scispace - formally typeset
Search or ask a question

Showing papers in "Sensors in 2008"


Journal ArticleDOI
07 Mar 2008-Sensors
TL;DR: In this article, the most common traditional traditional techniques, such as cyclic voltammetry, chronoamperometry, chronopotentiometry, impedance spectroscopy, and various field-effect transistor based methods are presented along with selected promising novel approaches, including nanowire or magnetic nanoparticle-based biosensing.
Abstract: Quantification of biological or biochemical processes are of utmost importance for medical, biological and biotechnological applications. However, converting the biological information to an easily processed electronic signal is challenging due to the complexity of connecting an electronic device directly to a biological environment. Electrochemical biosensors provide an attractive means to analyze the content of a biological sample due to the direct conversion of a biological event to an electronic signal. Over the past decades several sensing concepts and related devices have been developed. In this review, the most common traditional techniques, such as cyclic voltammetry, chronoamperometry, chronopotentiometry, impedance spectroscopy, and various field-effect transistor based methods are presented along with selected promising novel approaches, such as nanowire or magnetic nanoparticle-based biosensing. Additional measurement techniques, which have been shown useful in combination with electrochemical detection, are also summarized, such as the electrochemical versions of surface plasmon resonance, optical waveguide lightmode spectroscopy, ellipsometry, quartz crystal microbalance, and scanning probe microscopy. The signal transduction and the general performance of electrochemical sensors are often determined by the surface architectures that connect the sensing element to the biological sample at the nanometer scale. The most common surface modification techniques, the various electrochemical transduction mechanisms, and the choice of the recognition receptor molecules all influence the ultimate sensitivity of the sensor. New nanotechnology-based approaches, such as the use of engineered ion-channels in lipid bilayers, the encapsulation of enzymes into vesicles, polymersomes, or polyelectrolyte capsules provide additional possibilities for signal amplification. In particular, this review highlights the importance of the precise control over the delicate interplay between surface nano-architectures, surface functionalization and the chosen sensor transducer principle, as well as the usefulness of complementary characterization tools to interpret and to optimize the sensor response.

1,550 citations


Journal ArticleDOI
25 Jan 2008-Sensors
TL;DR: Transducers are described which are able to convert the non-electrical changes of the physical properties of stimuli-responsive hydrogels into an electrical signal and the specific sensor properties, design rules and general conditions for sensor applications are discussed.
Abstract: Stimuli-responsive hydrogels are materials with great potential for development of active functionalities in fluidics and micro-fluidics. Based on the current state of research on pH sensors, hydrogel sensors are described qualitatively and quantitatively for the first time. The review introduces the physical background of the special properties of stimuli-responsive hydrogels. Following, transducers are described which are able to convert the non-electrical changes of the physical properties of stimuli-responsive hydrogels into an electrical signal. Finally, the specific sensor properties, design rules and general conditions for sensor applications are discussed.

688 citations


Journal ArticleDOI
28 Mar 2008-Sensors
TL;DR: Case studies are used to illustrate the use and misuse of VIs, and argue for using VIs most simply as a measurement of canopy light absorption rather than as a surrogate for detailed features of canopy architecture, which are compatible with “Big Leaf” SVAT and GCM models.
Abstract: Vegetation indices (VIs) are among the oldest tools in remote sensing studies. Although many variations exist, most of them ratio the reflection of light in the red and NIR sections of the spectrum to separate the landscape into water, soil, and vegetation. Theoretical analyses and field studies have shown that VIs are near-linearly related to photosynthetically active radiation absorbed by a plant canopy, and therefore to light-dependent physiological processes, such as photosynthesis, occurring in the upper canopy. Practical studies have used time-series VIs to measure primary production and evapotranspiration, but these are limited in accuracy to that of the data used in ground truthing or calibrating the models used. VIs are also used to estimate a wide variety of other canopy attributes that are used in Soil-Vegetation-Atmosphere Transfer (SVAT), Surface Energy Balance (SEB), and Global Climate Models (GCM). These attributes include fractional vegetation cover, leaf area index, roughness lengths for turbulent transfer, emissivity and albedo. However, VIs often exhibit only moderate, non-linear relationships to these canopy attributes, compromising the accuracy of the models. We use case studies to illustrate the use and misuse of VIs, and argue for using VIs most simply as a measurement of canopy light absorption rather than as a surrogate for detailed features of canopy architecture. Used this way, VIs are compatible with "Big Leaf" SVAT and GCMs that assume that canopy carbon and moisture fluxes have the same relative response to the environment as any single leaf, simplifying the task of modeling complex landscapes.

