multirotor aerial vehicles that includes the common four-rotor or quadrotor case.
Abstract: This article provides a tutorial introduction to modeling, estimation, and control for multirotor aerial vehicles that includes the common four-rotor or quadrotor case.

Journal Article
TL;DR: In this paper, the authors introduce a general framework to study the concept of robust self-testing which can be used to self-test maximally entangled pairs of qubits (EPR pairs) and local measurement operators.
Abstract: In this paper, we introduce a general framework to study the concept of robust self-testing which can be used to self-test maximally entangled pairs of qubits (EPR pairs) and local measurement operators. The result is based only on probabilities obtained from the experiment, with tolerance to experimental errors. In particular, we show that if the results of an experiment approach the Cirel'son bound, or approximate the Mayers-Yao-type correlations, then the experiment must contain an approximate EPR pair. More specifically, there exist local bases in which the physical state is close to an EPR pair, possibly encoded in a larger environment or ancilla. Moreover, in these bases the measurements are close to the qubit operators used to achieve the Cirel'son bound or the Mayers-Yao results. © 2012 IOP Publishing Ltd.

Journal Article
TL;DR: In this article, the variance-based convergence rate of stochastic optimization algorithms for nonsmooth convex optimization problems was analyzed and shown to be order-optimal with high probability.
Abstract: We analyze convergence rates of stochastic optimization algorithms for nonsmooth convex optimization problems. By combining randomized smoothing techniques with accelerated gradient methods, we obtain convergence rates of stochastic optimization procedures, both in expectation and with high probability, that have optimal dependence on the variance of the gradient estimates. To the best of our knowledge, these are the first variance-based rates for nonsmooth optimization. We give several applications of our results to statistical estimation problems and provide experimental results that demonstrate the effectiveness of the proposed algorithms. We also describe how a combination of our algorithm with recent work on decentralized optimization yields a distributed stochastic optimization algorithm that is order-optimal.

Journal Article
TL;DR: The high ratio of the fluorescence quantum yield between the profluorescent nitroxide species and their nonradical adducts provides the sensitivity required for measuring a range of cellular redox environments, and their reasonable 2PA cross sections provide for the option of using two-photon fluorescence microscopy.
Abstract: A range of varying chromophore nitroxide free radicals and their nonradical methoxyamine analogues were synthesized and their linear photophysical properties examined. The presence of the proximate free radical masks the chromophore’s usual fluorescence emission, and these species are described as profluorescent. Two nitroxides incorporating anthracene and fluorescein chromophores (compounds 7 and 19, respectively) exhibited two-photon absorption (2PA) cross sections of approximately 400 G.M. when excited at wavelengths greater than 800 nm. Both of these profluorescent nitroxides demonstrated low cytotoxicity toward Chinese hamster ovary (CHO) cells. Imaging colocalization experiments with the commercially available CellROX Deep Red oxidative stress monitor demonstrated good cellular uptake of the nitroxide probes. Sensitivity of the nitroxide probes to H2O2-induced damage was also demonstrated by both one- and two-photon fluorescence microscopy. These profluorescent nitroxide probes are potentially powerful tools for imaging oxidative stress in biological systems, and they essentially “light up” in the presence of certain species generated from oxidative stress. The high ratio of the fluorescence quantum yield between the profluorescent nitroxide species and their nonradical adducts provides the sensitivity required for measuring a range of cellular redox environments. Furthermore, their reasonable 2PA cross sections provide for the option of using two-photon fluorescence microscopy, which circumvents commonly encountered disadvantages associated with one-photon imaging such as photobleaching and poor tissue penetration.

