scispace - formally typeset
Search or ask a question

Showing papers in "Shock and Vibration in 2015"


Journal ArticleDOI
TL;DR: An implementation of deep learning algorithm convolutional neural network used for fault identification and classification in gearboxes using different combinations of condition patterns based on some basic fault conditions indicates that the proposed approach is highly reliable and applicable in fault diagnosis of industrial reciprocating machinery.
Abstract: Vibration signals of gearbox are sensitive to the existence of the fault. Based on vibration signals, this paper presents an implementation of deep learning algorithm convolutional neural network (CNN) used for fault identification and classification in gearboxes. Different combinations of condition patterns based on some basic fault conditions are considered. 20 test cases with different combinations of condition patterns are used, where each test case includes 12 combinations of different basic condition patterns. Vibration signals are preprocessed using statistical measures from the time domain signal such as standard deviation, skewness, and kurtosis. In the frequency domain, the spectrum obtained with FFT is divided into multiple bands, and the root mean square (RMS) value is calculated for each one so the energy maintains its shape at the spectrum peaks. The achieved accuracy indicates that the proposed approach is highly reliable and applicable in fault diagnosis of industrial reciprocating machinery. Comparing with peer algorithms, the present method exhibits the best performance in the gearbox fault diagnosis.

322 citations


Journal ArticleDOI
TL;DR: In this paper, a critical review of indirect methods for bridge monitoring is presented and recommendations on the challenges to be overcome for successful implementation in practice, and some of the methods seek to directly detect bridge damage based on the interaction between the vehicle and bridge.
Abstract: Indirect bridge monitoring methods, using the responses measured from vehicles passing over bridges, are under development for about a decade. A major advantage of these methods is that they use sensors mounted on the vehicle, no sensors or data acquisition system needs to be installed on the bridge. Most of the proposed methods are based on the identification of dynamic characteristics of the bridge from responses measured on the vehicle, such as natural frequency, mode shapes, and damping. In addition, some of the methods seek to directly detect bridge damage based on the interaction between the vehicle and bridge. This paper presents a critical review of indirect methods for bridge monitoring and provides discussion and recommendations on the challenges to be overcome for successful implementation in practice.

180 citations


Journal ArticleDOI
TL;DR: In this article, an experimental campaign was started to measure vibrations transmitted along water pipes by real burst leaks occurring in actual water supply networks, and the first experimental data were used for assessing the leak detection performance of a prototypal algorithm based on the calculation of the standard deviation of acceleration signals.
Abstract: The implementation of strategies for controlling water leaks is essential in order to reduce losses affecting distribution networks of drinking water. This paper focuses on leak detection by using vibration monitoring techniques. The long-term goal is the development of a system for automatic early detection of burst leaks in service pipes. An experimental campaign was started to measure vibrations transmitted along water pipes by real burst leaks occurring in actual water supply networks. The first experimental data were used for assessing the leak detection performance of a prototypal algorithm based on the calculation of the standard deviation of acceleration signals. The experimental campaign is here described and discussed. The proposed algorithm, enhanced by means of proper signal filtering techniques, was successfully tested on all monitored leaks, thus proving effective for leak detection purpose.

71 citations


Journal ArticleDOI
TL;DR: In this article, a quasi-zero stiffness (QZS) isolator was designed by combining a disk spring with a vertical linear spring, and the static characteristics of the disk spring and the QZS isolator were investigated.
Abstract: This paper presents a novel quasi-zero stiffness (QZS) isolator designed by combining a disk spring with a vertical linear spring. The static characteristics of the disk spring and the QZS isolator are investigated. The optimal combination of the configurative parameters is derived to achieve a wide displacement range around the equilibrium position in which the stiffness has a low value and changes slightly. By considering the overloaded or underloaded conditions, the dynamic equations are established for both force and displacement excitations. The frequency response curves (FRCs) are obtained by using the harmonic balance method (HBM) and confirmed by the numerical simulation. The stability of the steady-state solution is analyzed by applying Floquet theory. The force, absolute displacement, and acceleration transmissibility are defined to evaluate the isolation performance. Effects of the offset displacement, excitation amplitude, and damping ratio on the QZS isolator and the equivalent system (ELS) are studied. The results demonstrate that the QZS isolator for overloaded or underloaded can exhibit different stiffness characteristics with changing excitation amplitude. If loaded with an appropriate mass, excited by not too large amplitude, and owned a larger damper, the QZS isolator can possess better isolation performance than its ELS in low frequency range.