605 citations


Journal ArticleDOI
21 Jan 2008-Sensors
TL;DR: The development and application of nanowires for electrochemical sensors and biosensors are reviewed, relating the concept and mechanism behind each sensor, with experimental conditions as well as their behavior at different conditions.
Abstract: The development and application of nanowires for electrochemical sensors and biosensors are reviewed in this article. Next generation sensor platforms will require significant improvements in sensitivity, specificity and parallelism in order to meet the future needs in variety of fields. Sensors made of nanowires exploit some fundamental nanoscopic effect in order to meet these requirements. Nanowires are new materials, which have the characteristic of low weight with extraordinary mechanical, electrical, thermal and multifunctional properties. The advantages such as size scale, aspect ratio and other properties of nanowires are especially apparent in the use of electrical sensors such as electrochemical sensors and in the use of field-effect transistors. The preparation methods of nanowires and their properties are discussed along with their advantages towards electrochemical sensors and biosensors. Some key results from each article are summarized, relating the concept and mechanism behind each sensor, with experimental conditions as well as their behavior at different conditions.

446 citations


Journal ArticleDOI
03 Jun 2008-Sensors
TL;DR: A stain sensor to measure large strain (80%) in textiles is presented and 27 upper body postures could be recognized with an accuracy of 97%.
Abstract: In this paper a stain sensor to measure large strain (80%) in textiles is presented. It consists of a mixture of 50wt-% thermoplastic elastomer (TPE) and 50wt-% carbon black particles and is fiber-shaped with a diameter of 0.315mm. The attachment of the sensor to the textile is realized using a silicone film. This sensor configuration was characterized using a strain tester and measuring the resistance (extension-retraction cycles): It showed a linear resistance response to strain, a small hysteresis, no ageing effects and a small dependance on the strain velocity. The total mean error caused by all these effects was +/-5.5% in strain. Washing several times in a conventional washing machine did not influence the sensor properties. The paper finishes by showing an example application where 21 strain sensors were integrated into a catsuit. With this garment, 27 upper body postures could be recognized with an accuracy of 97%.

419 citations


Journal ArticleDOI
09 Jan 2008-Sensors
TL;DR: This review summarized the recent advances in conducting polymer-based electrochemical sensors, which covers chemical sensors (potentiometric, voltammetric, amperometric) and biosensors (enzyme based biosensor, immunosensors, DNA sensors).
Abstract: Organic conjugated polymers (conducting polymers) have emerged as potentialcandidates for electrochemical sensors. Due to their straightforward preparation methods,unique properties, and stability in air, conducting polymers have been applied to energystorage, electrochemical devices, memory devices, chemical sensors, and electrocatalysts.Conducting polymers are also known to be compatible with biological molecules in aneutral aqueous solution. Thus, these are extensively used in the fabrication of accurate,fast, and inexpensive devices, such as biosensors and chemical sensors in the medicaldiagnostic laboratories. Conducting polymer-based electrochemical sensors and biosensorsplay an important role in the improvement of public health and environment because rapiddetection, high sensitivity, small size, and specificity are achievable for environmentalmonitoring and clinical diagnostics. In this review, we summarized the recent advances inconducting polymer-based electrochemical sensors, which covers chemical sensors(potentiometric, voltammetric, amperometric) and biosensors (enzyme based biosensors,immunosensors, DNA sensors).

397 citations


Journal ArticleDOI
26 May 2008-Sensors
TL;DR: This paper outlines how light Unmanned Aerial Vehicles (UAV) can be used in remote sensing for precision farming, and focuses on the combination of simple digital photographic cameras with spectral filters, designed to provide multispectral images in the visible and near-infrared domains.
Abstract: This paper outlines how light Unmanned Aerial Vehicles (UAV) can be used in remote sensing for precision farming. It focuses on the combination of simple digital photographic cameras with spectral filters, designed to provide multispectral images in the visible and near-infrared domains. In 2005, these instruments were fitted to powered glider and parachute, and flown at six dates staggered over the crop season. We monitored ten varieties of wheat, grown in trial micro-plots in the South-West of France. For each date, we acquired multiple views in four spectral bands corresponding to blue, green, red, and near-infrared. We then performed accurate corrections of image vignetting, geometric distortions, and radiometric bidirectional effects. Afterwards, we derived for each experimental micro-plot several vegetation indexes relevant for vegetation analyses. Finally, we sought relationships between these indexes and field-measured biophysical parameters, both generic and date-specific. Therefore, we established a robust and stable generic relationship between, in one hand, leaf area index and NDVI and, in the other hand, nitrogen uptake and GNDVI. Due to a high amount of noise in the data, it was not possible to obtain a more accurate model for each date independently. A validation protocol showed that we could expect a precision level of 15% in the biophysical parameters estimation while using these relationships.