Journal Article
TL;DR: In this paper, a silencing suppressor protein (SSP), P0PE, was identified in the Enamovirus Pea enation mosaic virus-1 (PEMV-1) and showed that it and the P0s of poleroviruses Potato leaf roll virus and Cereal yellow dwarf virus have strong local and systemic SSP activity, while the P1 of Sobemovirus Southern bean mosaic virus supresses systemic silencing.
Abstract: The P0 protein of poleroviruses and P1 protein of sobemoviruses suppress the plant's RNA silencing machinery. Here we identified a silencing suppressor protein (SSP), P0PE, in the Enamovirus Pea enation mosaic virus-1 (PEMV-1) and showed that it and the P0s of poleroviruses Potato leaf roll virus and Cereal yellow dwarf virus have strong local and systemic SSP activity, while the P1 of Sobemovirus Southern bean mosaic virus supresses systemic silencing. The nuclear localized P0PE has no discernable sequence conservation with known SSPs, but proved to be a strong suppressor of local silencing and a moderate suppressor of systemic silencing. Like the P0s from poleroviruses, P0PE destabilizes AGO1 and this action is mediated by an F-box-like domain. Therefore, despite the lack of any sequence similarity, the poleroviral and enamoviral SSPs have a conserved mode of action upon the RNA silencing machinery. © 2012 Elsevier Inc.

Journal Article
TL;DR: For a review of the current state-of-the-art in terrestrial landform characterization, see as mentioned in this paper, where the authors present an overview of existing and emerging geophysical tools for landform studies.
Abstract: This paper presents an overview of the strengths and limitations of existing and emerging geophysical tools for landform studies. The objectives are to discuss recent technical developments and to provide a review of relevant recent literature, with a focus on propagating field methods with terrestrial applications. For various methods in this category, including ground-penetrating radar (GPR), electrical resistivity (ER), seismics, and electromagnetic (EM) induction, the technical backgrounds are introduced, followed by section on novel developments relevant to landform characterization. For several decades, GPR has been popular for characterization of the shallow subsurface and in particular sedimentary systems. Novel developments in GPR include the use of multi-offset systems to improve signal-to-noise ratios and data collection efficiency, amongst others, and the increased use of 3D data. Multi-electrode ER systems have become popular in recent years as they allow for relatively fast and detailed mapping. Novel developments include time-lapse monitoring of dynamic processes as well as the use of capacitively-coupled systems for fast, non-invasive surveys. EM induction methods are especially popular for fast mapping of spatial variation, but can also be used to obtain information on the vertical variation in subsurface electrical conductivity. In recent years several examples of the use of plane wave EM for characterization of landforms have been published. Seismic methods for landform characterization include seismic reflection and refraction techniques and the use of surface waves. A recent development is the use of passive sensing approaches. The use of multiple geophysical methods, which can benefit from the sensitivity to different subsurface parameters, is becoming more common. Strategies for coupled and joint inversion of complementary datasets will, once more widely available, benefit the geophysical study of landforms.Three cases studies are presented on the use of electrical and GPR methods for characterization of landforms in the range of meters to 100. s of meters in dimension. In a study of polygonal patterned ground in the Saginaw Lowlands, Michigan, USA, electrical resistivity tomography was used to characterize differences in subsurface texture and water content associated with polygon-swale topography. Also, a sand-filled thermokarst feature was identified using electrical resistivity data. The second example is on the use of constant spread traversing (CST) for characterization of large-scale glaciotectonic deformation in the Ludington Ridge, Michigan. Multiple CST surveys parallel to an ~. 60. m high cliff, where broad (~. 100. m) synclines and narrow clay-rich anticlines are visible, illustrated that at least one of the narrow structures extended inland. A third case study discusses internal structures of an eolian dune on a coastal spit in New Zealand. Both 35 and 200. MHz GPR data, which clearly identified a paleosol and internal sedimentary structures of the dune, were used to improve understanding of the development of the dune, which may shed light on paleo-wind directions.

Journal Article
TL;DR: In this paper, weak interactions between bromine, sulphur, and hydrogen are shown to stabilize 2D supramolecular monolayers at the liquid-solid interface.
Abstract: Weak interactions between bromine, sulphur, and hydrogen are shown to stabilize 2D supramolecular monolayers at the liquid–solid interface. Three different thiophene-based semiconducting organic molecules assemble into close-packed ultrathin ordered layers. A combination of scanning tunneling microscopy (STM) and density functional theory (DFT) elucidates the interactions within the monolayer. Electrostatic interactions are identified as the driving force for intermolecular Br⋯Br and Br⋯H bonding. We find that the S⋯S interactions of the 2D supramolecular layers correlate with the hole mobilities of thin film transistors of the same materials.

