scispace - formally typeset
Search or ask a question

Showing papers in "Science in 1986"


Journal ArticleDOI
04 Apr 1986-Science
TL;DR: The approach was to apply the techniques of cell culture to unravel the postulated regulatory defect in FH, which led to the discovery of a cell surface receptor for a plasma cholesterol transport protein called low density lipoprotein (LDL) and to the elucidation of the mechanism by which this receptor mediates feedback control of cholesterol synthesis.
Abstract: In 1901 a physician, Archibald Garrod, observed a patient with black urine. He used this simple observation to demonstrate that a single mutant gene can produce a discrete block in a biochemical pathway, which he called an “inborn error of metabolism”. Garrod’s brilliant insight anticipated by 40 years the one gene-one enzyme concept of Beadle and Tatum. In similar fashion the chemist Linus Pauling and the biochemist Vernon Ingram, through study of patients with sickle cell anemia, showed that mutant genes alter the amino acid sequences of proteins. Clearly, many fundamental advances in biology were spawned by perceptive studies of human genetic diseases (1). We began our work in 1972 in an attempt to understand a human genetic disease, familial hypercholesterolemia or FH. In these patients the concentration of cholesterol in blood is elevated many fold above normal and heart attacks occur early in life. We postulated that this dominantly inherited disease results from a failure of end-product repression of cholesterol synthesis. The possibility fascinated us because genetic defects in feedback regulation had not been observed previously in humans or animals, and we hoped that study of this disease might throw light on fundamental regulatory mechanisms. Our approach was to apply the techniques of cell culture to unravel the postulated regulatory defect in FH. These studies led to the discovery of a cell surface receptor for a plasma cholesterol transport protein called low density lipoprotein (LDL) and to the elucidation of the mechanism by which this receptor mediates feedback control of cholesterol synthesis (2,3). FH was shown to be caused by inherited defects in the gene encoding the LDL receptor, which disrupt the normal control of cholesterol metabolism. Study of the LDL receptor in turn led to the understanding of receptor-mediated endocytosis, a genera! process by which cells communicate with each other through internalization of regulatory and nutritional molecules (4). Receptor-mediated endocytosis differs from previously described biochemical pathways because it depends upon the continuous and highly controlled movement of membraneembedded proteins from one cell organelle to another in a process termed

5,488 citations


Journal ArticleDOI
18 Jul 1986-Science
TL;DR: A novel role of this protein kinase system seems to give a logical basis for clarifying the biochemical mechanism of signal transduction, and to add a new dimension essential to the understanding of cell-to-cell communication.
Abstract: Protein kinase C, an enzyme that is activated by the receptor-mediated hydrolysis of inositol phospholipids, relays information in the form of a variety of extracellular signals across the membrane to regulate many Ca2+-dependent processes. At an early phase of cellular responses, the enzyme appears to have a dual effect, providing positive forward as well as negative feedback controls over various steps of its own and other signaling pathways, such as the receptors that are coupled to inositol phospholipid hydrolysis and those of some growth factors. In biological systems, a positive signal is frequently followed by immediate negative feedback regulation. Such a novel role of this protein kinase system seems to give a logical basis for clarifying the biochemical mechanism of signal transduction, and to add a new dimension essential to our understanding of cell-to-cell communication.

5,006 citations


Journal ArticleDOI
26 Sep 1986-Science
TL;DR: The direction of movement was found to be uniquely predicted by the action of a population of motor cortical neurons that can be monitored during various tasks, and similar measures in other neuronal populations could be of heuristic value where there is a neural representation of variables with vectorial attributes.
Abstract: Although individual neurons in the arm area of the primate motor cortex are only broadly tuned to a particular direction in three-dimensional space, the animal can very precisely control the movement of its arm. The direction of movement was found to be uniquely predicted by the action of a population of motor cortical neurons. When individual cells were represented as vectors that make weighted contributions along the axis of their preferred direction (according to changes in their activity during the movement under consideration) the resulting vector sum of all cell vectors (population vector) was in a direction congruent with the direction of movement. This population vector can be monitored during various tasks, and similar measures in other neuronal populations could be of heuristic value where there is a neural representation of variables with vectorial attributes.