63 citations


Journal Article
TL;DR: In this paper, the authors present an abstract of the ASFA part 2 (ASFA-2), ASFA-3, part 2 part 2, abstracts part 2.
Abstract: ed/Indexed in Applied Mechanics Reviews, Aquatic Sciences and Fisheries Abstracts part 2 (ASFA-2), Compendex, CSA Illumina, Current

58 citations


Journal ArticleDOI
Ping Zou, Yingshuai Xu, Yu He, Chen Mingfang, Hao Wu 
TL;DR: In this article, an experimental analysis of the 3D surface topography and surface roughness of the workpiece machined with ultrasonic vibration assisted turning (UAT) in comparison to conventional turning (CT) is conducted.
Abstract: This research study focuses on the experimental analysis of the three-dimensional (3D) surface topography and surface roughness of the workpiece machined with ultrasonic vibration assisted turning (UAT) in comparison to conventional turning (CT). For the challenge that machining difficulties of 304 austenitic stainless steel (ASS 304) and high demands for the machined surface quality and machining precision represent, starting with cutting principle and processing technology, the ultrasonic vibration method is employed to scheme out a machining system of ultrasonic vibration assisted turning (MS-UAT). The experiments for turning the workpiece of ASS 304 are conducted with and without ultrasonic vibration using the designed MS-UAT, and then the 3D morphology evaluation parameters and are applied to characterize and analyse the machined surface. The experimental results obtained demonstrate that the process parameters in UAT of ASS 304 have obvious effect on the 3D surface topography and surface roughness of machined workpiece, and the appropriate choice of various process parameters, including ultrasonic amplitude, feed rate, depth of cut, and cutting speed, can enhance the machined surface quality efficiently to make the machining effect of UAT much better than that of CT.

57 citations


Journal ArticleDOI
TL;DR: A new improved Kurtogram was proposed in this paper instead of Kurtosis, correlated Kurtosis of envelope signal extracted from the wavelet packet node was used as an indicator to determine the optimal frequency band Correlated Kurtosis helps to determine fault related impulse signals not affected by other unrelated signal components.
Abstract: A new improved Kurtogram was proposed in this paper Instead of Kurtosis, correlated Kurtosis of envelope signal extracted from the wavelet packet node was used as an indicator to determine the optimal frequency band Correlated Kurtosis helps to determine the fault related impulse signals not affected by other unrelated signal components Finally, two simulated and three experimental bearing fault cases are used to validate the effectiveness of proposed method and to compare with other similar methods The results demonstrate it can locate resonant frequency band with a high reliability than two previous developed methods by Lei et al and Wang et al especially for the incipient faults under low load

52 citations


Journal ArticleDOI
TL;DR: In this article, the authors applied the stress wave theory to derive the relation of mining dynamic load strain rate and stress wave parameters, and the in situ test was applied to study the propagation law of coal mine dynamic load by using the SOS microseismic monitoring system.
Abstract: Combination of coal mining dynamic load and high static stress can easily induce such dynamic disasters as rock burst, coal and gas outburst, roof fall, and water inrush. In order to obtain the characteristic parameters of mining dynamic load and dynamic mechanism of coal and rock, the stress wave theory is applied to derive the relation of mining dynamic load strain rate and stress wave parameters. The in situ test was applied to study the stress wave propagation law of coal mine dynamic load by using the SOS microseismic monitoring system. An evaluation method for mining dynamic load strain rate was proposed, and the statistical evaluation was carried out for the range of strain rate. The research results show that the loading strain rate of mining dynamic load is in direct proportion to the seismic frequency of coal-rock mass and particle peak vibration velocity and is in inverse proportion to wave velocity. The high-frequency component damps faster than the low-frequency component in the shockwave propagating process; and the peak particle vibration velocity has a power functional relationship with the transmitting distance. The loading strain rate of mining dynamic load is generally less than class 10−1/s.