366 citations


Journal ArticleDOI
17 Nov 2008-Sensors
TL;DR: This article proposes a comprehensive approach for automated determination of 3D city models from airborne acquired point cloud data, based on the assumption that individual buildings can be modeled properly by a composition of a set of planar faces.
Abstract: Three dimensional city models are necessary for supporting numerous management applications. For the determination of city models for visualization purposes, several standardized workflows do exist. They are either based on photogrammetry or on LiDAR or on a combination of both data acquisition techniques. However, the automated determination of reliable and highly accurate city models is still a challenging task, requiring a workflow comprising several processing steps. The most relevant are building detection, building outline generation, building modeling, and finally, building quality analysis. Commercial software tools for building modeling require, generally, a high degree of human interaction and most automated approaches described in literature stress the steps of such a workflow individually. In this article, we propose a comprehensive approach for automated determination of 3D city models from airborne acquired point cloud data. It is based on the assumption that individual buildings can be modeled properly by a composition of a set of planar faces. Hence, it is based on a reliable 3D segmentation algorithm, detecting planar faces in a point cloud. This segmentation is of crucial importance for the outline detection and for the modeling approach. We describe the theoretical background, the segmentation algorithm, the outline detection, and the modeling approach, and we present and discuss several actual projects.

327 citations


Journal ArticleDOI
15 Sep 2008-Sensors
TL;DR: The fundamental principles and theory of phosphor thermometry are presented, and the various spectral and temporal modes, including the lifetime decay, rise time and intensity ratio, are discussed.
Abstract: This paper reviews the state of phosphor thermometry, focusing on developments in the past 15 years. The fundamental principles and theory are presented, and the various spectral and temporal modes, including the lifetime decay, rise time and intensity ratio, are discussed. The entire phosphor measurement system, including relative advantages to conventional methods, choice of phosphors, bonding techniques, excitation sources and emission detection, is reviewed. Special attention is given to issues that may arise at high temperatures. A number of recent developments and applications are surveyed, with examples including: measurements in engines, hypersonic wind tunnel experiments, pyrolysis studies and droplet/spray/gas temperature determination. They show the technique is flexible and successful in measuring temperatures where conventional methods may prove to be unsuitable.

323 citations


Journal ArticleDOI
09 Jan 2008-Sensors
TL;DR: This paper takes an extensive, though not exhaustive sample of international scientific literature to discuss different approaches to estimate land surface and ecosystem related evapotranspiration and soil moisture content.
Abstract: The proper assessment of evapotranspiration and soil moisture content arefundamental in food security research, land management, pollution detection, nutrient flows,(wild-) fire detection, (desert) locust, carbon balance as well as hydrological modelling; etc.This paper takes an extensive, though not exhaustive sample of international scientificliterature to discuss different approaches to estimate land surface and ecosystem relatedevapotranspiration and soil moisture content. This review presents:(i) a summary of the generally accepted cohesion theory of plant water uptake andtransport including a shortlist of meteorological and plant factors influencing planttranspiration;(ii) a summary on evapotranspiration assessment at different scales of observation (sapflow,porometer, lysimeter, field and catchment water balance, Bowen ratio,scintillometer, eddy correlation, Penman-Monteith and related approaches);(iii) a summary on data assimilation schemes conceived to estimate evapotranspirationusing optical and thermal remote sensing; and(iv) for soil moisture content, a summary on soil moisture retrieval techniques atdifferent spatial and temporal scales is presented.Concluding remarks on the best available approaches to assess evapotranspiration and soilmoisture content with and emphasis on remote sensing data assimilation, are provided.

307 citations


Journal ArticleDOI
27 Mar 2008-Sensors
TL;DR: This review addresses the principles behind electrochemical sensor design and fabrication, and introduces recent progress in the application of electrochemical sensors to analysis of clinical chemicals such as blood gases, electrolytes, metabolites, DNA and antibodies, including basic and applied research.
Abstract: Demanded by modern medical diagnosis, advances in microfabrication technology have led to the development of fast, sensitive and selective electrochemical sensors for clinic analysis. This review addresses the principles behind electrochemical sensor design and fabrication, and introduces recent progress in the application of electrochemical sensors to analysis of clinical chemicals such as blood gases, electrolytes, metabolites, DNA and antibodies, including basic and applied research. Miniaturized commercial electrochemical biosensors will form the basis of inexpensive and easy to use devices for acquiring chemical information to bring sophisticated analytical capabilities to the non-specialist and general public alike in the future.