2,921 citations


Journal ArticleDOI
24 Oct 1986-Science
TL;DR: It appears that a single protein mediator (cachectin) is capable of inducing many of the deleterious effects of endotoxin.
Abstract: Cachectin (tumor necrosis factor), a protein produced in large quantities by endotoxin-activated macrophages, has been implicated as an important mediator of the lethal effect of endotoxin. Recombinant human cachectin was infused into rats in an effort to determine whether cachectin, by itself, can elicit the derangements of host physiology caused by administration of endotoxin. When administered in quantities similar to those produced endogenously in response to endotoxin, cachectin causes hypotension, metabolic acidosis, hemoconcentration, and death within minutes to hours, as a result of respiratory arrest. Hyperglycemia and hyperkalemia were also observed after infusion. At necropsy, diffuse pulmonary inflammation and hemorrhage were apparent on gross and histopathologic examination, along with ischemic and hemorrhagic lesions of the gastrointestinal tract, and acute renal tubular necrosis. Thus, it appears that a single protein mediator (cachectin) is capable of inducing many of the deleterious effects of endotoxin.

2,571 citations


Journal ArticleDOI
17 Oct 1986-Science
TL;DR: The rapid degradation of injected alpha- and beta-casein as well as the inverse correlation of PEST regions with intracellular stability indicate that the presence of these regions can result in the rapid intrace cellular degradation of the proteins containing them.
Abstract: The amino acid sequences of ten proteins with intracellular half-lives less than 2 hours contain one or more regions rich in proline (P), glutamic acid (E), serine (S), and threonine (T). These PEST regions are generally, but not always, flanked by clusters containing several positively charged amino acids. Similar inspection of 35 proteins with intracellular half-lives between 20 and 220 hours revealed that only three contain a PEST region. On the basis of this information, it was anticipated that caseins, which contain several PEST sequences, would be rapidly degraded within eukaryotic cells. This expectation was confirmed by red blood cell-mediated microinjection of 125I-labeled caseins into HeLa cells where they exhibited half-lives of less than 2 hours. The rapid degradation of injected alpha- and beta-casein as well as the inverse correlation of PEST regions with intracellular stability indicate that the presence of these regions can result in the rapid intracellular degradation of the proteins containing them.

2,547 citations


Journal ArticleDOI
23 May 1986-Science
TL;DR: Two metabolites of the steroid hormones progesterone and deoxycorticosterone are potent barbiturate-like ligands of the gamma-aminobutyric acid (GABA) receptor-chloride ion channel complex and potentiated the inhibitory actions of GABA in cultured rat hippocampal and spinal cord neurons, which may explain the ability of certain steroid hormones to rapidly alter neuronal excitability.
Abstract: Two metabolites of the steroid hormones progesterone and deoxycorticosterone, 3 alpha-hydroxy-5 alpha-dihydroprogesterone and 3 alpha, 5 alpha-tetrahydrodeoxycorticosterone, are potent barbiturate-like ligands of the gamma-aminobutyric acid (GABA) receptor-chloride ion channel complex. At concentrations between 10(-7) and 10(-5)M both steroids inhibited binding of the convulsant t-butylbicyclophosphorothionate to the GABA-receptor complex and increased the binding of the benzodiazepine flunitrazepam; they also stimulated chloride uptake (as measured by uptake of 36Cl-) into isolated brain vesicles, and potentiated the inhibitory actions of GABA in cultured rat hippocampal and spinal cord neurons. These data may explain the ability of certain steroid hormones to rapidly alter neuronal excitability and may provide a mechanism for the anesthetic and hypnotic actions of naturally occurring and synthetic anesthetic steroids.

2,175 citations


Journal ArticleDOI
08 Aug 1986-Science
TL;DR: A new conceptual framework and a minimization principle together provide an understanding of computation in model neural circuits that represent an approximation to biological neurons in which a simplified set of important computational properties is retained.
Abstract: A new conceptual framework and a minimization principle together provide an understanding of computation in model neural circuits. The circuits consist of nonlinear graded-response model neurons organized into networks with effectively symmetric synaptic connections. The neurons represent an approximation to biological neurons in which a simplified set of important computational properties is retained. Complex circuits solving problems similar to those essential in biology can be analyzed and understood without the need to follow the circuit dynamics in detail. Implementation of the model with electronic devices will provide a class of electronic circuits of novel form and function.