43 citations


Journal ArticleDOI
TL;DR: In this article, the influence of rolling stock dynamics on ground-borne vibration levels was analyzed using a multibody approach using a flexible track on which the vehicles traverse at constant speed and a two-step approach was used to simulate ground wave propagation at various distances from the track.
Abstract: This paper analyses the influence of rolling stock dynamics on ground-borne vibration levels. Four vehicle types (Thalys, German ICE, Eurostar, and Belgian freight trains) are investigated using a multibody approach. First, a numerical model is constructed using a flexible track on which the vehicles traverse at constant speed. A two-step approach is used to simulate ground wave propagation which is analysed at various distances from the track. This approach offers a new insight because the train and track are fully coupled. Therefore rail unevenness or other irregularity on the rail/wheel surface can be accurately modelled. Vehicle speed is analysed and the frequency spectrums of track and soil responses are also assessed to investigate different excitation mechanisms, such as carriage periodicities. To efficiently quantify train effects, a new (normalised) metric, defined as the ratio between the peak particle velocity and the nominal axle load, is introduced for a comparison of dynamic excitation. It is concluded that rolling stock dynamics have a significant influence on the free field vibrations at low frequencies, whereas high frequencies are dominated by the presence of track unevenness.

42 citations


Journal ArticleDOI
TL;DR: In this article, a transmissibility-based damage detection and quantification approach is proposed based on the operational modal analysis, the transmissability is extracted from system responses and trans-missibility coherence is defined and analyzed.
Abstract: A new transmissibility-based damage detection and quantification approach is proposed. Based on the operational modal analysis, the transmissibility is extracted from system responses and transmissibility coherence is defined and analyzed. Afterwards, a sensitive-damage indicator is defined in order to detect and identify the severity of damage and compared with an indicator developed by other authors. The proposed approach is validated on data from a physics-based numerical model as well as experimental data from a three-story aluminum frame structure. For both numerical simulation and experiment the results of the new indicator reveal a better performance than coherence measure proposed in Rizos et al., 2008, Rizos et al., 2002, Fassois and Sakellariou, 2007, especially when nonlinearity occurs, which might be further used in real engineering. The main contribution of this study is the construction of the relation between transmissibility coherence and frequency response function coherence and the construction of an effective indicator based on the transmissibility modal assurance criteria for damage (especially for minor nonlinearity) detection as well as quantification.

41 citations


Journal ArticleDOI
TL;DR: In this article, the effect of anisotropy and water content on coal measure shale strength and deformation behavior was studied. And the authors concluded that the failure mechanism of the samples can be summarized into two categories: sliding along lamination and shearing of coal material.
Abstract: This paper presents an experimental investigation of anisotropic strength and deformation behavior of coal measure shale. The effect of two factors (i.e., anisotropy and water content) on shale strength and deformation behavior was studied. A series of uniaxial and triaxial compression tests were conducted on both room dried and water saturated samples for different lamination angles. The test results indicate that (1) the compressive strength, cohesion, internal friction angle, tangent Young’s modulus, and axial strain corresponding to the peak and residual strengths of room dried specimens exhibit anisotropic behavior that strongly depends on the orientation angle ; (2) in comparison to the room dried samples, the compressive strength and Young’s modulus as well as the anisotropy are all reduced for water saturated specimens; and (3) the failure mechanism of the samples can be summarized into two categories: sliding along lamination and shearing of rock material, with the type occurring in a particular situation depending strongly on the lamination orientation angles with respect to the major principal stress. According to the findings, it is strongly recommended that the effect of anisotropy and water content on the strength and deformation behavior of the rock must be considered in ground control designs.

Journal ArticleDOI
TL;DR: In this paper, the local destruction and deformation characteristics of a concrete target impacted by a rigid projectile were analyzed, and the similarity laws for local damage effects in the concrete target were studied utilizing the rigid-plastic, internal friction, and modified hydrodynamic models.
Abstract: The local destruction and deformation characteristics of a concrete target impacted by a rigid projectile were analyzed, and the similarity laws for local damage effects in the concrete target were studied utilizing the rigid-plastic, internal friction, and modified hydrodynamic models. For a thin target, the impact factor is the only factor controlling the low-velocity impact process. For a thick target impacted by a projectile at intermediate velocity, internal friction is the main factor contributing to the energy dissipation. The impact factor, the toughness factor, and the dynamic factor together determine the penetration process. However, for a thick target impacted at high velocity, the impact factor and hardness factor together determine the penetration process. The penetration depth shows a 2/3 power relationship with impact velocity. For thick targets, similarity laws change along with impact velocity. The radii ratio between the projectile and penetration tunnel is proportional to the projectile’s diameter for intermediate velocity impact and only shows a relationship with the impact velocity for high velocity penetration.

