scispace - formally typeset
Search or ask a question
JournalISSN: 0895-0695

Seismological Research Letters 

Seismological Society of America
About: Seismological Research Letters is an academic journal published by Seismological Society of America. The journal publishes majorly in the area(s): Induced seismicity & Aftershock. It has an ISSN identifier of 0895-0695. Over the lifetime, 3452 publications have been published receiving 79132 citations. The journal is also known as: SRL.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors developed modifications to empirical strong ground motion attenuation relations to account for the effects of rupture directivity on strong motion amplitudes and durations, based on an empirical analysis of near-fault data.
Abstract: Rupture directivity effects cause spatial variations in ground motion amplitude and duration around faults and cause differences between the strike-normal and strike-parallel components of horizontal ground motion amplitudes, which also have spatial variation around the fault. These variations become significant at a period of 0.6 second and generally grow in size with increasing period. We have developed modifications to empirical strong ground motion attenuation relations to account for the effects of rupture directivity on strong motion amplitudes and durations. The modifications are based on an empirical analysis of near-fault data. The ground motion parameters that are modified include the average horizontal response spectral acceleration, the duration of the acceleration time history, and the ratio of strike-normal to strike-parallel spectral acceleration. The parameters upon which the adjustments to average horizontal amplitude and duration depend are the fraction of the fault rupture that occurs on the part of the fault that lies between the hypocenter and the site, and the angle between the fault plane and the path from the hypocenter to the site. Since both of these parameters can be derived from the hypocenter location and the fault geometry, the model of rupture directivity effects on ground motions that we have developed can be directly included in probabilistic seismic hazard calculations. The spectral acceleration is larger for periods longer than 0.6 second, and the duration is smaller, when rupture propagates toward a site. For sites located close to faults, the strike-normal spectral acceleration is larger than the strike-parallel spectral acceleration at periods longer than 0.6 second in a manner that depends on magnitude, distance, and angle. To facilitate the selection of time histories that represent near-fault ground motion conditions in an appropriate manner, we provide a list of near-fault records indicating the rupture directivity parameters that each contains.

1,219 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide tables for estimating random horizontal component peak acceleration and 5 percent damped pseudo-acceleration response spectra in terms of the natural, rather than common, logarithm of the ground-motion parameter.
Abstract: In this paper we summarize our recently-published work on estimating horizontal response spectra and peak acceleration for shallow earthquakes in western North America. Although none of the sets of coefficients given here for the equations are new, for the convenience of the reader and in keeping with the style of this special issue, we provide tables for estimating random horizontal-component peak acceleration and 5 percent damped pseudo-acceleration response spectra in terms of the natural, rather than common, logarithm of the ground-motion parameter. The equations give ground motion in terms of moment magnitude, distance, and site conditions for strike-slip, reverse-slip, or unspecified faulting mechanisms. Site conditions are represented by the shear velocity averaged over the upper 30 m, and recommended values of average shear velocity are given for typical rock and soil sites and for site categories used in the National Earthquake Hazards Reduction Program's recommended seismic code provisions. In addition, we stipulate more restrictive ranges of magnitude and distance for the use of our equations than in our previous publications. Finally, we provide tables of input parameters that include a few corrections to site classifications and earthquake magnitude (the corrections made a small enough difference in the ground-motion predictions that we chose not to change the coefficients of the prediction equations).

1,129 citations

Journal ArticleDOI
TL;DR: In this article, empirical response spectral attenuation relations for the average horizontal and vertical component for shallow earthquakes in active tectonic regions were derived using a database of 655 recordings from 58 earthquakes.
Abstract: Using a database of 655 recordings from 58 earthquakes, empirical response spectral attenuation relations are derived for the average horizontal and vertical component for shallow earthquakes in active tectonic regions. A new feature in this model is the inclusion of a factor to distinguish between ground motions on the hanging wall and footwall of dipping faults. The site response is explicitly allowed to be non-linear with a dependence on the rock peak acceleration level.