2,019 citations


Journal ArticleDOI
10 Oct 1986-Science
TL;DR: The recognition of an amino-terminal residue in a protein may mediate both the metabolic stability of the protein and the potential for regulation of its stability as predicted by the N-end rule.
Abstract: When a chimeric gene encoding a ubiquitin-beta-galactosidase fusion protein is expressed in the yeast Saccharomyces cerevisiae, ubiquitin is cleaved off the nascent fusion protein, yielding a deubiquitinated beta-galactosidase (beta gal). With one exception, this cleavage takes place regardless of the nature of the amino acid residue of beta gal at the ubiquitin-beta gal junction, thereby making it possible to expose different residues at the amino-termini of the otherwise identical beta gal proteins. The beta gal proteins thus designed have strikingly different half-lives in vivo, from more than 20 hours to less than 3 minutes, depending on the nature of the amino acid at the amino-terminus of beta gal. The set of individual amino acids can thus be ordered with respect to the half-lives that they confer on beta gal when present at its amino-terminus (the "N-end rule"). The currently known amino-terminal residues in long-lived, noncompartmentalized intracellular proteins from both prokaryotes and eukaryotes belong exclusively to the stabilizing class as predicted by the N-end rule. The function of the previously described posttranslational addition of single amino acids to protein amino-termini may also be accounted for by the N-end rule. Thus the recognition of an amino-terminal residue in a protein may mediate both the metabolic stability of the protein and the potential for regulation of its stability.

1,902 citations


Journal ArticleDOI
19 Sep 1986-Science
TL;DR: The adoptive transfer of tumor-infiltrating lymphocytes (TIL) expanded in interleukin-2 (IL-2) to mice bearing micrometastases from various types of tumors showed that TIL are 50 to 100 times more effective in their therapeutic potency than are lymphokine-activated killer cells.
Abstract: The adoptive transfer of tumor-infiltrating lymphocytes (TIL) expanded in interleukin-2 (IL-2) to mice bearing micrometastases from various types of tumors showed that TIL are 50 to 100 times more effective in their therapeutic potency than are lymphokine-activated killer (LAK) cells. Therefore the use of TIL was explored for the treatment of mice with large pulmonary and hepatic metastatic tumors that do not respond to LAK cell therapy. Although treatment of animals with TIL alone or cyclophosphamide alone had little impact, these two modalities together mediated the elimination of large metastatic cancer deposits in the liver and lung. The combination of TIL and cyclophosphamide was further potentiated by the simultaneous administration of IL-2. With the combination of cyclophosphamide, TIL, and IL-2, 100% of mice (n = 12) bearing the MC-38 colon adenocarcinoma were cured of advanced hepatic metastases, and up to 50% of mice were cured of advanced pulmonary metastases. Techniques have been developed to isolate TIL from human tumors. These experiments provide a rationale for the use of TIL in the treatment of humans with advanced cancer.

1,775 citations


Journal ArticleDOI
11 Jul 1986-Science
TL;DR: It is suggested that mononuclear phagocytes may serve as primary targets for infection and agents for virus dissemination and that these virus-infected cells may play a role in the pathogenesis of the disease.
Abstract: Cells with properties characteristic of mononuclear phagocytes were evaluated for infectivity with five different isolates of the AIDS virus, HTLV-III/LAV. Mononuclear phagocytes cultured from brain and lung tissues of AIDS patients harbored the virus. In vitro-infected macrophages from the peripheral blood, bone marrow, or cord blood of healthy donors produced large quantities of virus. Virus production persisted for at least 40 days and was not dependent on host cell proliferation. Giant multinucleated cells were frequently observed in the macrophage cultures and numerous virus particles, often located within vacuole-like structures, were present in infected cells. The different virus isolates were compared for their ability to infect macrophages and T cells. Isolates from lung- and brain-derived macrophages had a significantly higher ability to infect macrophages than T cells. In contrast, the prototype HTLV-III beta showed a 10,000-fold lower ability to infect macrophages than T cells and virus production was one-tenth that in macrophage cultures infected with other isolates, indicating that a particular variant of HTLV-III/LAV may have a preferential tropism for macrophages or T cells. These results suggest that mononuclear phagocytes may serve as primary targets for infection and agents for virus dissemination and that these virus-infected cells may play a role in the pathogenesis of the disease.