Journal ArticleDOI
TL;DR: In this article, the authors proposed a method to quantify damage severity by use of multipoint acceleration measurement and artificial neural networks, which is mainly intended to apply to small to midsized bridges and gave an example application of the method to a weathering steel bridge in Japan.
Abstract: The deterioration of bridges as a result of ageing is a serious problem in many countries. To prevent the failure of these deficient bridges, early damage detection which helps us to evaluate the safety of bridges is important. Therefore, the present research proposed a method to quantify damage severity by use of multipoint acceleration measurement and artificial neural networks. In addition to developing the method, we developed a cheap and easy-to-make measurement device which can be made by bridge owners at low cost and without the need for advance technical skills since the method is mainly intended to apply to small to midsized bridges. In addition, the paper gives an example application of the method to a weathering steel bridge in Japan. It can be shown from the analysis results that the method is accurate in its damage identification and mechanical behavior prediction ability.

Journal ArticleDOI
TL;DR: In situ damage detection and localization using real acceleration structural health monitoring technique are the main idea of as discussed by the authors, where statistical and model identification time series, the response spectra, and the power density of the frequency domain are used to detect the behavior of Yonghe cable-stayed bridge during healthy and damage states.
Abstract: In situ damage detection and localization using real acceleration structural health monitoring technique are the main idea of this study. The statistical and model identification time series, the response spectra, and the power density of the frequency domain are used to detect the behavior of Yonghe cable-stayed bridge during the healthy and damage states. The benchmark problem is used to detect the damage localization of the bridge during its working time. The assessment of the structural health monitoring and damage analysis concluded that (1) the kurtosis statistical moment can be used as an indicator for damage especially with increasing its percentage of change as the damage should occur; (2) the percentage of change of the Kernel density probability for the model identification error estimation can detect and localize the damage; (3) the simplified spectrum of the acceleration-displacement responses and frequencies probability changes are good tools for detection and localization of the one-line bridge damage.

Journal ArticleDOI
TL;DR: In this paper, a road estimation based suspension hybrid control strategy is proposed to adaptively change control gains to improve both ride comfort and road handling with the constraint of rattle space.
Abstract: A new road estimation based suspension hybrid control strategy is proposed Its aim is to adaptively change control gains to improve both ride comfort and road handling with the constraint of rattle space To achieve this, analytical expressions for ride comfort, road handling, and rattle space with respect to road input are derived based on the hybrid control, and the problem is transformed into a MOOP (Multiobjective Optimization Problem) and has been solved by NSGA-II (Nondominated Sorting Genetic Algorithm-II) A new road estimation and classification method, which is based on ANFIS (Adaptive Neurofuzzy Inference System) and wavelet transforms, is then presented as a means of detecting the road profile level, and a Kalman filter is designed for observing unknown states The results of simulations conducted with random road excitation show that the efficiency of the proposed control strategy compares favourably to that of a passive system

Journal ArticleDOI
TL;DR: In this article, a dynamic analysis of two different high-rise buildings (54-story and 76-story buildings) investigated in the current study indicate that earthquake loads excite higher modes that produce lower interstory drift, compared to wind loads, but higher accelerations that occur for a shorter time.
Abstract: In the past few decades, high-rise buildings have received a renewed interest in many city business locations, where land is scarce, as per their economics, sustainability, and other benefits. Taller and taller towers are being built everywhere in the world. However, the increased frequency of multihazard disasters makes it challenging to balance between a resilient and sustainable construction. Accordingly, it is essential to understand the behavior of such structures under multihazard loadings, in order to apply such knowledge to design. The results obtained from the dynamic analysis of two different high-rise buildings (54-story and 76-story buildings) investigated in the current study indicate that earthquake loads excite higher modes that produce lower interstory drift, compared to wind loads, but higher accelerations that occur for a shorter time. Wind-induced accelerations may have comfort and serviceability concerns, while excessive interstory drifts can cause security issues. The results also show that high-rise and slender buildings designed for wind may be safe under moderate earthquake loads, regarding the main force resisting system. Nevertheless, nonstructural components may present a significant percentage of loss exposure of buildings to earthquakes due to higher floor acceleration. Consequently, appropriate damping/control techniques for tall buildings are recommended for mitigation under multihazard.