Journal ArticleDOI
15 Jul 2008-Sensors
TL;DR: A literature review is made that summarizes the problems encountered when parameterizing soil roughness as well as the reported impact of the errors made on the retrieved soil moisture.
Abstract: Synthetic Aperture Radar has shown its large potential for retrieving soil moisture maps at regional scales. However, since the backscattered signal is determined by several surface characteristics, the retrieval of soil moisture is an ill-posed problem when using single configuration imagery. Unless accurate surface roughness parameter values are available, retrieving soil moisture from radar backscatter usually provides inaccurate estimates. The characterization of soil roughness is not fully understood, and a large range of roughness parameter values can be obtained for the same surface when different measurement methodologies are used. In this paper, a literature review is made that summarizes the problems encountered when parameterizing soil roughness as well as the reported impact of the errors made on the retrieved soil moisture. A number of suggestions were made for resolving issues in roughness parameterization and studying the impact of these roughness problems on the soil moisture retrieval accuracy and scale.

Journal ArticleDOI
21 Jan 2008-Sensors
TL;DR: A better understanding of the strengths and weaknesses of oil spill surveillance sensors will improve the operational use of these sensors for oil spill response and contingency planning.
Abstract: Reducing the risk of oil spill disasters is essential for protecting the environmentand reducing economic losses Oil spill surveillance constitutes an important component ofoil spill disaster management Advances in remote sensing technologies can help to identifyparties potentially responsible for pollution and to identify minor spills before they causewidespread damage Due to the large number of sensors currently available for oil spillsurveillance, there is a need for a comprehensive overview and comparison of existingsensors Specifically, this paper examines the characteristics and applications of differentsensors A better understanding of the strengths and weaknesses of oil spill surveillancesensors will improve the operational use of these sensors for oil spill response andcontingency planning Laser fluorosensors were found to be the best available sensor for oilspill detection since they not only detect and classify oil on all surfaces but also operate ineither the day or night For example, the Scanning Laser Environmental AirborneFluorosensor (SLEAF) sensor was identified to be a valuable tool for oil spill surveillanceHowever, no single sensor was able to provide all information required for oil spillcontingency planning Hence, combinations of sensors are currently used for oil spillsurveillance Specifically, satellite sensors are used for preliminary oil spill assessmentwhile airborne sensors are used for detailed oil spill analysis While satellite remote sensingis not suitable for tactical oil spill planning it can provide a synoptic coverage of theaffected area

Journal ArticleDOI
08 Dec 2008-Sensors
TL;DR: It is indicated that Google Earth high-resolution imagery has a horizontal positional accuracy that is sufficient for assessing moderate-resolution remote sensing products across most of the world's peri-urban areas.
Abstract: Google Earth now hosts high-resolution imagery that spans twenty percent of the Earth's landmass and more than a third of the human population. This contemporary highresolution archive represents a significant, rapidly expanding, cost-free and largely unexploited resource for scientific inquiry. To increase the scientific utility of this archive, we address horizontal positional accuracy (georegistration) by comparing Google Earth with Landsat GeoCover scenes over a global sample of 436 control points located in 109 cities worldwide. Landsat GeoCover is an orthorectified product with known absolute positional accuracy of less than 50 meters root-mean-squared error (RMSE). Relative to Landsat GeoCover, the 436 Google Earth control points have a positional accuracy of 39.7 meters RMSE (error magnitudes range from 0.4 to 171.6 meters). The control points derived from satellite imagery have an accuracy of 22.8 meters RMSE, which is significantly more accurate than the 48 control-points based on aerial photography (41.3 meters RMSE; t-test p-value < 0.01). The accuracy of control points in more-developed countries is 24.1 meters RMSE, which is significantly more accurate than the control points in developing countries (44.4 meters RMSE; t-test p-value < 0.01). These findings indicate that Google Earth highresolution imagery has a horizontal positional accuracy that is sufficient for assessing moderate-resolution remote sensing products across most of the world's peri-urban areas.