1,762 citations


Journal ArticleDOI
05 Sep 1986-Science
TL;DR: The identity of an important cell type that supports replication of the AIDS retrovirus in brain tissue was determined in two affected individuals and these cells were mononucleated and multinucleated macrophages that actively synthesized viral RNA and produced progeny virions in the brains of the patients.
Abstract: One of the common neurological complications in patients with the acquired immune deficiency syndrome (AIDS) is a subacute encephalopathy with progressive dementia. By using the techniques of cocultivation for virus isolation, in situ hybridization, immunocytochemistry, and transmission electron microscopy, the identity of an important cell type that supports replication of the AIDS retrovirus in brain tissue was determined in two affected individuals. These cells were mononucleated and multinucleated macrophages that actively synthesized viral RNA and produced progeny virions in the brains of the patients. Infected brain macrophages may serve as a reservoir for virus and as a vehicle for viral dissemination in the infected host.

Journal ArticleDOI
11 Apr 1986-Science
TL;DR: The isolation and sequencing of genomic and complementary DNA clones that encode the apoproteins of these three pigments are described and the deduced amino acid sequences show 41 +/- 1 percent identity with rhodopsin.
Abstract: Human color vision is based on three light-sensitive pigments. The isolation and sequencing of genomic and complementary DNA clones that encode the apoproteins of these three pigments are described. The deduced amino acid sequences show 41 +/- 1 percent identity with rhodopsin. The red and green pigments show 96 percent mutual identity but only 43 percent identity with the blue pigment. Green pigment genes vary in number among color-normal individuals and, together with a single red pigment gene, are proposed to reside in a head-to-tail tandem array within the X chromosome.

Journal ArticleDOI
08 Aug 1986-Science
TL;DR: The results strongly support the existence of an immunoregulatory feedback circuit in which IL-1 acts as an afferent and glucocorticoid as an efferent hormonal signal in which the pituitary-adrenal axis is stimulated.
Abstract: The production and action of immunoregulatory cytokines, including interleukin-1 (IL-1), are inhibited by glucocorticoid hormones in vivo and in vitro Conversely, glucocorticoid blood levels were increased by factors released by human leukocytes exposed to Newcastle disease virus preparations This activity was neutralized by an antibody to IL-1 Therefore the capacity of IL-1 to stimulate the pituitary-adrenal axis was tested Administration of subpyrogenic doses of homogeneous human monocyte-derived IL-1 or the pI 7 form of human recombinant IL-1 to mice and rats increased blood levels of adrenocorticotropic hormone (ACTH) and glucocorticoids Another monokine, tumor necrosis factor, and the lymphokines IL-2 and gamma-interferon had no such effects when administered in doses equivalent to or higher than those of IL-1 The stimulatory effect of IL-1 on the pituitary-adrenal axis seemed not to be mediated by the secondary release of products from mature T lymphocytes since IL-1 was endocrinologically active when injected into athymic nude mice These results strongly support the existence of an immunoregulatory feedback circuit in which IL-1 acts as an afferent and glucocorticoid as an efferent hormonal signal

Journal ArticleDOI
Enrique Rozengurt1
10 Oct 1986-Science
TL;DR: Polypeptide growth factors, regulatory peptides, and a variety of pharmacological agents acting alone or synergistically induce mitogenesis in cultured fibroblasts are integrated in a unified hypothesis for the regulation of fibroblast growth.
Abstract: Polypeptide growth factors, regulatory peptides, and a variety of pharmacological agents acting alone or synergistically induce mitogenesis in cultured fibroblasts. The early signals in the membrane, cytosol, and nucleus promoted by these extracellular factors, together with their mitogenic effectiveness, are integrated in a unified hypothesis for the regulation of fibroblast growth.