Journal ArticleDOI
TL;DR: In this article, a topology optimization method is proposed to minimize the resonant response of plates with constrained layer damping (CLD) treatment under specified broadband harmonic excitations, and the square of displacement resonant responses in frequency domain at the specified point is considered as the objective function.
Abstract: A topology optimization method is proposed to minimize the resonant response of plates with constrained layer damping (CLD) treatment under specified broadband harmonic excitations. The topology optimization problem is formulated and the square of displacement resonant response in frequency domain at the specified point is considered as the objective function. Two sensitivity analysis methods are investigated and discussed. The derivative of modal damp ratio is not considered in the conventional sensitivity analysis method. An improved sensitivity analysis method considering the derivative of modal damp ratio is developed to improve the computational accuracy of the sensitivity. The evolutionary structural optimization (ESO) method is used to search the optimal layout of CLD material on plates. Numerical examples and experimental results show that the optimal layout of CLD treatment on the plate from the proposed topology optimization using the conventional sensitivity analysis or the improved sensitivity analysis can reduce the displacement resonant response. However, the optimization method using the improved sensitivity analysis can produce a higher modal damping ratio than that using the conventional sensitivity analysis and develop a smaller displacement resonant response.

Journal ArticleDOI
TL;DR: In this article, the influence of cavitation process on different frequency bands in a centrifugal pump with slope volute was analyzed and it was proved that cavitation has a significant impact on low frequency signals.
Abstract: Cavitation is one of the instability sources in centrifugal pump, which would cause some unexpected results. The goal of this paper was to analyze the influence of cavitation process on different frequency bands in a centrifugal pump with slope volute. And special attention was paid to low frequency signals, which were often filtered in the reported researches. Results show that at noncavitation condition, vibration level is closely related to flow structure interior pump. At partial flow rates, especially low flow rates, vibration level increases rapidly with the onset of rotating stall. At cavitation condition, it is proved that cavitation process has a significant impact on low frequency signals. With cavitation number decreasing, vibration level first rises to a local maximum, then it drops to a local minimum, and finally it rises again. At different flow rates, vibration trends in variable frequency bands differ obviously. Critical point inferred from vibration level is much larger than that from 3% head drop, which indicates that cavitation occurs much earlier than that reflected in head curve. Also, it is noted that high frequency signals almost increase simultaneously with cavitation occurring, which can be used to detect cavitation in centrifugal pump.

Journal ArticleDOI
TL;DR: The Wavelet-based Structural Damage Assessment (WavStructDamAs) Benchmark as mentioned in this paper is a benchmark for assessing structural damage in composite structures with various damage types using wavelet transforms and supporting tools.
Abstract: The application of composite structures as elements of machines and vehicles working under various operational conditions causes degradation and occurrence of damage. Considering that composites are often used for responsible elements, for example, parts of aircrafts and other vehicles, it is extremely important to maintain them properly and detect, localize, and identify the damage occurring during their operation in possible early stage of its development. From a great variety of nondestructive testing methods developed to date, the vibration-based methods seem to be ones of the least expensive and simultaneously effective with appropriate processing of measurement data. Over the last decades a great popularity of vibration-based structural testing has been gained by wavelet analysis due to its high sensitivity to a damage. This paper presents an overview of results of numerous researchers working in the area of vibration-based damage assessment supported by the wavelet analysis and the detailed description of the Wavelet-based Structural Damage Assessment (WavStructDamAs) Benchmark, which summarizes the author’s 5-year research in this area. The benchmark covers example problems of damage identification in various composite structures with various damage types using numerous wavelet transforms and supporting tools. The benchmark is openly available and allows performing the analysis on the example problems as well as on its own problems using available analysis tools.