Journal ArticleDOI
10 Mar 2008-Sensors
TL;DR: A comparison of two different land cover change detection methods indicated that an object-based approach provides a better means for change detection than a pixel based method because it provides an effective way to incorporate spatial information and expert knowledge into the change detection process.
Abstract: Accurate and timely information about land cover pattern and change in urban areas is crucial for urban land management decision-making, ecosystem monitoring and urban planning. This paper presents the methods and results of an object-based classification and post-classification change detection of multitemporal high-spatial resolution Emerge aerial imagery in the Gwynns Falls watershed from 1999 to 2004. The Gwynns Falls watershed includes portions of Baltimore City and Baltimore County, Maryland, USA. An object-based approach was first applied to implement the land cover classification separately for each of the two years. The overall accuracies of the classification maps of 1999 and 2004 were 92.3% and 93.7%, respectively. Following the classification, we conducted a comparison of two different land cover change detection methods: traditional (i.e., pixel-based) post-classification comparison and object-based post-classification comparison. The results from our analyses indicated that an object-based approach provides a better means for change detection than a pixel based method because it provides an effective way to incorporate spatial information and expert knowledge into the change detection process. The overall accuracy of the change map produced by the object-based method was 90.0%, with Kappa statistic of 0.854, whereas the overall accuracy and Kappa statistic of that by the pixel-based method were 81.3% and 0.712, respectively.

Journal ArticleDOI
04 Apr 2008-Sensors
TL;DR: It is concluded that total metal concentrations in soils are the main controls on their contents in plants, and soil pH was also an important factor.
Abstract: Heavy metal concentrations were measured in soils and plants in and around a copper-tungsten mine in southeast Korea to investigate the influence of past base metal mining on the surface environment. The results of chemical analysis indicate that the heavy metals in soils decreased with distance from the source, controlled mainly by water movement and topography. The metal concentrations measured in plant species generally decreased in the order; spring onions > soybean leaves > perilla leaves » red pepper > corn grains » jujube grains, although this pattern varied moderately between different elements. The results agree with other reports that metal concentrations in leaves are usually much higher than those in grain. Factors influencing the bioavailability of metals and their occurrences in crops were found as soil pH, cation exchange capacity, organic matter content, soil texture, and interaction among the target elements. It is concluded that total metal concentrations in soils are the main controls on their contents in plants. Soil pH was also an important factor. A stepwise linear multiple regression analysis was also conducted to identify the dominant factors influencing metal uptake by plants. Metal concentrations in plants were also estimated by computer-aided statistical methods.

Journal ArticleDOI
23 Oct 2008-Sensors
TL;DR: An overview of the methodologies used to detect oil spills on the radar images is given, concentrating on the use of the manual and automatic approaches to distinguish oil spills from other natural phenomena.
Abstract: This paper provides a comprehensive review of the use of Synthetic Aperture Radar images (SAR) for detection of illegal discharges from ships. It summarizes the current state of the art, covering operational and research aspects of the application. Oil spills are seriously affecting the marine ecosystem and cause political and scientific concern since they seriously effect fragile marine and coastal ecosystem. The amount of pollutant discharges and associated effects on the marine environment are important parameters in evaluating sea water quality. Satellite images can improve the possibilities for the detection of oil spills as they cover large areas and offer an economical and easier way of continuous coast areas patrolling. SAR images have been widely used for oil spill detection. The present paper gives an overview of the methodologies used to detect oil spills on the radar images. In particular we concentrate on the use of the manual and automatic approaches to distinguish oil spills from other natural phenomena. We discuss the most common techniques to detect dark formations on the SAR images, the features which are extracted from the detected dark formations and the most used classifiers. Finally we conclude with discussion of suggestions for further research. The references throughout the review can serve as starting point for more intensive studies on the subject.

Journal ArticleDOI
Selçuk Reis1
01 Oct 2008-Sensors
TL;DR: It was seen that the LULC changes were mostly occurred in coastal areas and in areas having low slope values, while the land cover changes were analyzed according to the topographic structure (slope and altitude) by using GIS functions.
Abstract: Mapping land use/land cover (LULC) changes at regional scales is essential for a wide range of applications, including landslide, erosion, land planning, global warming etc. LULC alterations (based especially on human activities), negatively effect the patterns of climate, the patterns of natural hazard and socio-economic dynamics in global and local scale. In this study, LULC changes are investigated by using of Remote Sensing and Geographic Information Systems (GIS) in Rize, North-East Turkey. For this purpose, firstly supervised classification technique is applied to Landsat images acquired in 1976 and 2000. Image Classification of six reflective bands of two Landsat images is carried out by using maximum likelihood method with the aid of ground truth data obtained from aerial images dated 1973 and 2002. The second part focused on land use land cover changes by using change detection comparison (pixel by pixel). In third part of the study, the land cover changes are analyzed according to the topographic structure (slope and altitude) by using GIS functions. The results indicate that severe land cover changes have occurred in agricultural (36.2%) (especially in tea gardens), urban (117%), pasture (-72.8%) and forestry (-12.8%) areas has been experienced in the region between 1976 and 2000. It was seen that the LULC changes were mostly occurred in coastal areas and in areas having low slope values.