Journal Article
TL;DR: In this paper, the authors provide an overview of the wheat genome and NGS technologies, details some of the problems in applying Next Generation Sequencing (NGS) technology to wheat, and describes how NGS technology is starting to impact wheat crop improvement.
Abstract: Free to read Bread wheat ( Triticum aestivum ; Poaceae) is a crop plant of great importance. It provides nearly 20% of the world’s daily food supply measured by calorie intake, similar to that provided by rice. The yield of wheat has doubled over the last 40 years due to a combination of advanced agronomic practice and improved germplasm through selective breeding. More recently, yield growth has been less dramatic, and a significant improvement in wheat production will be required if demand from the growing human population is to be met. Next-generation sequencing (NGS) technologies are revolutionizing biology and can be applied to address critical issues in plant biology. Technologies can produce draft sequences of genomes with a significant reduction to the cost and timeframe of traditional technologies. In addition, NGS technologies can be used to assess gene structure and expression, and importantly, to identify heritable genome variation underlying important agronomic traits. This review provides an overview of the wheat genome and NGS technologies, details some of the problems in applying NGS technology to wheat, and describes how NGS technologies are starting to impact wheat crop improvement.

Journal Article
TL;DR: Radical-Directed Dissociation (RDD) as discussed by the authors was used to identify isomeric variants arising from different carbon carbon bonding motifs within these chains including double bond position, chain branching, and cyclic structures.
Abstract: Contemporary lipidomics protocols are dependent on conventional tandem mass spectrometry for lipid identification. This approach is extremely powerful for determining lipid class and identifying the number of carbons and the degree of unsaturation of any acyl-chain substituents. Such analyses are however, blind to isomeric variants arising from different carbon carbon bonding motifs within these chains including double bond position, chain branching, and cyclic structures. This limitation arises from the fact that conventional, low energy collision-induced dissociation of even-electron lipid ions does not give rise to product ions from intrachain fragmentation of the fatty acyl moieties. To overcome this limitation, we have applied radical-directed dissociation (RDD) to the study of lipids for the first time. In this approach, bifunctional molecules that contain a photocaged radical initiator and a lipid-adducting group, such as 4-iodoaniline and 4-iodobenzoic acid, are used to form noncovalent complexes (i.e., adduct ions) with a lipid during electrospray ionization. Laser irradiation of these complexes at UV wavelengths (266 nm) cleaves the carbon iodine bond to liberate a highly reactive phenyl radical. Subsequent activation of the nascent radical ions results in RDD with significant intrachain fragmentation of acyl moieties. This approach provides diagnostic fragments that are associated with the double bond position and the positions of chain branching in glycerophospholipids, sphingomyelins and triacylglycerols and thus can be used to differentiate isomeric lipids differing only in such motifs. RDD is demonstrated for well-defined lipid standards and also reveals lipid structural diversity in olive oil and human very-low density lipoprotein.

Journal Article
TL;DR: In this article, a predictive model of terrorist activity is developed by examining the daily number of terrorist attacks in Indonesia from 1994 through 2007, which employs a shot noise process to explain the self-exciting nature of the terrorist activities.
Abstract: A predictive model of terrorist activity is developed by examining the daily number of terrorist attacks in Indonesia from 1994 through 2007. The dynamic model employs a shot noise process to explain the self-exciting nature of the terrorist activities. This estimates the probability of future attacks as a function of the times since the past attacks. In addition, the excess of nonattack days coupled with the presence of multiple coordinated attacks on the same day compelled the use of hurdle models to jointly model the probability of an attack day and corresponding number of attacks. A power law distribution with a shot noise driven parameter best modeled the number of attacks on an attack day. Interpretation of the model parameters is discussed and predictive performance of the models is evaluated.

Journal Article
TL;DR: This paper aims to demonstrate the efforts towards in-situ applicability of EMMARM, the objective of which is to provide real-time information about the response of the immune system to EMTs.
Abstract: Anomalous subdiffusion equations have in recent years received much attention. In this paper, we consider a two-dimensional variable-order anomalous subdiffusion equation. Two numerical methods (the implicit and explicit methods) are developed to solve the equation. Their stability, convergence and solvability are investigated by the Fourier method. Moreover, the effectiveness of our theoretical analysis is demonstrated by some numerical examples. © 2011 American Mathematical Society.

