scispace - formally typeset
Search or ask a question
JournalISSN: 2052-4463

Scientific Data 

Nature Portfolio
About: Scientific Data is an academic journal published by Nature Portfolio. The journal publishes majorly in the area(s): Medicine & Computer science. It has an ISSN identifier of 2052-4463. It is also open access. Over the lifetime, 3482 publications have been published receiving 112121 citations.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: The FAIR Data Principles as mentioned in this paper are a set of data reuse principles that focus on enhancing the ability of machines to automatically find and use the data, in addition to supporting its reuse by individuals.
Abstract: There is an urgent need to improve the infrastructure supporting the reuse of scholarly data. A diverse set of stakeholders—representing academia, industry, funding agencies, and scholarly publishers—have come together to design and jointly endorse a concise and measureable set of principles that we refer to as the FAIR Data Principles. The intent is that these may act as a guideline for those wishing to enhance the reusability of their data holdings. Distinct from peer initiatives that focus on the human scholar, the FAIR Principles put specific emphasis on enhancing the ability of machines to automatically find and use the data, in addition to supporting its reuse by individuals. This Comment is the first formal publication of the FAIR Principles, and includes the rationale behind them, and some exemplar implementations in the community.

7,602 citations

Journal ArticleDOI
TL;DR: The Medical Information Mart for Intensive Care (MIMIC-III) as discussed by the authors is a large, single-center database comprising information relating to patients admitted to critical care units at a large tertiary care hospital.
Abstract: MIMIC-III ('Medical Information Mart for Intensive Care') is a large, single-center database comprising information relating to patients admitted to critical care units at a large tertiary care hospital. Data includes vital signs, medications, laboratory measurements, observations and notes charted by care providers, fluid balance, procedure codes, diagnostic codes, imaging reports, hospital length of stay, survival data, and more. The database supports applications including academic and industrial research, quality improvement initiatives, and higher education coursework.

4,056 citations

Journal ArticleDOI
TL;DR: The Variable Infiltration Capacity model, a novel blending procedure incorporating the spatial correlation structure of CCD-estimates to assign interpolation weights, is presented and it is shown that CHIRPS can support effective hydrologic forecasts and trend analyses in southeastern Ethiopia.
Abstract: The Climate Hazards group Infrared Precipitation with Stations (CHIRPS) dataset builds on previous approaches to ‘smart’ interpolation techniques and high resolution, long period of record precipitation estimates based on infrared Cold Cloud Duration (CCD) observations. The algorithm i) is built around a 0.05° climatology that incorporates satellite information to represent sparsely gauged locations, ii) incorporates daily, pentadal, and monthly 1981-present 0.05° CCD-based precipitation estimates, iii) blends station data to produce a preliminary information product with a latency of about 2 days and a final product with an average latency of about 3 weeks, and iv) uses a novel blending procedure incorporating the spatial correlation structure of CCD-estimates to assign interpolation weights. We present the CHIRPS algorithm, global and regional validation results, and show how CHIRPS can be used to quantify the hydrologic impacts of decreasing precipitation and rising air temperatures in the Greater Horn of Africa. Using the Variable Infiltration Capacity model, we show that CHIRPS can support effective hydrologic forecasts and trend analyses in southeastern Ethiopia.

2,895 citations

Journal ArticleDOI
TL;DR: New global maps of the Köppen-Geiger climate classification at an unprecedented 1-km resolution for the present-day and for projected future conditions under climate change are presented, providing valuable indications of the reliability of the classifications.
Abstract: We present new global maps of the Koppen-Geiger climate classification at an unprecedented 1-km resolution for the present-day (1980–2016) and for projected future conditions (2071–2100) under climate change. The present-day map is derived from an ensemble of four high-resolution, topographically-corrected climatic maps. The future map is derived from an ensemble of 32 climate model projections (scenario RCP8.5), by superimposing the projected climate change anomaly on the baseline high-resolution climatic maps. For both time periods we calculate confidence levels from the ensemble spread, providing valuable indications of the reliability of the classifications. The new maps exhibit a higher classification accuracy and substantially more detail than previous maps, particularly in regions with sharp spatial or elevation gradients. We anticipate the new maps will be useful for numerous applications, including species and vegetation distribution modeling. The new maps including the associated confidence maps are freely available via www.gloh2o.org/koppen . Machine-accessible metadata file describing the reported data (ISA-Tab format)

2,434 citations

Journal ArticleDOI
TL;DR: In this article, the authors presented the CHELSA (Climatologies at high resolution for the earth's land surface areas) data of downscaled model output temperature and precipitation estimates of the ERA-Interim climatic reanalysis to a high resolution of 30'arc'sec.
Abstract: High-resolution information on climatic conditions is essential to many applications in environmental and ecological sciences. Here we present the CHELSA (Climatologies at high resolution for the earth’s land surface areas) data of downscaled model output temperature and precipitation estimates of the ERA-Interim climatic reanalysis to a high resolution of 30 arc sec. The temperature algorithm is based on statistical downscaling of atmospheric temperatures. The precipitation algorithm incorporates orographic predictors including wind fields, valley exposition, and boundary layer height, with a subsequent bias correction. The resulting data consist of a monthly temperature and precipitation climatology for the years 1979–2013. We compare the data derived from the CHELSA algorithm with other standard gridded products and station data from the Global Historical Climate Network. We compare the performance of the new climatologies in species distribution modelling and show that we can increase the accuracy of species range predictions. We further show that CHELSA climatological data has a similar accuracy as other products for temperature, but that its predictions of precipitation patterns are better. Machine-accessible metadata file describing the reported data (ISA-Tab format)

1,859 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
2023440
20221,263
2021293
2020427
2019378
2018296