scispace - formally typeset
Search or ask a question
JournalISSN: 1613-6810

Small 

Wiley-Blackwell
About: Small is an academic journal published by Wiley-Blackwell. The journal publishes majorly in the area(s): Medicine & Materials science. It has an ISSN identifier of 1613-6810. Over the lifetime, 15298 publications have been published receiving 734981 citations. The journal is also known as: Nano, micro, small (Internet) & Nano, micro, small (Print).


Papers
More filters
Journal ArticleDOI
18 Jan 2008-Small
TL;DR: For nanoparticles to move into the clinical arena, it is important that nanotoxicology research uncovers and understands how these multiple factors influence the toxicity of nanoparticles so that their undesirable properties can be avoided.
Abstract: Human exposure to nanoparticles is inevitable as nanoparticles become more widely used and, as a result, nanotoxicology research is now gaining attention. However, while the number of nanoparticle types and applications continues to increase, studies to characterize their effects after exposure and to address their potential toxicity are few in comparison. In the medical field in particular, nanoparticles are being utilized in diagnostic and therapeutic tools to better understand, detect, and treat human diseases. Exposure to nanoparticles for medical purposes involves intentional contact or administration; therefore, understanding the properties of nanoparticles and their effect on the body is crucial before clinical use can occur. This Review presents a summary of the in vitro cytotoxicity data currently available on three classes of nanoparticles. With each of these nanoparticles, different data has been published about their cytotoxicity due to varying experimental conditions as well as differing nanoparticle physiochemical properties. For nanoparticles to move into the clinical arena, it is important that nanotoxicology research uncovers and understands how these multiple factors influence the toxicity of nanoparticles so that their undesirable properties can be avoided.

2,546 citations

Journal ArticleDOI
22 Mar 2010-Small
TL;DR: Techniques for preparing such advanced materials via stable graphene oxide, highly reduced grapheneoxide, and graphene dispersions in aqueous and organic media are summarized with a forward outlook on their applications.
Abstract: Isolated graphene, a nanometer-thick two-dimensional analog of fullerenes and carbon nanotubes, has recently sparked great excitement in the scientific community given its excellent mechanical and electronic properties. Particularly attractive is the availability of bulk quantities of graphene as both colloidal dispersions and powders, which enables the facile fabrication of many carbon-based materials. The fact that such large amounts of graphene are most easily produced via the reduction of graphene oxide--oxygenated graphene sheets covered with epoxy, hydroxyl, and carboxyl groups--offers tremendous opportunities for access to functionalized graphene-based materials. Both graphene oxide and graphene can be processed into a wide variety of novel materials with distinctly different morphological features, where the carbonaceous nanosheets can serve as either the sole component, as in papers and thin films, or as fillers in polymer and/or inorganic nanocomposites. This Review summarizes techniques for preparing such advanced materials via stable graphene oxide, highly reduced graphene oxide, and graphene dispersions in aqueous and organic media. The excellent mechanical and electronic properties of the resulting materials are highlighted with a forward outlook on their applications.

2,397 citations

Journal ArticleDOI
04 Jan 2010-Small
TL;DR: An understanding of how synthetic and natural chemical moieties on the nanoparticle surface (in addition to nanoparticle shape and size) impact their interaction with lipid bilayers and cells is presented.
Abstract: The interaction of nanomaterials with cells and lipid bilayers is critical in many applications such as phototherapy, imaging, and drug/gene delivery. These applications require a firm control over nanoparticle-cell interactions, which are mainly dictated by surface properties of nanoparticles. This critical Review presents an understanding of how synthetic and natural chemical moieties on the nanoparticle surface (in addition to nanoparticle shape and size) impact their interaction with lipid bilayers and cells. Challenges for undertaking a systematic study to elucidate nanoparticle-cell interactions are also discussed.

2,346 citations

Journal ArticleDOI
18 Jul 2011-Small
TL;DR: The synthesis, characterization, properties, and applications of graphene-based materials are discussed and the promising properties together with the ease of processibility and functionalization make graphene- based materials ideal candidates for incorporation into a variety of functional materials.
Abstract: Graphene, a two-dimensional, single-layer sheet of sp(2) hybridized carbon atoms, has attracted tremendous attention and research interest, owing to its exceptional physical properties, such as high electronic conductivity, good thermal stability, and excellent mechanical strength. Other forms of graphene-related materials, including graphene oxide, reduced graphene oxide, and exfoliated graphite, have been reliably produced in large scale. The promising properties together with the ease of processibility and functionalization make graphene-based materials ideal candidates for incorporation into a variety of functional materials. Importantly, graphene and its derivatives have been explored in a wide range of applications, such as electronic and photonic devices, clean energy, and sensors. In this review, after a general introduction to graphene and its derivatives, the synthesis, characterization, properties, and applications of graphene-based materials are discussed.

2,246 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
20232,160
20222,140
20211,429
20201,221
20191,121
20181,178