Journal Article
TL;DR: The study demonstrated the feasibility of quantitatively evaluating the development of the KMC and revealing the performance heterogeneity associated with the development, and developed a capability-based KM evaluation framework (CKMEF) that upholds the basic assertions of the DCV.
Abstract: The dynamic capabilities view (DCV) focuses on renewal of firms’ strategic knowledge resources so as to sustain competitive advantage within turbulent markets. Within the context of the DCV, the focus of knowledge management (KM) is to develop the KMC through deploying knowledge governance mechanisms that are conducive to facilitating knowledge processes so as to produce superior business performance over time. The essence of KM performance evaluation is to assess how well the KMC is configured with knowledge governance mechanisms and processes that enable a firm to achieve superior performance through matching its knowledge base with market needs. However, little research has been undertaken to evaluate KM performance from the DCV perspective. This study employed a survey study design and adopted hypothesis-testing approaches to develop a capability-based KM evaluation framework (CKMEF) that upholds the basic assertions of the DCV. Under the governance of the framework, a KM index (KMI) and a KM maturity model (KMMM) were derived not only to indicate the extent to which a firm’s KM implementations fulfill its strategic objectives, and to identify the evolutionary phase of its KMC, but also to bench-mark the KMC in the research population. The research design ensured that the evaluation framework and instruments have statistical significance and good generalizabilty to be applied in the research population, namely construction firms operating in the dynamic Hong Kong construction market. The study demonstrated the feasibility of quantitatively evaluating the development of the KMC and revealing the performance heterogeneity associated with the development.

Journal Article
TL;DR: A fractional diffusionwave equation with damping is considered and the analytical solution for the equation is derived using the method of separation of variables and an implicit difference approximation is constructed.
Abstract: Fractional partial differential equations have been applied to many problems in physics, finance, and engineering. Numerical methods and error estimates of these equations are currently a very active area of research. In this paper we consider a fractional diffusionwave equation with damping. We derive the analytical solution for the equation using the method of separation of variables. An implicit difference approximation is constructed. Stability and convergence are proved by the energy method. Finally, two numerical examples are presented to show the effectiveness of this approximation.

Journal Article
TL;DR: The technical feasibility of roll motion control devices has been amply demonstrated for over 100 years as mentioned in this paper, however, performance can still fall short of expectations due to fundamental performance limitations and large variations of the spectral characteristics of wave-induced roll motion.
Abstract: The technical feasibility of roll motion control devices has been amply demonstrated for over 100 years. Performance, however, can still fall short of expectations because of difficulties associated with control system designs, which have proven to be far from trivial due to fundamental performance limitations and large variations of the spectral characteristics of wave-induced roll motion. This tutorial paper presents an account of the development of various ship roll motion control systems together with the challenges associated with their design. It discusses the assessment of performance and the applicability of different mathematical models, and it surveys the control methods that have been implemented and validated with full scale experiments. The paper also presents an outlook on what are believed to be potential areas of research within this topic.

Journal Article
TL;DR: In this article, the authors derive thresholds for a set of structural measures for predicting errors in conceptual process models, using a collection of 2,000 business process models from practice as a means of determining thresholds, applying an adaptation of the ROC curves method.
Abstract: The quality of conceptual business process models is highly relevant for the design of corresponding information systems In particular, a precise measurement of model characteristics can be beneficial from a business perspective, helping to save costs thanks to early error detection This is just as true from a software engineering point of view In this latter case, models facilitate stakeholder communication and software system design Research has investigated several proposals as regards measures for business process models, from a rather correlational perspective This is helpful for understanding, for example size and complexity as general driving forces of error probability Yet, design decisions usually have to build on thresholds, which can reliably indicate that a certain counter-action has to be taken This cannot be achieved only by providing measures; it requires a systematic identification of effective and meaningful thresholds In this paper, we derive thresholds for a set of structural measures for predicting errors in conceptual process models To this end, we use a collection of 2,000 business process models from practice as a means of determining thresholds, applying an adaptation of the ROC curves method Furthermore, an extensive validation of the derived thresholds was conducted by using 429 EPC models from an Australian financial institution Finally, significant thresholds were adapted to refine existing modeling guidelines in a quantitative way