Journal ArticleDOI
TL;DR: In this paper, two features extraction approaches were proposed to find efficient methods for classifying mine seismic events, and the discriminating performance of the two approaches was compared and discussed by applying the Bayes discriminant analysis to the characteristic parameters extracted.
Abstract: To find efficient methods for classifying mine seismic events, two features extraction approaches were proposed. Features of source parameters including the seismic moment, the seismic energy, the energy ratio of S- to P-wave, the static stress drop, time of occurrence, and the number of triggers were selected, counted, and analyzed in approach I. Waveform characteristics consisting of two slope values and the coordinates of the first peak and the maximum peak were extracted as the discriminating parameters in approach II. The discriminating performance of the two approaches was compared and discussed by applying the Bayes discriminant analysis to the characteristic parameters extracted. Classification results show that 83.5% of the original grouped cases are correctly classified by approach I, and 97.1% of original grouped cases are correctly classified by approach II. The advantages and limitations pertaining to each classifier were discussed by plotting the event magnitude versus sample number. Comparative analysis shows that the proposed method of approach II not only has a low misjudgment rate but also displays relative constancy when the testing samples fluctuate with seismic magnitude and energy.

Journal ArticleDOI
TL;DR: In this paper, an adaptive stochastic resonance (ASR) method was used to diagnose cracks in the impeller blades of a centrifugal fan, which can utilize the optimization ability of the grid search method and adaptively realize the optimal Stochastic Resonance System matching input signals, may weaken the noise and highlight weak characteristic.
Abstract: Centrifugal fans are widely used in various industries as a kind of turbo machinery. Among the components of the centrifugal fan, the impeller is a key part because it is used to transform kinetic energy into pressure energy. Crack in impeller’s blades is one of the serious hidden dangers. It is important to detect the cracks in the blades as early as possible. Based on blade vibration signals, this research applies an adaptive stochastic resonance (ASR) method to diagnose crack fault in centrifugal fan. The ASR method, which can utilize the optimization ability of the grid search method and adaptively realize the optimal stochastic resonance system matching input signals, may weaken the noise and highlight weak characteristic and thus can diagnose the fault accurately. A centrifugal fan test rig is established and experiments with three cases of blades are conducted. In comparison with the ensemble empirical mode decomposition (EEMD) analysis and the traditional Fourier transform method, the experiment verified the effectiveness of the current method in blade crack detection.

Journal ArticleDOI
TL;DR: A bioinspired strategy for the detection of structural changes using an artificial immune system (AIS) and a statistical data-driven modeling approach by means of a distributed piezoelectric active sensor network at different actuation phases is introduced.
Abstract: Among all the aspects that are linked to a structural health monitoring (SHM) system, algorithms, strategies, or methods for damage detection are currently playing an important role in improving the operational reliability of critical structures in several industrial sectors. This paper introduces a bioinspired strategy for the detection of structural changes using an artificial immune system (AIS) and a statistical data-driven modeling approach by means of a distributed piezoelectric active sensor network at different actuation phases. Damage detection and classification of structural changes using ultrasonic signals are traditionally performed using methods based on the time of flight. The approach followed in this paper is a data-based approach based on AIS, where sensor data fusion, feature extraction, and pattern recognition are evaluated. One of the key advantages of the proposed methodology is that the need to develop and validate a mathematical model is eliminated. The proposed methodology is applied, tested, and validated with data collected from two sections of an aircraft skin panel. The results show that the presented methodology is able to accurately detect damage.

Journal ArticleDOI
TL;DR: In this paper, the authors deal with passive monomodal vibration control by shunting piezoelectric actuators to electric impedances constituting the series of a resistance and an inductance.
Abstract: This paper deals with passive monomodal vibration control by shunting piezoelectric actuators to electric impedances constituting the series of a resistance and an inductance. Although this kind of vibration attenuation strategy has long been employed, there are still unsolved problems; particularly, this kind of control does suffer from issues relative to robustness because the features of the electric impedance cannot be adapted to changes of the system. This work investigates different algorithms that can be employed to optimise the values of the electric components of the shunt impedance. Some of these algorithms derive from the theory of the tuned mass dampers. First a performance analysis is provided, comparing the attenuation achievable with these algorithms. Then, an analysis and comparison of the same algorithms in terms of robustness are carried out. The approach adopted herein allows identifying the algorithm capable of providing the highest degree of robustness and explains the solutions that can be employed to resolve some of the issues concerning the practical implementation of this control technique. The analytical and numerical results presented in the paper have been validated experimentally by means of a proper test setup.