Journal ArticleDOI
29 Aug 2008-Sensors
TL;DR: This review will illustrate how mesoporous silicas have been applied to sensing changes in relative humidity, changes in pH, metal cations, toxic industrial compounds, volatile organic compounds, small molecules and ions, nitroenergetic compounds, and biologically relevant molecules.
Abstract: Mesoporous silicas, especially those exhibiting ordered pore systems and uniform pore diameters, have shown great potential for sensing applications in recent years. Morphological control grants them versatility in the method of deployment whether as bulk powders, monoliths, thin films, or embedded in coatings. High surface areas and pore sizes greater than 2 nm make them effective as adsorbent coatings for humidity sensors. The pore networks also provide the potential for immobilization of enzymes within the materials. Functionalization of materials by silane grafting or through cocondensation of silicate precursors can be used to provide mesoporous materials with a variety of fluorescent probes as well as surface properties that aid in selective detection of specific analytes. This review will illustrate how mesoporous silicas have been applied to sensing changes in relative humidity, changes in pH, metal cations, toxic industrial compounds, volatile organic compounds, small molecules and ions, nitroenergetic compounds, and biologically relevant molecules.

Journal ArticleDOI
25 Aug 2008-Sensors
TL;DR: This review focuses on chemical sensors based on cyclodextrin (CD) derivatives, in which fluorescence intensity was decreased or increased by complexation with guest molecules, respectively, and recent novel approaches to chemical sensing systems using supramolecular structures such as CD dimers, trimers and cooperative binding systems.
Abstract: This review focuses on chemical sensors based on cyclodextrin (CD) derivatives. This has been a field of classical interest, and is now of current interest for numerous scientists. First, typical chemical sensors using chromophore appended CDs are mentioned. Various “turn-off” and “turn-on” fluorescent chemical sensors, in which fluorescence intensity was decreased or increased by complexation with guest molecules, respectively, were synthesized. Dye modified CDs and photoactive metal ion-ligand complex appended CDs, metallocyclodextrins, were also applied for chemical sensors. Furthermore, recent novel approaches to chemical sensing systems using supramolecular structures such as CD dimers, trimers and cooperative binding systems of CDs with the other macrocycle [2]rotaxane and supramolecular polymers consisting of CD units are mentioned. New chemical sensors using hybrids of CDs with π-conjugated polymers, peptides, DNA, nanocarbons and nanoparticles are also described in this review.

Journal ArticleDOI
23 May 2008-Sensors
TL;DR: This paper reviews advances in the use of visible and infrared remote sensing combined with field methods for estimating glacier parameters, with emphasis on volume/area changes and glacier mass balance, and focuses on the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensor.
Abstract: The increased availability of remote sensing platforms with appropriate spatial and temporal resolution, global coverage and low financial costs allows for fast, semi-automated, and cost-effective estimates of changes in glacier parameters over large areas. Remote sensing approaches allow for regular monitoring of the properties of alpine glaciers such as ice extent, terminus position, volume and surface elevation, from which glacier mass balance can be inferred. Such methods are particularly useful in remote areas with limited field-based glaciological measurements. This paper reviews advances in the use of visible and infrared remote sensing combined with field methods for estimating glacier parameters, with emphasis on volume/area changes and glacier mass balance. The focus is on the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensor and its applicability for monitoring Himalayan glaciers. The methods reviewed are: volumetric changes inferred from digital elevation models (DEMs), glacier delineation algorithms from multi-spectral analysis, changes in glacier area at decadal time scales, and AAR/ELA methods used to calculate yearly mass balances. The current limitations and on-going challenges in using remote sensing for mapping characteristics of mountain glaciers also discussed, specifically in the context of the Himalaya.

Journal ArticleDOI
23 Jul 2008-Sensors
TL;DR: This new generation of biosensor (aptasensors) will be more stable and well adapted to the conditions of real samples because of the specific properties of aptamers.
Abstract: Aptamers have been developed for different applications. Their use as new biological recognition elements in biosensors promises progress for fast and easy detection of proteins. This new generation of biosensor (aptasensors) will be more stable and well adapted to the conditions of real samples because of the specific properties of aptamers.