1,026 citations

Journal ArticleDOI
Stefan Wiemer1
TL;DR: There is a handy-dandy software package ideally suited to answering exactly this question, ZMAP, developed by Stefan Wiemer, which allows the user to examine an earthquake catalog from many different angles and helps the user get the most out of the analyzed catalog.
Abstract: The Electronic Seismologist (ES) has been known to actually do some research in the field of seismology from time to time. As an operator of a seismic monitoring network the research done often is related to the seismicity of the monitored region. Detecting changes or trends in seismicity is relevant to earthquake and volcano hazards, but are the trends detected real or only an artifact of changes in the network operating parameters? Because all seismic networks evolve, change staff, change software and hardware, there is always the nagging feeling, if not outright knowledge, that interesting patterns in the catalog reflect network changes rather than changes in the Earth. How can one tell the difference? The ES is happy to report that there is a handy-dandy software package ideally suited to answering exactly this question (and many others). ZMAP , developed by Stefan Wiemer, allows the user to examine an earthquake catalog from many different angles. Not only does it include the traditional map, cross-section, and time sequence parameters, but also several others, such as event size and mechanism. These can be combined in interesting ways to present the user with different “views” into the data. Considerable seismological acumen lies behind the use and presentation of these parameters, which helps the user get the most out of the analyzed catalog. ZMAP is fairly intuitive to use and produces attractive output. In fact, the ES actually has fun “playing” with it and gets useful results besides. Perhaps one of the best ways to get a sense of how ZMAP might be used is to take a tour of case studies. The following includes many examples, and if they're not enough there are a slew of references where one can find more. In his traditional groveling way the ES has prevailed on Stefan …

971 citations

Journal ArticleDOI
TL;DR: ObsPy as discussed by the authors is a Python toolbox that simplifies the usage of Python programming for seismologists by providing direct access to the actual time series, allowing the use of powerful numerical array-programming modules like NumPy (http://numpy.thz.edu/manuals/sac/Manual.html), as well as filtering, instrument simulation, triggering, and plotting.
Abstract: The wide variety of computer platforms, file formats, and methods to access seismological data often requires considerable effort in preprocessing such data. Although preprocessing work-flows are mostly very similar, few software standards exist to accomplish this task. The objective of ObsPy is to provide a Python toolbox that simplifies the usage of Python programming for seismologists. It is conceptually similar to SEATREE (Milner and Thorsten 2009) or the exploration seismic software project MADAGASCAR (http://www.reproducibility.org). In ObsPy the following essential seismological processing routines are implemented and ready to use: reading and writing data only SEED/MiniSEED and Dataless SEED (http://www.iris.edu/manuals/SEEDManual_V2.4.pdf), XML-SEED (Tsuboi et al. 2004), GSE2 (http://www.seismo.ethz.ch/autodrm/downloads/provisional_GSE2.1.pdf) and SAC (http://www.iris.edu/manuals/sac/manual.html), as well as filtering, instrument simulation, triggering, and plotting. There is also support to retrieve data from ArcLink (a distributed data request protocol for accessing archived waveform data, see Hanka and Kind 1994) or a SeisHub database (Barsch 2009). Just recently, modules were added to read SEISAN data files (Havskov and Ottemoller 1999) and to retrieve data with the IRIS/FISSURES data handling interface (DHI) protocol (Malone 1997). Python gives the user all the features of a full-fledged programming language including a large collection of scientific open-source modules. ObsPy extends Python by providing direct access to the actual time series, allowing the use of powerful numerical array-programming modules like NumPy (http://numpy.scipy.org) or SciPy (http://scipy.org). Results can be visualized using modules such as matplotlib (2D) (Hunter 2007) or MayaVi (3D) (http://code.enthought.com/projects/mayavi/). This is an advantage over the most commonly used seismological analysis packages SAC, SEISAN, SeismicHandler (Stammler 1993), or PITSA (Scherbaum and Johnson 1992), which do not provide methods for general numerical array manipulation. Because Python and its previously mentioned modules are open-source, there …

923 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
2023106
2022269
2021293
2020293
2019190
2018224