Journal ArticleDOI
TL;DR: In this paper, the effect of loading rate on mechanical properties and acoustic emission characteristics of coal samples, collected from Sanjiaohe Colliery, were carried out under various levels of loading rates.
Abstract: To study the effect of loading rate on mechanical properties and acoustic emission characteristics of coal samples, collected from Sanjiaohe Colliery, the uniaxial compression tests are carried out under various levels of loading rates, including 0.001 mm/s, 0.002 mm/s, and 0.005 mm/s, respectively, using AE-win E1.86 acoustic emission instrument and RMT-150C rock mechanics test system. The results indicate that the loading rate has a strong impact on peak stress and peak strain of coal samples, but the effect of loading rate on elasticity modulus of coal samples is relatively small. When the loading rate increases from 0.001 mm/s to 0.002 mm/s, the peak stress increases from 22.67 MPa to 24.99 MPa, the incremental percentage is 10.23%, and under the same condition the peak strain increases from 0.006191 to 0.007411 and the incremental percentage is 19.71%. Similarly, when the loading rate increases from 0.002 mm/s to 0.005 mm/s, the peak stress increases from 24.99 MPa to 28.01 MPa, the incremental percentage is 12.08%, the peak strain increases from 0.007411 to 0.008203, and the incremental percentage is 10.69%. The relationship between acoustic emission and loading rate presents a positive correlation, and the negative correlation relation has been determined between acoustic emission cumulative counts and loading rate during the rupture process of coal samples.

Journal ArticleDOI
TL;DR: In this paper, a vibration signal model of a single-stage planetary gearbox is presented, assuming that the gearbox and the sensor revolve inversely at the speed of the planet carrier.
Abstract: Planetary gearboxes are widely used in helicopters, wind turbines, mining machinery, and so forth. The structure and motion type of a planetary gearbox are more complex in comparison with a fixed-shaft one, which makes condition monitoring and fault diagnosis of planetary gearbox a challenging issue in practical applications. In order to understand the fundamental nature of planetary gearbox vibration, this paper conducts an investigation on vibration characteristics of a single-stage planetary gearbox. Assuming that the gearbox and the sensor revolve inversely at the speed of planet carrier, the problem can be transformed into two easier parts: research on fixed-shaft gearbox signal model and research on influence of sensor spinning. Based on this assumption, a vibration signal model of planetary gearbox is obtained. Experimental data are used to validate the model.

Journal ArticleDOI
TL;DR: In this paper, an experimental verification of a novel approach using vibration correlation technique for the prediction of realistic buckling loads of unstiffened cylindrical shells loaded under axial compression is presented.
Abstract: Nondestructive methods, to calculate the buckling load of imperfection sensitive thin-walled structures, such as large-scale aerospace structures, are one of the most important techniques for the evaluation of new structures and validation of numerical models. The vibration correlation technique (VCT) allows determining the buckling load for several types of structures without reaching the instability point, but this technique is still under development for thin-walled plates and shells. This paper presents and discusses an experimental verification of a novel approach using vibration correlation technique for the prediction of realistic buckling loads of unstiffened cylindrical shells loaded under axial compression. Four different test structures were manufactured and loaded up to buckling: two composite laminated cylindrical shells and two stainless steel cylinders. In order to characterize a relationship with the applied load, the first natural frequency of vibration and mode shape is measured during testing using a 3D laser scanner. The proposed vibration correlation technique allows one to predict the experimental buckling load with a very good approximation without actually reaching the instability point. Additional experimental tests and numerical models are currently under development to further validate the proposed approach for composite and metallic conical structures.

Journal ArticleDOI
TL;DR: In this article, a comparative study of different time-frequency analysis methodologies that can be used for detecting faults in induction motors analyzing vibration signals during the startup transient is presented, and the proposed methodology is applicable for motors that are not fed directly to the supply line, in such cases the analysis of current signals is not recommended due to poor current signal quality.
Abstract: Induction motors are critical components for most industries and the condition monitoring has become necessary to detect faults There are several techniques for fault diagnosis of induction motors and analyzing the startup transient vibration signals is not as widely used as other techniques like motor current signature analysis Vibration analysis gives a fault diagnosis focused on the location of spectral components associated with faults Therefore, this paper presents a comparative study of different time-frequency analysis methodologies that can be used for detecting faults in induction motors analyzing vibration signals during the startup transient The studied methodologies are the time-frequency distribution of Gabor (TFDG), the time-frequency Morlet scalogram (TFMS), multiple signal classification (MUSIC), and fast Fourier transform (FFT) The analyzed vibration signals are one broken rotor bar, two broken bars, unbalance, and bearing defects The obtained results have shown the feasibility of detecting faults in induction motors using the time-frequency spectral analysis applied to vibration signals, and the proposed methodology is applicable when it does not have current signals and only has vibration signals Also, the methodology has applications in motors that are not fed directly to the supply line, in such cases the analysis of current signals is not recommended due to poor current signal quality