Journal ArticleDOI
28 Aug 2008-Sensors
TL;DR: This mini-review is summarizing the emerging information on different aspects of ecotoxicological hazard of metal oxide nanoparticles, focusing on TiO2, ZnO and CuO.
Abstract: Nanotechnologies have become a significant priority worldwide. Several manufactured nanoparticles - particles with one dimension less than 100 nm - are increasingly used in consumer products. At nanosize range, the properties of materials differ substantially from bulk materials of the same composition, mostly due to the increased specific surface area and reactivity, which may lead to increased bioavailability and toxicity. Thus, for the assessment of sustainability of nanotechnologies, hazards of manufactured nanoparticles have to be studied. Despite all the above mentioned, the data on the potential environmental effects of nanoparticles are rare. This mini-review is summarizing the emerging information on different aspects of ecotoxicological hazard of metal oxide nanoparticles, focusing on TiO2, ZnO and CuO. Various biotests that have been successfully used for evaluation of ecotoxic properties of pollutants to invertebrates, algae and bacteria and now increasingly applied for evaluation of hazard of nanoparticles at different levels of the aquatic food-web are discussed. Knowing the benefits and potential drawbacks of these systems, a suite of tests for evaluation of environmental hazard of nanoparticles is proposed. Special attention is paid to the influence of particle solubility and to recombinant metal-sensing bacteria as powerful tools for quantification of metal bioavailability. Using recombinant metal-specific bacterial biosensors and multitrophic ecotoxicity assays in tandem will create new scientific knowledge on the respective role of ionic species and of particles in toxicity of metal oxide nanoparticles.

Journal ArticleDOI
01 Sep 2008-Sensors
TL;DR: In this article, the authors proposed automatic methods for classifying the road marking and kerbstone points and modelling the road surface as a triangulated irregular network, and achieved mean classification accuracies of 80.6, 92.3%, and 79.7%, respectively.
Abstract: Automated processing of the data provided by a laser-based mobile mapping system will be a necessity due to the huge amount of data produced. In the future, vehiclebased laser scanning, here called mobile mapping, should see considerable use for road environment modelling. Since the geometry of the scanning and point density is different from airborne laser scanning, new algorithms are needed for information extraction. In this paper, we propose automatic methods for classifying the road marking and kerbstone points and modelling the road surface as a triangulated irregular network. On the basis of experimental tests, the mean classification accuracies obtained using automatic method for lines, zebra crossings and kerbstones were 80.6%, 92.3% and 79.7%, respectively.

Journal ArticleDOI
09 Jan 2008-Sensors
TL;DR: A practical approach to Earthquake Early Warning (EEW) is explored with the use of a ground-motion period parameter τc and a high-pass filtered vertical displacement amplitude parameter Pd from the initial 3 sec of the P waveforms.
Abstract: As urbanization progresses worldwide, earthquakes pose serious threat to livesand properties for urban areas near major active faults on land or subduction zonesoffshore. Earthquake Early Warning (EEW) can be a useful tool for reducing earthquakehazards, if the spatial relation between cities and earthquake sources is favorable for suchwarning and their citizens are properly trained to respond to earthquake warning messages.An EEW system forewarns an urban area of forthcoming strong shaking, normally with afew sec to a few tens of sec of warning time, i.e., before the arrival of the destructive Swavepart of the strong ground motion. Even a few second of advanced warning time willbe useful for pre-programmed emergency measures for various critical facilities, such asrapid-transit vehicles and high-speed trains to avoid potential derailment; it will be alsouseful for orderly shutoff of gas pipelines to minimize fire hazards, controlled shutdown ofhigh-technological manufacturing operations to reduce potential losses, and safe-guardingof computer facilities to avoid loss of vital databases. We explored a practical approach toEEW with the use of a ground-motion period parameter τc and a high-pass filtered verticaldisplacement amplitude parameter Pd from the initial 3 sec of the P waveforms. At a givensite, an earthquake magnitude could be determined from τc and the peak ground-motionvelocity (PGV) could be estimated from Pd. In this method, incoming strong motion acceleration signals are recursively converted to ground velocity and displacement. A Pwavetrigger is constantly monitored. When a trigger occurs, τc and Pd are computed. Theearthquake magnitude and the on-site ground-motion intensity could be estimated and thewarning could be issued. In an ideal situation, such warnings would be available within 10sec of the origin time of a large earthquake whose subsequent ground motion may last fortens of seconds.

Journal ArticleDOI
21 Feb 2008-Sensors
TL;DR: The requirements, critical challenges, and open research issues on QoS management in WSANs are examined and a brief overview of recent progress is given.
Abstract: A wireless sensor/actuator network (WSAN) is a group of sensors and actuators that are geographically distributed and interconnected by wireless networks. Sensors gather information about the state of physical world. Actuators react to this information by performing appropriate actions. WSANs thus enable cyber systems to monitor and manipulate the behavior of the physical world. WSANs are growing at a tremendous pace, just like the exploding evolution of Internet. Supporting quality of service (QoS) will be of critical importance for pervasive WSANs that serve as the network infrastructure of diverse applications. To spark new research and development interests in this field, this paper examines and discusses the requirements, critical challenges, and open research issues on QoS management in WSANs. A brief overview of recent progress is given.