Journal ArticleDOI
31 Oct 1986-Science
TL;DR: A novel human B-lymphotropic virus (HBLV) was isolated from the peripheral blood leukocytes of six individuals and selectively infected freshly isolated human B cells and converted them into large, refractile mono- or binucleated cells with nuclear and cytoplasmic inclusion bodies.
Abstract: A novel human B-lymphotropic virus (HBLV) was isolated from the peripheral blood leukocytes of six individuals: two HTLV-III seropositive patients from the United States (one with AIDS-related lymphoma and one with dermatopathic lymphadenopathy), three HTLV-III seronegative patients from the United States (one with angioimmunoblastic lymphadenopathy, one with cutaneous T-cell lymphoma, and one with immunoblastic lymphoma), and one HTLV-III seronegative patient with acute lymphocytic leukemia from Jamaica. All six isolates were closely related by antigenic analysis, and sera from all six virus-positive patients reacted immunologically with each virus isolate. In contrast, only four sera from 220 randomly selected healthy donors and none from 12 AIDS patients without associated lymphoma were seropositive. The virus selectively infected freshly isolated human B cells and converted them into large, refractile mono- or binucleated cells with nuclear and cytoplasmic inclusion bodies. HBLV is morphologically similar to viruses of the herpesvirus family but is readily distinguishable from the known human and nonhuman primate herpesviruses by host range, in vitro biological effects, and antigenic features.

Journal ArticleDOI
18 Jul 1986-Science
TL;DR: It is established that this new retrovirus, here referred to as LAV-II, is distantly related to LAV and distinct from STLV-IIImac, suggesting that the West African AIDS virus may be more closely related to this simian virus than toLAV.
Abstract: The etiological agent of AIDS, LAV/HTLV-III, is common in Central Africa but is not endemic in other areas of that continent. A novel human retrovirus, distinct from LAV/HTLV-III, has now been isolated from two AIDS patients from West Africa. Partial characterization of this virus revealed that it has biological and morphological properties very similar to LAV but that it differs in some of its antigenic components. Although the core antigens may share some common epitopes, the West African AIDS retrovirus and LAV differ substantially in their envelope glycoproteins. The envelope antigen of the West African virus can be recognized by serum from a macaque with simian AIDS infected by the simian retrovirus termed STLV-IIImac, suggesting that the West African AIDS virus may be more closely related to this simian virus than to LAV. Hybridization experiments with LAV subgenomic probes further established that this new retrovirus, here referred to as LAV-II, is distantly related to LAV and distinct from STLV-IIImac.

Journal ArticleDOI
19 Dec 1986-Science
TL;DR: Electric fields can be manipulated by a method in which multiple electrodes are arranged along a closed contour and clamped to predetermined electric potentials and the pattern of separation is independent of position in the gel, which is an advantage over previous methods.
Abstract: Electric fields can be manipulated by a method in which multiple electrodes are arranged along a closed contour and clamped to predetermined electric potentials. This method may be applied to a broad range of problems in the separation of macromolecules by gel electrophoresis. DNA molecules as large as 2 megabases can be well separated with a contour-clamped homogeneous electric field alternating between two orientations 120 degrees apart. The pattern of separation is independent of position in the gel, which is an advantage over previous methods. DNA less than 50 kilobases can be separated without distortion even at high voltage with a nonalternating contour-clamped homogeneous field. Decreased band broadening in DNA less than 200 bases can be achieved with a contour-clamped inhomogeneous field.

Journal ArticleDOI
07 Mar 1986-Science
TL;DR: A complementary DNA clone containing the entire translated portion of the messenger RNA for the estrogen receptor from MCF-7 human breast cancer cells was sequenced and then expressed in Chinese hamster ovary cells to give a functional protein, which suggests that steroid receptor genes and the avian erythroblastosis viral oncogene are derived from a common primordial gene.
Abstract: The mechanism by which the estrogen receptor and other steroid hormone receptors regulate gene expression in eukaryotic cells is not well understood. In this study, a complementary DNA clone containing the entire translated portion of the messenger RNA for the estrogen receptor from MCF-7 human breast cancer cells was sequenced and then expressed in Chinese hamster ovary (CHO-K1) cells to give a functional protein. An open reading frame of 1785 nucleotides in the complementary DNA corresponded to a polypeptide of 595 amino acids and a molecular weight of 66,200, which is in good agreement with published molecular weight values of 65,000 to 70,000 for the estrogen receptor. Homogenates of transformed Chinese hamster ovary cells containing a protein that bound [3H]estradiol and sedimented as a 4S complex in salt-containing sucrose gradients and as an 8 to 9S complex in the absence of salt. Interaction of this receptor-[3H]estradiol complex with a monoclonal antibody that is specific for primate ER confirms the identity of the expressed complementary DNA as human estrogen receptor. Amino acid sequence comparisons revealed significant regional homology among the human estrogen receptor, the human glucocorticoid receptor, and the putative v-erbA oncogene product. This suggests that steroid receptor genes and the avian erythroblastosis viral oncogene are derived from a common primordial gene. The homologous region, which is rich in cysteine, lysine, and arginine, may represent the DNA-binding domain of these proteins.