Journal Article
TL;DR: In this article, a method of daily air pollution prediction using combination of Support Vector Machine (SVM) as predictor and Partial Least Square (PLS) as a data selection tool based on the measured values of CO concentrations is presented.
Abstract: Due to the health impacts caused by exposures to air pollutants in urban areas, monitoring and forecasting of air quality parameters have become popular as an important topic in atmospheric and environmental research today. The knowledge on the dynamics and complexity of air pollutants behavior has made artificial intelligence models as a useful tool for a more accurate pollutant concentration prediction. This paper focuses on an innovative method of daily air pollution prediction using combination of Support Vector Machine (SVM) as predictor and Partial Least Square (PLS) as a data selection tool based on the measured values of CO concentrations. The CO concentrations of Rey monitoring station in the south of Tehran, from Jan. 2007 to Feb. 2011, have been used to test the effectiveness of this method. The hourly CO concentrations have been predicted using the SVM and the hybrid PLS–SVM models. Similarly, daily CO concentrations have been predicted based on the aforementioned four years measured data. Results demonstrated that both models have good prediction ability; however the hybrid PLS–SVM has better accuracy. In the analysis presented in this paper, statistic estimators including relative mean errors, root mean squared errors and the mean absolute relative error have been employed to compare performances of the models. It has been concluded that the errors decrease after size reduction and coefficients of determination increase from 56 to 81% for SVM model to 65–85% for hybrid PLS–SVM model respectively. Also it was found that the hybrid PLS–SVM model required lower computational time than SVM model as expected, hence supporting the more accurate and faster prediction ability of hybrid PLS–SVM model.

Journal Article
TL;DR: In this paper, the authors used USANS/SANS to examine 24 bituminous and sub-bituminous coal coals and determined the relationship of the scattering intensity corresponding to different pore sizes with other coal properties.
Abstract: The porosity and pore size distribution of coals determine many of their properties, from gas release to their behavior on carbonization, and yet most methods of determining pore size distribution can only examine a restricted size range. Even then, only accessible pores can be investigated with these methods. Small-angle neutron scattering (SANS) and ultra small-angle neutron scattering (USANS) are increasingly used to characterize the size distribution of all of the pores non-destructively. Here we have used USANS/SANS to examine 24 well-characterized bituminous and subbituminous coals: three from the eastern US, two from Poland, one from New Zealand and the rest from the Sydney and Bowen Basins in Eastern Australia, and determined the relationships of the scattering intensity corresponding to different pore sizes with other coal properties. The range of pore radii examinable with these techniques is 2.5nm to 7μm. We confirm that there is a wide range of pore sizes in coal. The pore size distribution was found to be strongly affected by both rank and type (expressed as either hydrogen or vitrinite content) in the size range 250nm to 7μm and 5 to 10nm, but weakly in intermediate regions. The results suggest that different mechanisms control coal porosity on different scales. Contrast-matching USANS and SANS were also used to determine the size distribution of the fraction of the pores in these coals that are inaccessible to deuterated methane, CD4, at ambient temperature. In some coals most of the small (~10nm) pores were found to be inaccessible to CD4 on the time scale of the measurement (~30min–16h). This inaccessibility suggests that in these coals a considerable fraction of inherent methane may be trapped for extended periods of time, thus reducing the effectiveness of methane release from (or sorption by) these coals. Although the number of small pores was less in higher rank coals, the fraction of total pores that was inaccessible was not rank dependent. In the Australian coals, at the 10nm to 50nm size scales the pores in inertinites appeared to be completely accessible to CD4, whereas the pores in the vitrinite were about 75% inaccessible. Unlike the results for total porosity that showed no regional effects on relationships between porosity and coal properties, clear regional differences in the relationships between fraction of closed porosity and coal properties were found. The 10 to 50nm-sized pores of inertinites of the US and Polish coals examined appeared less accessible to methane than those of the inertinites of Australian coals. This difference in pore accessibility in inertinites may explain why empirical relationships between fluidity and coking properties developed using Carboniferous coals do not apply to Australian coals.