Journal ArticleDOI
21 Jan 2008-Sensors
TL;DR: A dynamic system consisting of a number of single-degree-of-freedom elements with mass, spring and damper components to model the structural mechanical impedance (SMI) is proposed, which is more sensitive to the damage than the EM admittance thus a better indicator for damage detection.
Abstract: Piezoelectric ceramic Lead Zirconate Titanate (PZT) based electro-mechanicalimpedance (EMI) technique for structural health monitoring (SHM) has been successfullyapplied to various engineering systems. However, fundamental research work on thesensitivity of the PZT impedance sensors for damage detection is still in need. In thetraditional EMI method, the PZT electro-mechanical (EM) admittance (inverse of theimpedance) is used as damage indicator, which is difficult to specify the effect of damage onstructural properties. This paper uses the structural mechanical impedance (SMI) extractedfrom the PZT EM admittance signature as the damage indicator. A comparison study on thesensitivity of the EM admittance and the structural mechanical impedance to the damages ina concrete structure is conducted. Results show that the SMI is more sensitive to the damagethan the EM admittance thus a better indicator for damage detection. Furthermore, this paperproposes a dynamic system consisting of a number of single-degree-of-freedom elementswith mass, spring and damper components to model the SMI. A genetic algorithm isemployed to search for the optimal value of the unknown parameters in the dynamic system.An experiment is carried out on a two-storey concrete frame subjected to base vibrations thatsimulate earthquake. A number of PZT sensors are regularly arrayed and bonded to the framestructure to acquire PZT EM admittance signatures. The relationship between the damageindex and the distance of the PZT sensor from the damage is studied. Consequently, thesensitivity of the PZT sensors is discussed and their sensing region in concrete is derived.

Journal ArticleDOI
20 Oct 2008-Sensors
TL;DR: A regenerated optical fibre Bragg grating that survives temperature cycling up to 1,295°C is demonstrated and a model based on seeded crystallisation or amorphisation is proposed.
Abstract: A regenerated optical fibre Bragg grating that survives temperature cycling up to 1,295°C is demonstrated. A model based on seeded crystallisation or amorphisation is proposed.

Journal ArticleDOI
11 Apr 2008-Sensors
TL;DR: The specifications obtained for the detection of different pesticides, herbicides and heavy metal ions, based on enzyme inhibition, are presented as well as those obtained forthe detection of formaldehyde, 4- chlorophenol, nitrate and proteins as markers of dissolved organic carbon based on enzymatic microbiosensors.
Abstract: This review presents the principles of conductometric measurements in ionic media and the equivalent electrical circuits of different designs for conductometric measurements. These types of measurements were first applied for monitoring biocatalytic reactions. The use of conductometric microtransducers is then presented and detailed in the case of pollutant detection for environmental monitoring. Conductometric biosensors have advantages over other types of transducers: they can be produced through inexpensive thinfilm standard technology, no reference electrode is needed and differential mode measurements allow cancellation of a lot of interferences. The specifications obtained for the detection of different pesticides, herbicides and heavy metal ions, based on enzyme inhibition, are presented as well as those obtained for the detection of formaldehyde, 4- chlorophenol, nitrate and proteins as markers of dissolved organic carbon based on enzymatic microbiosensors.

Journal ArticleDOI
08 May 2008-Sensors
TL;DR: In this review, a number of NIRF materials are discussed including traditional N IRF dye molecules, newly developed NIRf quantum dots and single-walled carbon nanotubes, as well as rare earth metal compounds.
Abstract: Near-infrared fluorescent (NIRF) materials are promising labeling reagents for sensitive determination and imaging of biological targets. In the near-infrared region biological samples have low background fluorescence signals, providing high signal to noise ratio. Meanwhile, near-infrared radiation can penetrate into sample matrices deeply due to low light scattering. Thus, in vivo and in vitro imaging of biological samples can be achieved by employing the NIRF probes. To take full advantage of NIRF materials in the biological and biomedical field, one of the key issues is to develop intense and biocompatible NIRF probes. In this review, a number of NIRF materials are discussed including traditional NIRF dye molecules, newly developed NIRF quantum dots and single-walled carbon nanotubes, as well as rare earth metal compounds. The use of some NIRF materials in various nanostructures is illustrated. The enhancement of NIRF using metal nanostructures is covered as well. The fluorescence mechanism and bioapplications of each type of the NIRF materials are discussed in details.