Journal ArticleDOI
09 May 1986-Science
TL;DR: The results of these experiments indicate that plants can be genetically transformed for resistance to virus disease development.
Abstract: A chimeric gene containing a cloned cDNA of the coat protein (CP) gene of tobacco mosaic virus (TMV) was introduced into tobacco cells on a Ti plasmid of Agrobacterium tumefaciens from which tumor inducing genes had been removed. Plants regenerated from transformed cells expressed TMV mRNA and CP as a nuclear trait. Seedlings from self-fertilized transgenic plants were inoculated with TMV and observed for development of disease symptoms. The seedlings that expressed the CP gene were delayed in symptom development and 10 to 60 percent of the transgenic plants failed to develop symptoms for the duration of the experiments. Increasing the concentration of TMV in the inoculum shortened the delay in appearance of symptoms. The results of these experiments indicate that plants can be genetically transformed for resistance to virus disease development.

Journal ArticleDOI
04 Apr 1986-Science
TL;DR: Experiments were conducted to isolate and characterize the gene and gene product of a human hematopoietic colony-stimulating factor with pluripotent biological activities, which has the ability to induce differentiation of a murine myelomonocytic leukemia cell line WEHI-3B(D+) and cells from patients with newly diagnosed acute nonlymphocytic cancer.
Abstract: Experiments were conducted to isolate and characterize the gene and gene product of a human hematopoietic colony-stimulating factor with pluripotent biological activities. This factor has the ability to induce differentiation of a murine myelomonocytic leukemia cell line WEHI-3B(D+) and cells from patients with newly diagnosed acute nonlymphocytic leukemia (ANLL). A complementary DNA copy of the gene encoding a pluripotent human granulocyte colony-stimulating factor (hG-CSF) was cloned and expressed in Escherichia coli. The recombinant form of hG-CSF is capable of supporting neutrophil proliferation in a CFU-GM assay. In addition, recombinant hG-CSF can support early erythroid colonies and mixed colony formation. Competitive binding studies done with 125I-labeled hG-CSF and cell samples from two patients with newly diagnosed human leukemias as well as WEHI-3B(D+) cells showed that one of the human leukemias (ANLL, classified as M4) and the WEHI-3B(D+) cells have receptors for hG-CSF. Furthermore, the murine WEHI-3B(D+) cells and human leukemic cells classified as M2, M3, and M4 were induced by recombinant hG-CSF to undergo terminal differentiation to macrophages and granulocytes. The secreted form of the protein produced by the bladder carcinoma cell line 5637 was found to be O-glycosylated and to have a molecular weight of 19,600.

Journal ArticleDOI
03 Oct 1986-Science
TL;DR: Isolation and renaturation of proteins purified from sodium dodecyl sulfate polyacrylamide gels allowed the identification of two polypeptides as those responsible for recognizing and interacting specifically with the GC-box promoter elements characteristic of Sp1 binding sites.
Abstract: The biochemical analysis of cellular trans-activators involved in promoter recognition provides an important step toward understanding the mechanisms of gene expression in animal cells. The promoter selective transcription factor, Sp1, has been purified from human cells to more than 95 percent homogeneity by sequence-specific DNA affinity chromatography. Isolation and renaturation of proteins purified from sodium dodecyl sulfate polyacrylamide gels allowed the identification of two polypeptides (105 and 95 kilodaltons) as those responsible for recognizing and interacting specifically with the GC-box promoter elements characteristic of Sp1 binding sites.