Journal ArticleDOI
TL;DR: In this paper, the authors presented a comprehensive multifault diagnosis methodology for incipient rolling element bearing failures by combining a wavelet packet transform-based kurtogram and a new vector median-based feature analysis technique.
Abstract: This paper presents a comprehensive multifault diagnosis methodology for incipient rolling element bearing failures. This is done by combining a wavelet packet transform- (WPT-) based kurtogram and a new vector median-based feature analysis technique. The proposed approach first extracts useful features that are characteristic of the bearing health condition from the time domain, frequency domain, and envelope power spectrum of incoming acoustic emission (AE) signals by using a WPT-based kurtogram. Then, an enhanced feature analysis approach based on the linear discriminant analysis (LDA) technique is used to select the most discriminant bearing fault features from the original feature set. These selected fault features are used by a Naive Bayes (NB) classifier to classify the bearing fault conditions. The performance of the proposed methodology is tested and validated under various bearing fault conditions on an experimental test rig and compared with conventional state-of-the-art approaches. The proposed bearing fault diagnosis methodology yields average classification accuracies of 91.11%, 96.67%, 98.89%, 99.44%, and 98.61% at rotational speeds of 300, 350, 400, 450, and 500 rpm, respectively.

Journal ArticleDOI
Lin Cheng, Jie Yang, Dongjian Zheng, Bo Li, Jie Ren 
TL;DR: In this paper, the authors used the kernel principle analysis (KPCA) based method to eliminate the effect of environmental variables and monitor the health of dam under varying environments by taking full advantage of the AVT data obtained from vibration observation system of dam.
Abstract: The ambient vibration testing (AVT) measurement of concrete dams on full-scale can show the practical dynamic properties of structure in the operation state. For most current researches, the AVT data is generally analyzed to identify the structural vibration characteristics, that is, modal parameters. The identified modal parameters, which can provide the global damage information or the damage location information of structure, can be used as the basis of structure health monitoring. Therefore, in this paper, the health monitoring method of concrete dams based on the AVT is studied. The kernel principle analysis (KPCA) based method is adopted to eliminate the effect of environmental variables and monitor the health of dam under varying environments. By taking full advantage of the AVT data obtained from vibration observation system of dam, the identification capabilities and the warning capabilities of structural damage can be improved. With the simulated AVT data of the numerical model of a concrete gravity dam and the measured AVT data of a practical engineering, the performance of the dam health monitoring method proposed in this paper is verified.

Journal ArticleDOI
Xin Li, Zhao Wei, Liang Li, Ning He, ShengWei Chi 
TL;DR: In this article, a nonlinear dynamic model considering process damping for milling of thin-walled workpiece made of titanium alloy and designs antivibration clearance angle to suppress chatter based on the model.
Abstract: The modeling as well as application of process damping in milling of thin-walled workpiece made of titanium alloy is investigated. Titanium alloy used commonly in aviation industry is one typical difficult-to-machine material. Chatter usually occurs in cutting of titanium alloy, which results in poor surface quality and damaged tool. Thus, chatter is one important restriction for the quality and efficiency of titanium alloy manufacture, especially for the thin-walled workpiece made of titanium alloy due to poor structural stiffness. Process damping results from interference between flank face and machined surface, which is critical but usually ignored in chatter analysis for difficult-to-machine material. The paper presents one nonlinear dynamic model considering process damping for milling of thin-walled workpiece made of titanium alloy and designs antivibration clearance angle to suppress chatter based on the model. The experimental and computational results indicate that the presented methods for chatter stability analysis are reasonable, and the antivibration clearance angle designed is effective in suppressing chatter and improving machining quality.