Journal Article
TL;DR: Extensive transmission electron microscopy (TEM) investigations revealed the diameter-dependent growth mechanisms for BNNTs; namely, thin and thick tubes with closed ends grew by base-growth and tip-growth mechanisms, respectively, however, high catalyst concentration motivated the formation of filled-with-catalyst BNN Ts, which grew open-ended with a base- growth mechanism.
Abstract: Boron nitride nanotube (BNNT) films were grown on silicon/silicon dioxide (Si/SiO(2)) substrates by a catalytic chemical vapor deposition (CVD) method in a horizontal electric furnace. The effects of growth temperature and catalyst concentration on the morphology of the films and the structure of individual BNNTs were systematically investigated. The BNNT films grown at 1200 and 1300 degrees C consisted of a homogeneous dispersion of separate tubes in random directions with average outer diameters of ~30 and ~60 nm, respectively. Meanwhile, the films grown at 1400 degrees C comprised of BNNT bundles in a flower-like morphology, which included thick tubes with average diameters of ~100 nm surrounded by very thin ones with diameters down to ~10 nm. In addition, low catalyst concentration led to the formation of BNNT films composed of entangled curly tubes, while high catalyst content resulted in very thick tubes with diameters up to ~350 nm in a semierect flower-like morphology. Extensive transmission electron microscopy (TEM) investigations revealed the diameter-dependent growth mechanisms for BNNTs; namely, thin and thick tubes with closed ends grew by base-growth and tip-growth mechanisms, respectively. However, high catalyst concentration motivated the formation of filled-with-catalyst BNNTs, which grew open-ended with a base-growth mechanism.

Journal Article
TL;DR: In this paper, the authors show that the Arabidopsis (Arabidopsis thaliana) seedling grafting system and a counterpart inducible system generate upwardly spreading long-distance silencing that travels not in the phloem but by template-dependent short-distance cell-to-cell spread through the cells of the central stele.
Abstract: Upward long-distance mobile silencing has been shown to be phloem mediated in several different solanaceous species. We show that the Arabidopsis (Arabidopsis thaliana) seedling grafting system and a counterpart inducible system generate upwardly spreading long-distance silencing that travels not in the phloem but by template-dependent reiterated short-distance cell-to-cell spread through the cells of the central stele. Examining the movement of the silencing front revealed a largely unrecognized zone of tissue, below the apical meristem, that is resistant to the silencing signal and that may provide a gating or protective barrier against small RNA signals. Using a range of auxin and actin transport inhibitors revealed that, in this zone, alteration of vesicular transport together with cytoskeleton dynamics prevented or retarded the spread of the silencing signal. This suggests that small RNAs are transported from cell to cell via plasmodesmata rather than diffusing from their source in the phloem.

Journal Article
TL;DR: In this article, the effect of Ca as a co-dopant and as a sintering aid (as CaO), on the sinterability, proton conductivity, and fuel cell performance of BZY was investigated.
Abstract: Although BaZr 0.8Y 0.2O 3-δ(BZY) possesses large bulk proton conductivity and excellent chemical stability, its poor sinterability and grain boundaries block proton conduction. In this work, the effect of Ca as a co-dopant and as a sintering aid (as CaO), on the sinterability, proton conductivity, and fuel cell performance of BZY was investigated. The addition of 4 mol% CaO significantly improved the BZY sinterability: BZY pellets with densities of 92.7% and 97.5% with respect to the theoretical density were obtained after sintering at 1500°C and 1600°C, respectively. The improved BZY sinterability by CaO addition resulted also in a large proton conductivity; at 600°C, the total conductivity of BZY-CaO was 2.14 × 10 -3 S/cm, in wet Ar. Anode-supported fuel cells with 25 μm-thick BZY-CaO electrolyte membranes were fabricated by a dual-layer co-firing technique. The peak power density of the fuel cell with a BZY-Ni/BZY-4CaO/BZY-LSCF (La 0.6Sr 0.4Fe 0.8Co 0.2O 3-δ) configuration was 141 mW/cm 2 at 700°C, several times larger than the reported values of BZY electrolyte membrane fuel cells sintered with the addition of CuO or ZnO, demonstrating promising features for practical fuel cell applications.