Journal ArticleDOI
23 May 1986-Science
TL;DR: Findings give new insight into the nature of the C3H/HeJ mutation and suggest an important mechanism by which glucocorticoids may act to suppress inflammation.
Abstract: Cachectin (tumor necrosis factor) is a macrophage hormone strongly implicated in the pathogenesis of endotoxin-induced shock. The availability of a DNA probe complementary to the cachectin messenger RNA (mRNA), as well as a specific antibody capable of recognizing the cachectin gene product, has made it possible to analyze the regulation of cachectin gene expression under a variety of conditions. Thioglycollate-elicited peritoneal macrophages obtained from mice contain a pool of cachectin mRNA that is not expressed as protein. When the cells are stimulated with endotoxin, large quantity of additional cachectin mRNA is produced, and immunoreactive cachectin is secreted. Macrophages from mice of the C3H/HeJ strain do not produce cachectin in response to endotoxin. A dual defect appears to prevent cachectin expression. First, a diminished quantity of cachectin mRNA is expressed in response to low concentrations of endotoxin. Second, a post-transcriptional defect prevents the production of cachectin protein. Macrophages from endotoxin-sensitive mice do not produce cachectin if they are first treated with dexamethasone, apparently for similar reasons. These findings give new insight into the nature of the C3H/HeJ mutation and suggest an important mechanism by which glucocorticoids may act to suppress inflammation.

Journal ArticleDOI
18 Apr 1986-Science
TL;DR: The purpose today is to describe the chemical synthesis of peptides and proteins and to discuss the use of the synthetic approach to answer various biological questions.
Abstract: The proteins, as the Greek root of their name implies, are of first rank in living systems, and their smaller relatives, the peptides, have now also been discovered to have important roles in biology. Among their members are many of the hormones, releasing factors, growth factors, ion carriers, antibiotics, toxins, and neuropeptides. My purpose today is to describe the chemical synthesis of peptides and proteins and to discuss the use of the synthetic approach to answer various biological questions. The story begins with Emil Fischer (1) at the turn of this century when he synthesized the first peptide and coined the name. The general chemical requirements were to block the carboxyl group of one amino acid and the amino group of the second amino acid. Then, by activation of the free carboxyl group the peptide bond could be formed, and selective removal of the two protecting groups would lead to the free dipeptide. Fischer himself was never able to find a suitable reversible blocking group for the amine function, but his former student Max Bergmann, with Zervas, was successful (2). Their design of the carbobenzoxy group ushered in a new era. When I began working on the synthesis of peptides many years later this same general scheme was universally in use and was very effective, having led, for example, to the first synthesis of a peptide hormone by Du Vigneaud in 1953 (3). It soon became clear to me, however, that such syntheses were difficult and time consuming and that a new approach was needed if large numbers of peptides were required or if larger and more complex peptides were to be made.

Journal ArticleDOI
15 Aug 1986-Science
TL;DR: The 2.8 A resolution three-dimensional structure of a complex between an antigen (lysozyme) and the Fab fragment from a monoclonal antibody against lysozyme has been determined and refined by x-ray crystallographic techniques.
Abstract: The 2.8 A resolution three-dimensional structure of a complex between an antigen (lysozyme) and the Fab fragment from a monoclonal antibody against lysozyme has been determined and refined by x-ray crystallographic techniques. No conformational changes can be observed in the tertiary structure of lysozyme compared with that determined in native crystalline forms. The quaternary structure of Fab is that of an extended conformation. The antibody combining site is a rather flat surface with protuberances and depressions formed by its amino acid side chains. The antigen-antibody interface is tightly packed, with 16 lysozyme and 17 antibody residues making close contacts. The antigen contacting residues belong to two stretches of the lysozyme polypeptide chain: residues 18 to 27 and 116 to 129. All the complementarity-determining regions and two residues outside hypervariable positions of the antibody make contact with the antigen. Most of these contacts (10 residues out of 17) are made by the heavy chain, and in particular by its third complementarity-determining region. Antigen variability and antibody specificity and affinity are discussed on the basis of the determined structure.

Journal ArticleDOI
24 Jan 1986-Science
TL;DR: A model of a blood vessel was constructed in vitro and electron microscopy showed that the endothelial cells lining the lumen and the smooth muscle cells in the wall were healthy and well differentiated.
Abstract: A model of a blood vessel was constructed in vitro. Its multilayered structure resembled that of an artery and it withstood physiological pressures. Electron microscopy showed that the endothelial cells lining the lumen and the smooth muscle cells in the wall were healthy and well differentiated. The lining of endothelial cells functioned physically, as a permeability barrier, and biosynthetically, producing von Willebrand's factor and prostacyclin. The strength of the model depended on its multiple layers of collagen integrated with a Dacron mesh.

Journal ArticleDOI
27 Jun 1986-Science
TL;DR: The identification of aminoguanidine as an inhibitor of advanced nonenzymatic glycosylation product formation makes possible precise experimental definition of the pathogenetic significance of this process and suggests a potential clinical role for aminogsuanidine in the future treatment of chronic diabetic complications.
Abstract: Age-associated increases in collagen cross-linking and accumulation of advanced glycosylation products are both accelerated by diabetes, suggesting that glucose-derived cross-link formation may contribute to the development of chronic diabetic complications as well as certain physical changes of aging. Aminoguanidine, a nucleophilic hydrazine compound, prevented both the formation of fluorescent advanced nonenzymatic glycosylation products and the formation of glucose-derived collagen cross-links in vitro. Aminoguanidine administration to rats was equally effective in preventing diabetes-induced formation of fluorescent advanced nonenzymatic glycosylation products and cross-linking of arterial wall connective tissue protein in vivo. The identification of aminoguanidine as an inhibitor of advanced nonenzymatic glycosylation product formation now makes possible precise experimental definition of the pathogenetic significance of this process and suggests a potential clinical role for aminoguanidine in the future treatment of chronic diabetic complications.

Journal ArticleDOI
01 Aug 1986-Science
TL;DR: TGF-beta's marked ability to enhance formation of connective tissue in vivo suggests several therapeutic applications.
Abstract: Transforming growth factor-beta (TGF-beta) is a multifunctional peptide that controls proliferation, differentiation, and other functions in many cell types. Many cells synthesize TGF-beta and essentially all of them have specific receptors for this peptide. TGF-beta regulates the actions of many other peptide growth factors and determines a positive or negative direction of their effects. Its marked ability to enhance formation of connective tissue in vivo suggests several therapeutic applications.

Journal ArticleDOI
24 Oct 1986-Science
TL;DR: A model is proposed whereby three different classes of proteins are sorted into different vesicles in the last Golgi compartment, the trans Golgi network, which corresponds to a tubular reticulum on the trans side of the Golgi stack.
Abstract: The Golgi complex is a series of membrane compartments through which proteins destined for the plasma membrane, secretory vesicles, and lysosomes move sequentially. A model is proposed whereby these three different classes of proteins are sorted into different vesicles in the last Golgi compartment, the trans Golgi network. This compartment corresponds to a tubular reticulum on the trans side of the Golgi stack, previously called Golgi endoplasmic reticulum lysosomes (GERL).

Journal ArticleDOI
27 Jun 1986-Science
TL;DR: An animal model of human amnesia in the monkey is developed, together with newly available neuropathological information from a well-studied human patient, which has permitted the identification of brain structures and connections involved in memory functions.
Abstract: Recent studies of animals with complex nervous systems, including humans and other primates, have improved our understanding of how the brain accomplishes learning and memory. Major themes of recent work include the locus of memory storage, the taxonomy of memory, the distinction between declarative and procedural knowledge, and the question of how memory changes with time, that is, the concepts of forgetting and consolidation. An important recent advance is the development of an animal model of human amnesia in the monkey. The animal model, together with newly available neuropathological information from a well-studied human patient, has permitted the identification of brain structures and connections involved in memory functions.

Journal ArticleDOI
11 Apr 1986-Science
TL;DR: This isochronic course of synaptogenesis in anatomically and functionally diverse regions indicates that the entire cerebral cortex develops as a whole and that the establishment of cell-to-cell communication in this structure may be orchestrated by a single genetic or humoral signal.
Abstract: Synapses develop concurrently and at identical rates in different layers of the visual, somatosensory, motor, and prefrontal areas of the primate cerebral cortex This isochronic course of synaptogenesis in anatomically and functionally diverse regions indicates that the entire cerebral cortex develops as a whole and that the establishment of cell-to-cell communication in this structure may be orchestrated by a single genetic or humoral signal This is in contrast to the traditional view of hierarchical development of the cortical regions and provides new insight into the maturation of cortical functions